Review Article

氧化应激和抗氧化疗法对胰腺β细胞功能异常的影响:体内和体外研究的结果

卷 28, 期 7, 2021

发表于: 26 May, 2020

页: [1328 - 1346] 页: 19

弟呕挨: 10.2174/0929867327666200526135642

价格: $65

摘要

背景:氧化应激是许多疾病的标志。越来越多的证据表明,高血糖引起的氧化应激在胰腺β细胞功能障碍和细胞凋亡以及糖尿病并发症的发生和发展中起着重要作用。考虑到胰腺β细胞对氧化损伤的脆弱性,已提出诱导内源抗氧化剂或外源抗氧化剂来保护胰β细胞免受损伤。 目的:本综述旨在提供基于体外和体内研究的氧化应激和抗氧化疗法对胰腺β细胞功能的影响的证据。 方法:搜索MEDLINE和EMBASE数据库以检索可用数据。 结果:由于不良的内源性抗氧化机制,胰腺β细胞对活性氧(ROS)极为敏感。就抗氧化剂和糖尿病的改善作用而言,许多天然提取物已在胰腺β细胞系中进行了体外测试,其中大多数已显示出剂量依赖性的保护作用。另一方面,关于抗糖尿病药对胰腺β细胞的体外抗氧化作用的证据相对有限。关于体内研究,几种天然提取物通过降低血糖和血脂水平,提高胰岛素敏感性以及上调固有的抗氧化酶活性,已显示出对糖尿病的有益作用。然而,从体内研究中获得的有关抗糖尿病药物的证据有限。 结论:在体外和体内研究的支持下,抗氧化剂有望开发出旨在预防或治疗与胰岛β细胞功能异常相关的糖尿病的策略。但是,药物需要更多的体外研究。

关键词: 抗氧化酶,生物标志物,糖尿病,氧化应激,胰腺β细胞,活性氧种类,体外研究,体内研究。

[1]
Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: a review of current trends. Oman Med. J., 2012, 27(4), 269-273.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[2]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-a concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[3]
Li, N.; Frigerio, F.; Maechler, P. The sensitivity of pancreatic beta-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress. Biochem. Soc. Trans., 2008, 36(Pt 5), 930-934.
[http://dx.doi.org/10.1042/BST0360930] [PMID: 18793163]
[4]
Koliaki, C.; Roden, M. Do mitochondria care about insulin resistance? Mol. Metab., 2014, 3(4), 351-353.
[http://dx.doi.org/10.1016/j.molmet.2014.04.004] [PMID: 24944895]
[5]
Montgomery, M.K.; Turner, N. Mitochondrial dysfunction and insulin resistance: an update. Endocr. Connect., 2015, 4(1), R1-R15.
[http://dx.doi.org/10.1530/EC-14-0092] [PMID: 25385852]
[6]
Koliaki, C.; Roden, M. Alterations of mitochondrial function and insulin sensitivity in human obesity and diabetes mellitus. Annu. Rev. Nutr., 2016, 36, 337-367.
[http://dx.doi.org/10.1146/annurev-nutr-071715-050656] [PMID: 27146012]
[7]
Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.A.; Salam, S.K.; Salleh, M.S.M.; Gurtu, S. Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats. Int. J. Mol. Sci., 2010, 11(5), 2056-2066.
[http://dx.doi.org/10.3390/ijms11052056] [PMID: 20559501]
[8]
Acharya, J.D.; Ghaskadbi, S.S. Islets and their antioxidant defense. Islets, 2010, 2(4), 225-235.
[http://dx.doi.org/10.4161/isl.2.4.12219] [PMID: 21099317]
[9]
Xavier, G.D.S. The cells of the islets of langerhans. J. Clin. Med., 2018, 7(3), 7.
