[1]
Merz, K.M.; Ringe, D.; Reynolds, C.H. Drug design: Structure and ligand-based approaches; Cambridge University Press: Boston, MA, 2010.
[2]
Reddy, M.R.; Erion, M.D. Relative binding affinities of fructose-1,6-bisphosphatase inhibitors calculated using a quantum mechanics-based free energy perturbation method. J. Am. Chem. Soc., 2007, 129(30), 9296-9297.
[3]
Rathore, R.S.; Reddy, R.N.; Kondapi, A.K.; Reddanna, P.; Reddy, M.R. Use of quantum mechanics/molecular mechanics-based FEP method for calculating relative binding affinities of FBPase inhibitors for type-2 diabetes. Theor. Chem. Acc., 2012, 131(2), 1096-1106.
[4]
Reddy, M.R.; Reddy, C.R.; Rathore, R.S.; Erion, M.D.; Aparoy, P.; Reddy, R.N.; Reddanna, P. Free Energies calculations to estimate ligand-binding affinities in structure-based drug design. Curr. Pharm. Des., 2014, 20(20), 3323-3337.
[5]
Rathore, R.S.; Sumakanth, M.; Reddy, M.S.; Reddanna, P.; Rao, A.A.; Erion, M.D.; Reddy, M.R. Advances in binding free energies calculations: QM/MM-based free energy perturbation method for drug design. Curr. Pharm. Des., 2013, 19(26), 4674-4686.
[6]
Williams-Noonan, B.J.; Yuriev, E.; Chalmers, D.K. Free energy methods in drug design: Prospects of “Alchemical Perturbation” in medicinal chemistry. J. Med. Chem., 2018, 61, 638-649.
[7]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49, 6177-6196.
[8]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47, 1750-1759.
[9]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shaw, D.E.; Shelley, M.; Perry, J.K.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47, 1739-1749.
[10]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDock-Tools4: Automated docking with selective receptor flexibility. J. Comp. Chem., 2009, 30(16), 2785-2791.
[11]
Jones, G.; Willett, P.; Glen, R.C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol., 1995, 245(1), 43-53.
[12]
Jain, A.N. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem., 2003, 46(4), 499-511.
[13]
Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva-Jr, F.P. Key topics in molecular docking for drug design. Int. J. Mol. Sci., 2019, 20(18), 4574.
[14]
Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol., 2019, 7(2), 83-89.
[15]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[16]
Moitessier, N.; Englebienne, P.; Lee, D.; Lawandi, J.; Corbeil, C.R. Towards the development of universal, fast and highly accurate docking/scoring methods: A long way to go. Br. J. Pharmacol., 2008, 153, S7-S26.
[17]
Plewczynski, D.; Lazniewski, M.; Augustyniak, R.; Ginalski, K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comp. Chem., 2011, 32, 742-755.
[18]
Cross, J.B.; Thompson, D.C.; Rai, B.K.; Baber, J.C.; Fan, K.Y.; Hu, Y.; Humblet, C. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J. Chem. Inf. Mod., 2009, 49(6), 1455-1474.
[19]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Dis., 2004, 3(11), 935-949.
[20]
Kellenberger, E.; Rodrigo, J.; Muller, P.; Didier, R. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins: Struct. Funct., Bioinf., 2004, 57(2), 225-242.
[21]
Warren, G.L.; Andrews, C.W.; Capelli, A.M.; Clarke, B.; LaLonde, J.; Lambert, M.H.; Lindvall, M.; Nevins, N.; Semus, S.F.; Senger, S.; Tedesco, G.; Wall, I.D.; Woolven, J.M.; Peishoff, C.E.; Head, M.S. A critical assessment of docking programs and scoring functions. J. Med. Chem., 2006, 49(20), 5912-5931.
[22]
Cole, J.C.; Murray, C.W.; Nissink, J.W.; Taylor, R.D.; Taylor, R. Comparing protein-ligand docking programs is difficult. Proteins: Struct. Funct., Bioinf., 2005, 60(3), 325-332.
[23]
Kontoyianni, M.; McClellan, L.M.; Sokol, G.S. Evaluation of docking performance: comparative data on docking algorithms. J. Med. Chem., 2004, 47(3), 558-565.
[24]
Chen, H.; Lyne, P.D.; Giordanetto, F.; Lovell, T.; Li, J. On evaluating molecular-docking methods for pose prediction and enrichment factors. J. Chem. Inf. Model., 2006, 46(1), 401-415.
[25]
Kim, R.; Skolnick, J. Assessment of programs for ligand binding affinity prediction. J. Comp. Chem., 2008, 29(8), 1316-1331.
[26]
Rapp, C.; Kalyanaraman, C.; Schiffmiller, A.; Schoenbrun, E.L.; Jacobson, M.P. A molecular mechanics approach to modeling protein-ligand interactions: relative binding affinities in congeneric series. J. Chem. Inf. Model., 2011, 51(9), 2082-2089.
[27]
Grinter, S.Z.; Yan, C.; Huang, S.Y.; Jiang, L.; Zou, X. Automated large-scale file preparation, docking, and scoring: evaluation of ITScore and STScore using the 2012 Community Structure-Activity Resource benchmark. J. Chem. Inf. Model., 2013, 53(8), 1905-1914.