[http://dx.doi.org/10.3390/jcm7030054] [PMID: 29534517]
[10]
Brereton, M.F.; Vergari, E.; Zhang, Q.; Clark, A. Alpha-, delta- and pp-cells: are they the architectural cornerstones of islet structure and co-ordination? J. Histochem. Cytochem., 2015, 63(8), 575-591.
[http://dx.doi.org/10.1369/0022155415583535] [PMID: 26216135]
[11]
Ray, P.D.; Huang, B-W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[12]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[13]
Patlevič, P.; Vašková, J.; Švorc, P., Jr; Vaško, L.; Švorc, P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. Res., 2016, 5(4), 250-258.
[http://dx.doi.org/10.1016/j.imr.2016.07.004] [PMID: 28462126]
[14]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[15]
Shukla, V.; Mishra, S.K.; Pant, H.C. Oxidative stress in neurodegeneration. Adv. Pharmacol. Sci., 2011, 2011, 572634-572634.
[http://dx.doi.org/10.1155/2011/572634] [PMID: 21941533]
[16]
Peluso, I.; Morabito, G.; Urban, L.; Ioannone, F.; Serafi, M. Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr. Metab. Immune Disord. Drug Targets, 2012, 12(4), 351-360.
[17]
Yang, H.; Jin, X.; Lam, C.W.K.; Yan, S.K. Oxidative stress and diabetes mellitus. Clin. Chem. Lab. Med., 2011, 49(11), 1773-1782.
[http://dx.doi.org/10.1515/cclm.2011.250] [PMID: 21810068]
[18]
Haigis, M.C.; Yankner, B.A. The aging stress response. Mol. Cell, 2010, 40(2), 333-344.
[http://dx.doi.org/10.1016/j.molcel.2010.10.002] [PMID: 20965426]
[19]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[20]
Rizzo, A.M.; Berselli, P.; Zava, S.; Montorfano, G.; Negroni, M.; Corsetto, P.; Berra, B. Endogenous antioxidants and radical scavengers. Adv. Exp. Med. Biol., 2010, 698, 52-67.
[http://dx.doi.org/10.1007/978-1-4419-7347-4_5] [PMID: 21520703]
[21]
Lo, W.J.; Chiou, Y.C.; Hsu, Y.T.; Lam, W.S.; Chang, M.Y.; Jao, S.C.; Li, W.S. Enzymatic and nonenzymatic synthesis of glutathione conjugates: application to the understanding of a parasite’s defense system and alternative to the discovery of potent glutathione S-transferase inhibitors. Bioconjug. Chem., 2007, 18(1), 109-120.
[http://dx.doi.org/10.1021/bc0601727] [PMID: 17226963]
[22]
Rhee, S.G. Overview on peroxiredoxin. Mol. Cells, 2016, 39(1), 1-5.
[http://dx.doi.org/10.14348/molcells.2016.2368] [PMID: 26831451]
[23]
Glorieux, C.; Calderon, P.B. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem., 2017, 398(10), 1095-1108.
[http://dx.doi.org/10.1515/hsz-2017-0131] [PMID: 28384098]
[24]
Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci., 2018, 63(1), 68-78.
[http://dx.doi.org/10.1016/j.advms.2017.05.005] [PMID: 28822266]
[25]
Ruttkay-Nedecky, B.; Nejdl, L.; Gumulec, J.; Zitka, O.; Masarik, M.; Eckschlager, T.; Stiborova, M.; Adam, V.; Kizek, R. The role of metallothionein in oxidative stress. Int. J. Mol. Sci., 2013, 14(3), 6044-6066.
[http://dx.doi.org/10.3390/ijms14036044] [PMID: 23502468]
[26]
Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J., 2016, 15(1), 71-71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[27]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 20178416763
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[28]
Bouayed, J.; Bohn, T. Exogenous antioxidants-double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev., 2010, 3(4), 228-237.
[http://dx.doi.org/10.4161/oxim.3.4.12858] [PMID: 20972369]
[29]
Supale, S.; Li, N.; Brun, T.; Maechler, P. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol. Metab., 2012, 23(9), 477-487.