[28]
Damm-Ganamet, K.L.; Smith, R.D.; Dunbar, J.B., Jr; Stuckey, J.A.; Carlson, H.A. CSAR benchmark exercise 2011-2012: evaluation of results from docking and relative ranking of blinded congeneric series. J. Chem. Inf. Model., 2013, 53(8), 1853-1870.
[29]
Kirchmair, J.; Markt, P.; Distinto, S.; Wolber, G.; Langer, T. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection-What can we learn from earlier mistakes? J. Comput. Aided Mol. Des., 2008, 22(3-4), 213-228.
[30]
Kroemer, R.T.; Vulpetti, A.; McDonald, J.J.; Rohrer, D.C.; Trosset, J.Y.; Giordanetto, F.; Cotesta, S.; McMartin, C.; Kihlén, M.; Stouten, P.F.W. Assessment of docking poses: interactions-based accuracy classification (IBAC) versus crystal structure deviations. J. Chem. Inf. Comput. Sci., 2004, 44(3), 871-881.
[31]
Spitzer, R.; Jain, A.N. Surflex-Dock: Docking benchmarks and real-world application. J. Comput. Aided Mol. Des., 2012, 26(6), 687-699.
[32]
Erion, M.D.; Kasibhatla, S.R.; Bookser, B.C.; Poelje, V.P.D.; Reddy, M.R.; Gruber, H.E.; Appleman, J.R. Discovery of AMP Mimetics that exhibit high inhibitory potency and specificity for AMP deaminase. J. Am. Chem. Soc., 1999, 121(2), 308-319.
[33]
Erion, M.D.; Poelje, V.P.D.; Reddy, M.R. Computer-Assisted scanning of ligand interactions: Analysis of the fructose 1,6-bisphosphatase-AMP complex using free energy calculations. J. Am. Chem. Soc., 2000, 122(25), 6114-6115.
[34]
Reddy, M.R.; Erion, M.D. Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach. J. Am. Chem. Soc., 2001, 123(26), 6246-6252.
[35]
Reddy, M.R.; Singh, U.C.; Erion, M.D. Development of a quantum mechanics-based free-energy perturbation method: use in the calculation of relative solvation free energies. J. Am. Chem. Soc., 2004, 126(20), 6224-6225.
[36]
Reddy, M.R.; Erion, M.D. Relative binding affinities of fructose-1,6-bisphosphatase inhibitors calculated using a quantum mechanics-based free energy perturbation method. J. Am. Chem. Soc., 2007, 129(30), 9296-9297.
[37]
Erion, M.D.; Dang, Q.; Reddy, M.R.; Kasibhatla, S.R.; Huang, J.; Lipscomb, W.N.; Poelje, V.P.D. Structure-guided design of AMP mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity. J. Am. Chem. Soc., 2007, 129(50), 15480-15490.
[38]
Reddy, M.R.; Singh, U.C.; Erion, M.D. Ab initio quantum mechanics-based free energy perturbation method for calculating relative solvation free energies. J. Comp. Chem., 2007, 28(2), 491-494.
[39]
Reddy, M.R.; Singh, U.C.; Erion, M.D. Use of a QM/MM-based FEP method to evaluate the anomalous hydration behavior of simple alkyl amines and amides: application to the design of FBPase inhibitors for the treatment of type-2 diabetes. J. Am. Chem. Soc., 2011, 133(21), 8059-8061.
[40]
Rathore, R.S.; Aparoy, P.; Reddanna, P.; Kondapi, A.K.; Reddy, M.R. Minimum MD simulation length required to achieve reliable results in free energy perturbation calculations: case study of relative binding free energies of fructose-1,6-bisphosphatase inhibitors. J. Comp. Chem., 2011, 32(10), 2097-2103.
[41]
Schrodinger Suite 2011: Glide version 5.7, MacroModel, version 9.9, and Maestro, version 9.2 Schrödinger, LLC, New York, NY. 2011.
[42]
Ke, H.M.; Zhang, Y.P.; Lipscomb, W.N. Crystal structure of fructose-1,6-bisphosphatase complexed with fructose 6-phosphate, AMP, and magnesium. Proc. Natl. Acad. Sci. USA, 1990, 87(14), 5243-5247.
[43]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER Curr. Protoc. Bioinformat., 2016, 54, 5.6.1-5.6.37.
[44]
Laskowski, R.A.; Rullmannn, J.A.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR, 1996, 8(4), 477-486.
[46]
Cho, A.E.; Guallar, V.; Berne, B.; Friesner, R.A. Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J. Comput. Chem., 2005, 26, 915-931.
[47]
Abel, R.; Young, T.; Farid, R.; Berne, B.J.; Friesner, R.A. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J. Am. Chem. Soc., 2008, 130, 2817-2831.
[48]
Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem., 2006, 49, 534-553.
[49]
Holt, P.A.; Chaires, J.B.; Trent, J.O. Molecular docking of intercalators and groove-binders to nucleic acids using Autodock and Surflex. J. Chem. Inf. Model., 2008, 48, 1602-1615.