[http://dx.doi.org/10.1016/j.tem.2012.06.002] [PMID: 22766318]
[30]
Pi, J.; Collins, S. Reactive oxygen species and uncoupling protein 2 in pancreatic β-cell function. Diabetes Obes. Metab., 2010, 12(Suppl. 2), 141-148.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01269.x] [PMID: 21029311]
[31]
Wang, J.; Wang, H. Oxidative stress in pancreatic beta cell regeneration. Oxid. Med. Cell. Longev., 2017, 2017, 1930-261.
[http://dx.doi.org/10.1155/2017/1930261] [PMID: 28845211]
[32]
Zhao, F.; Wang, Q. The protective effect of peroxiredoxin II on oxidative stress induced apoptosis in pancreatic β-cells. Cell Biosci., 2012, 2(1), 22.
[http://dx.doi.org/10.1186/2045-3701-2-22] [PMID: 22709359]
[33]
Lim, S.; Rashid, M.A.; Jang, M.; Kim, Y.; Won, H.; Lee, J.; Woo, J.T.; Kim, Y.S.; Murphy, M.P.; Ali, L.; Ha, J.; Kim, S.S. Mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity. Cell. Physiol. Biochem., 2011, 28(5), 873-886.
[http://dx.doi.org/10.1159/000335802] [PMID: 22178940]
[34]
Escribano-Lopez, I.; Diaz-Morales, N.; Rovira-Llopis, S.; de Marañon, A.M.; Orden, S.; Alvarez, A.; Bañuls, C.; Rocha, M.; Murphy, M.P.; Hernandez-Mijares, A.; Victor, V.M. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. Redox Biol., 2016, 10, 200-205.
[http://dx.doi.org/10.1016/j.redox.2016.10.017] [PMID: 27810734]
[35]
Cerf, M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol. (Lausanne), 2013, 4, 37.
[http://dx.doi.org/10.3389/fendo.2013.00037] [PMID: 23542897]
[36]
Chen, C.; Cohrs, C.M.; Stertmann, J.; Bozsak, R.; Speier, S. Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol. Metab., 2017, 6(9), 943-957.
[http://dx.doi.org/10.1016/j.molmet.2017.06.019] [PMID: 28951820]
[37]
Eleftheriadou, I.; Tentolouris, A.; Grigoropoulou, P.; Tsilingiris, D.; Anastasiou, I.; Kokkinos, A.; Perrea, D.; Katsilambros, N.; Tentolouris, N. The association of diabetic microvascular and macrovascular disease with cutaneous circulation in patients with type 2 diabetes mellitus. J. Diabetes Complications, 2019, 33(2), 165-170.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.10.008] [PMID: 30446479]
[38]
Madonna, R.; De Caterina, R. Cellular and molecular mechanisms of vascular injury in diabetes-part I: pathways of vascular disease in diabetes. Vascul. Pharmacol., 2011, 54(3-6), 68-74.
[http://dx.doi.org/10.1016/j.vph.2011.03.005] [PMID: 21453786]
[39]
Jang, S.M.; Kim, M.J.; Choi, M.S.; Kwon, E.Y.; Lee, M.K. Inhibitory effects of ursolic acid on hepatic polyol pathway and glucose production in streptozotocin-induced diabetic mice. Metabolism, 2010, 59(4), 512-519.
[http://dx.doi.org/10.1016/j.metabol.2009.07.040] [PMID: 19846180]
[40]
Tang, W.H.; Martin, K.A.; Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front. Pharmacol., 2012, 3, 87.
[http://dx.doi.org/10.3389/fphar.2012.00087] [PMID: 22582044]
[41]
Ohmura, C.; Watada, H.; Azuma, K.; Shimizu, T.; Kanazawa, A.; Ikeda, F.; Yoshihara, T.; Fujitani, Y.; Hirose, T.; Tanaka, Y.; Kawamori, R. Aldose reductase inhibitor, epalrestat, reduces lipid hydroperoxides in type 2 diabetes. Endocr. J., 2009, 56(1), 149-156.
[http://dx.doi.org/10.1507/endocrj.K08E-237] [PMID: 18997444]
[42]
Yeung, C.M.; Lo, A.C.; Cheung, A.K.; Chung, S.S.; Wong, D.; Chung, S.K. More severe type 2 diabetes-associated ischemic stroke injury is alleviated in aldose reductase-deficient mice. J. Neurosci. Res., 2010, 88(9), 2026-2034.
[http://dx.doi.org/10.1002/jnr.22349] [PMID: 20143423]
[43]
Fardini, Y.; Masson, E.; Boudah, O.; Ben Jouira, R.; Cosson, C.; Pierre-Eugene, C.; Kuo, M.S.; Issad, T. O-GlcNAcylation of FoxO1 in pancreatic β cells promotes Akt inhibition through an IGFBP1-mediated autocrine mechanism. FASEB J., 2014, 28(2), 1010-1021.
[http://dx.doi.org/10.1096/fj.13-238378] [PMID: 24174424]
[44]
Issad, T.; Masson, E.; Pagesy, P. O-GlcNAc modification, insulin signaling and diabetic complications. Diabetes Metab., 2010, 36(6 Pt 1), 423-435.
[http://dx.doi.org/10.1016/j.diabet.2010.09.001] [PMID: 21074472]
[45]
Ma, J.; Hart, G.W. Protein O-GlcNAcylation in diabetes and diabetic complications. Expert Rev. Proteomics, 2013, 10(4), 365-380.
[http://dx.doi.org/10.1586/14789450.2013.820536] [PMID: 23992419]
[46]
Rajapakse, A.G.; Ming, X-F.; Carvas, J.M.; Yang, Z. O-linked beta-N-acetylglucosamine during hyperglycemia exerts both anti-inflammatory and pro-oxidative properties in the endothelial system. Oxid. Med. Cell. Longev., 2009, 2(3), 172-175.
[http://dx.doi.org/10.4161/oxim.2.3.8482] [PMID: 20592773]
[47]
Goldberg, H.; Whiteside, C.; Fantus, I.G. O-linked β-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells. Am. J. Physiol. Endocrinol. Metab., 2011, 301(4), E713-E726.
[http://dx.doi.org/10.1152/ajpendo.00108.2011] [PMID: 21712532]
[48]
Geraldes, P.; King, G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res., 2010, 106(8), 1319-1331.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.217117] [PMID: 20431074]
[49]
Feng, B.; Ruiz, M.A.; Chakrabarti, S. Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Can. J. Physiol. Pharmacol., 2013, 91(3), 213-220.
[http://dx.doi.org/10.1139/cjpp-2012-0251] [PMID: 23537434]
[50]
Teshima, Y.; Takahashi, N.; Nishio, S.; Saito, S.; Kondo, H.; Fukui, A.; Aoki, K.; Yufu, K.; Nakagawa, M.; Saikawa, T. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ. J., 2014, 78(2), 300-306.
[http://dx.doi.org/10.1253/circj.CJ-13-1187] [PMID: 24334638]
[51]
Höhn, A.; König, J.; Jung, T. Metabolic syndrome, redox state, and the proteasomal system. Antioxid. Redox Signal., 2016, 25(16), 902-917.
[http://dx.doi.org/10.1089/ars.2016.6815] [PMID: 27412984]
[52]
Zhao, Z.; Zhao, C.; Zhang, X.H.; Zheng, F.; Cai, W.; Vlassara, H.; Ma, Z.A. Advanced glycation end products inhibit glucose-stimulated insulin secretion through nitric oxide-dependent inhibition of cytochrome c oxidase and adenosine triphosphate synthesis. Endocrinology, 2009, 150(6), 2569-2576.
[http://dx.doi.org/10.1210/en.2008-1342] [PMID: 19246537]
[53]
Shu, T.; Zhu, Y.; Wang, H.; Lin, Y.; Ma, Z.; Han, X. AGEs decrease insulin synthesis in pancreatic β-cell by repressing Pdx-1 protein expression at the post-translational level. PLoS One, 2011, 6(4)e18782
[http://dx.doi.org/10.1371/journal.pone.0018782] [PMID: 21533167]
[54]
Hachiya, H.; Miura, Y.; Inoue, K.; Park, K.H.; Takeuchi, M.; Kubota, K. Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic β-cells. J. Hepatobiliary Pancreat. Sci., 2014, 21(2), 134-141.
[http://dx.doi.org/10.1002/jhbp.12] [PMID: 23798335]
[55]
Mira, M.L.; Martinho, F.; Azevedo, M.S.; Manso, C.F. Oxidative inhibition of red blood cell ATPases by glyceraldehyde. Biochim. Biophys. Acta, 1991, 1060(3), 257-261.
[http://dx.doi.org/10.1016/S0005-2728(05)80315-9] [PMID: 1836354]
[56]
Wolff, S.P.; Dean, R.T. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem. J., 1987, 245(1), 243-250.
[http://dx.doi.org/10.1042/bj2450243] [PMID: 3117042]
[57]
Hauck, A.K.; Bernlohr, D.A. Oxidative stress and lipotoxicity. J. Lipid Res., 2016, 57(11), 1976-1986.
[http://dx.doi.org/10.1194/jlr.R066597] [PMID: 27009116]
[58]
Yang, H.; Li, X. The role of fatty acid metabolism and lipotoxicity in pancreatic β-cell injury: identification of potential therapeutic targets. Acta Pharm. Sin. B, 2012, 2(4), 396-402.
[http://dx.doi.org/10.1016/j.apsb.2012.05.003]
[59]
Prudente, S.; Morini, E.; Trischitta, V. Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat. Rev. Endocrinol., 2009, 5(12), 682-693.
[http://dx.doi.org/10.1038/nrendo.2009.215] [PMID: 19924153]
[60]
Ashcroft, F.M.; Rorsman, P. Diabetes mellitus and the β cell: the last ten years. Cell, 2012, 148(6), 1160-1171.
[http://dx.doi.org/10.1016/j.cell.2012.02.010] [PMID: 22424227]
[61]
Stefanovski, D.; Richey, J.M.; Woolcott, O.; Lottati, M.; Zheng, D.; Harrison, L.N.; Ionut, V.; Kim, S.P.; Hsu, I.; Bergman, R.N. Consistency of the disposition index in the face of diet induced insulin resistance: potential role of FFA. PLoS One, 2011, 6(3), e18134-e18134.
[http://dx.doi.org/10.1371/journal.pone.0018134] [PMID: 21479217]
[62]
Kristinsson, H.; Smith, D.M.; Bergsten, P.; Sargsyan, E. FFAR1 is involved in both the acute and chronic effects of palmitate on insulin secretion. Endocrinology, 2013, 154(11), 4078-4088.
[http://dx.doi.org/10.1210/en.2013-1352] [PMID: 24035997]
[63]
Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: a critical component in human diseases. Int. J. Mol. Sci., 2014, 16(1), 378-400.
[http://dx.doi.org/10.3390/ijms16010378] [PMID: 25548896]
[64]
Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract., 2013, 7(5), e330-e341.
[http://dx.doi.org/10.1016/j.orcp.2013.05.004] [PMID: 24455761]
[65]
Zhou, S.; Yu, D.; Ning, S.; Zhang, H.; Jiang, L.; He, L.; Li, M.; Sun, M. Augmented Rac1 expression and activity are associated with oxidative stress and decline of β cell function in obesity. Cell. Physiol. Biochem., 2015, 35(6), 2135-2148.
[http://dx.doi.org/10.1159/000374019] [PMID: 25896148]
[66]
Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, A.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci., 2011, 12(5), 3117-3132.
[http://dx.doi.org/10.3390/ijms12053117] [PMID: 21686173]
[67]
Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol., 2011, 11(2), 98-107.
[http://dx.doi.org/10.1038/nri2925] [PMID: 21233852]
[68]
Choi, H.J.; Hwang, S.; Lee, S-H.; Lee, Y.R.; Shin, J.; Park, K.S.; Cho, Y.M. Genome-wide identification of palmitate-regulated immediate early genes and target genes in pancreatic beta-cells reveals a central role of NF-κB. Mol. Biol. Rep., 2012, 39(6), 6781-6789.
[http://dx.doi.org/10.1007/s11033-012-1503-5] [PMID: 22302392]
[69]
Tiwari, B.K.; Pandey, K.B.; Abidi, A.B.; Rizvi, S.I. Markers of oxidative stress during diabetes mellitus. J. Biomark., 2013, 2013378790
[http://dx.doi.org/10.1155/2013/378790] [PMID: 26317014]
[70]
Dorcely, B.; Katz, K.; Jagannathan, R.; Chiang, S.S.; Oluwadare, B.; Goldberg, I.J.; Bergman, M. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab. Syndr. Obes., 2017, 10, 345-361.
[http://dx.doi.org/10.2147/DMSO.S100074] [PMID: 28860833]
[71]
Srivastava, K.K.; Kumar, R. Stress, oxidative injury and disease. Indian J. Clin. Biochem., 2015, 30(1), 3-10.
[http://dx.doi.org/10.1007/s12291-014-0441-5] [PMID: 25646036]
[72]
Pandey, K.B.; Mishra, N.; Rizvi, S.I. Protein oxidation biomarkers in plasma of type 2 diabetic patients. Clin. Biochem., 2010, 43(4-5), 508-511.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.11.011] [PMID: 19941844]
[73]
Pérez-Matute, P.; Zulet, M.A.; Martínez, J.A. Reactive species and diabetes: counteracting oxidative stress to improve health. Curr. Opin. Pharmacol., 2009, 9(6), 771-779.
[http://dx.doi.org/10.1016/j.coph.2009.08.005] [PMID: 19766058]
[74]
Matough, F.A.; Budin, S.B.; Hamid, Z.A.; Alwahaibi, N.; Mohamed, J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ. Med. J., 2012, 12(1), 5-18.
[http://dx.doi.org/10.12816/0003082] [PMID: 22375253]
[75]
Garcia-Bailo, B.; El-Sohemy, A.; Haddad, P.S.; Arora, P.; Benzaied, F.; Karmali, M.; Badawi, A.; Vitamins, D. C, and E in the prevention of type 2 diabetes mellitus: modulation of inflammation and oxidative stress. Biologics, 2011, 5, 7-19.
[http://dx.doi.org/10.2147/btt.s14417]] [PMID: 21383912]
[76]
Konijeti, G.G.; Arora, P.; Boylan, M.R.; Song, Y.; Huang, S.; Harrell, F.; Newton-Cheh, C.; O’Neill, D.; Korzenik, J.; Wang, T.J.; Chan, A.T. Vitamin D supplementation modulates T cell-mediated immunity in humans: results from a randomized control trial. J. Clin. Endocrinol. Metab., 2016, 101(2), 533-538.
[http://dx.doi.org/10.1210/jc.2015-3599] [PMID: 26653112]
[77]
Patel, H.; Chen, J.; Das, K.C.; Kavdia, M. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovasc. Diabetol., 2013, 12, 142-142.
[http://dx.doi.org/10.1186/1475-2840-12-142] [PMID: 24093550]
[78]
Tentolouris, A.; Eleftheriadou, I.; Tzeravini, E.; Tsilingiris, D.; Paschou, S.A.; Siasos, G.; Tentolouris, N. Endothelium as a therapeutic target in diabetes mellitus: from basic mechanisms to clinical practice. Curr. Med. Chem., 2020, 27(7), 1089-1131.
[http://dx.doi.org/10.2174/0929867326666190119154152] [PMID: 30663560]
[79]
Skelin, M.; Rupnik, M.; Cencic, A. Pancreatic beta cell lines and their applications in diabetes mellitus research. ALTEX, 2010, 27(2), 105-113.
[http://dx.doi.org/10.14573/altex.2010.2.105] [PMID: 20686743]
[80]
Koh, G.; Yang, E-J.; Kim, M-K.; Lee, S.A.; Lee, D-H. Alpha-lipoic acid treatment reverses 2-deoxy-D-ribose-induced oxidative damage and suppression of insulin expression in pancreatic beta-cells. Biol. Pharm. Bull., 2013, 36(10), 1570-1576.
[http://dx.doi.org/10.1248/bpb.b13-00292] [PMID: 23912745]
[81]
Wu, C.H.; Hsieh, H.T.; Lin, J.A.; Yen, G.C. Alternanthera paronychioides protects pancreatic β-cells from glucotoxicity by its antioxidant, antiapoptotic and insulin secretagogue actions. Food Chem., 2013, 139(1-4), 362-370.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.026] [PMID: 23561118]
[82]
Lee, Y.J.; Suh, K.S.; Choi, M.C.; Chon, S.; Oh, S.; Woo, J.T.; Kim, S.W.; Kim, J.W.; Kim, Y.S. Kaempferol protects HIT-T15 pancreatic beta cells from 2-deoxy-D-ribose-induced oxidative damage. Phytother. Res., 2010, 24(3), 419-423.
[http://dx.doi.org/10.1002/ptr.2983] [PMID: 19827031]
[83]
Jeong, G.S.; Lee, D.S.; Song, M.Y.; Park, B.H.; Kang, D.G.; Lee, H.S.; Kwon, K.B.; Kim, Y.C. Butein from Rhus verniciflua protects pancreatic β cells against cytokine-induced toxicity mediated by inhibition of nitric oxide formation. Biol. Pharm. Bull., 2011, 34(1), 97-102.
[http://dx.doi.org/10.1248/bpb.34.97] [PMID: 21212525]
[84]
Li, X.L.; Xu, G.; Chen, T.; Wong, Y.S.; Zhao, H.L.; Fan, R.R.; Gu, X.M.; Tong, P.C.; Chan, J.C. Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways. Int. J. Biochem. Cell Biol., 2009, 41(7), 1526-1535.
[http://dx.doi.org/10.1016/j.biocel.2009.01.002] [PMID: 19166964]
[85]
Martín, M.Á.; Fernández-Millán, E.; Ramos, S.; Bravo, L.; Goya, L. Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Mol. Nutr. Food Res., 2014, 58(3), 447-456.
[http://dx.doi.org/10.1002/mnfr.201300291] [PMID: 24115486]
[86]
Youl, E.; Bardy, G.; Magous, R.; Cros, G.; Sejalon, F.; Virsolvy, A.; Richard, S.; Quignard, J.F.; Gross, R.; Petit, P.; Bataille, D.; Oiry, C. Quercetin potentiates insulin secretion and protects INS-1 pancreatic β-cells against oxidative damage via the ERK1/2 pathway. Br. J. Pharmacol., 2010, 161(4), 799-814.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00910.x] [PMID: 20860660]
[87]
Sun, C-D.; Zhang, B.; Zhang, J-K.; Xu, C-J.; Wu, Y-L.; Li, X.; Chen, K-S. Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. J. Med. Food, 2012, 15(3), 288-298.
[http://dx.doi.org/10.1089/jmf.2011.1806] [PMID: 22181073]
[88]
Zhang, B.; Kang, M.; Xie, Q.; Xu, B.; Sun, C.; Chen, K.; Wu, Y. Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation. J. Agric. Food Chem., 2011, 59(2), 537-545.
[http://dx.doi.org/10.1021/jf1035405] [PMID: 21166417]
[89]
Hao, F.; Kang, J.; Cao, Y.; Fan, S.; Yang, H.; An, Y.; Pan, Y.; Tie, L.; Li, X. Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic β-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways. Apoptosis, 2015, 20(11), 1420-1432.
[http://dx.doi.org/10.1007/s10495-015-1150-0] [PMID: 26330141]
[90]
Shah, P.; Ardestani, A.; Dharmadhikari, G.; Laue, S.; Schumann, D.M.; Kerr-Conte, J.; Pattou, F.; Klein, T.; Maedler, K. The DPP-4 inhibitor linagliptin restores β-cell function and survival in human isolated islets through GLP-1 stabilization. J. Clin. Endocrinol. Metab., 2013, 98(7), E1163-E1172.
[http://dx.doi.org/10.1210/jc.2013-1029] [PMID: 23633194]
[91]
Sliwinska, A.; Rogalska, A.; Szwed, M.; Kasznicki, J.; Jozwiak, Z.; Drzewoski, J. Gliclazide may have an antiapoptotic effect related to its antioxidant properties in human normal and cancer cells. Mol. Biol. Rep., 2012, 39(5), 5253-5267.
[http://dx.doi.org/10.1007/s11033-011-1323-z] [PMID: 22183301]
[92]
Rahigude, A.; Bhutada, P.; Kaulaskar, S.; Aswar, M.; Otari, K. Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience, 2012, 226, 62-72.
[http://dx.doi.org/10.1016/j.neuroscience.2012.09.026] [PMID: 22999973]
[93]
Lee, E.; Ryu, G.R.; Ko, S.H.; Ahn, Y.B.; Yoon, K.H.; Ha, H.; Song, K.H. Antioxidant treatment may protect pancreatic beta cells through the attenuation of islet fibrosis in an animal model of type 2 diabetes. Biochem. Biophys. Res. Commun., 2011, 414(2), 397-402.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.087] [PMID: 21971557]
[94]
Alam, M.M.; Meerza, D.; Naseem, I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci., 2014, 109(1), 8-14.
[http://dx.doi.org/10.1016/j.lfs.2014.06.005] [PMID: 24946265]
[95]
Palsamy, P.; Subramanian, S. Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic beta-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. J. Cell. Physiol., 2010, 224(2), 423-432.
[http://dx.doi.org/10.1002/jcp.22138] [PMID: 20333650]
[96]
Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Natural medicines from plant source used for therapy of diabetes mellitus: an overview of its pharmacological aspects. Asian Pac. J. Trop. Dis., 2012, 2(3), 239-250.
[http://dx.doi.org/10.1016/S2222-1808(12)60054-1]
[97]
Fu, Z.; Zhang, W.; Zhen, W.; Lum, H.; Nadler, J.; Bassaganya-Riera, J.; Jia, Z.; Wang, Y.; Misra, H.; Liu, D. Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology, 2010, 151(7), 3026-3037.
[http://dx.doi.org/10.1210/en.2009-1294] [PMID: 20484465]
[98]
Gupta, R.; Sharma, A.K.; Dobhal, M.P.; Sharma, M.C.; Gupta, R.S. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J. Diabetes, 2011, 3(1), 29-37.
[http://dx.doi.org/10.1111/j.1753-0407.2010.00107.x] [PMID: 21143769]
[99]
Prabhakar, P.K.; Prasad, R.; Ali, S.; Doble, M. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine, 2013, 20(6), 488-494.
[http://dx.doi.org/10.1016/j.phymed.2012.12.004] [PMID: 23490007]
[100]
Sellamuthu, P.S.; Arulselvan, P.; Muniappan, B.P.; Fakurazi, S.; Kandasamy, M. Mangiferin from Salacia chinensis prevents oxidative stress and protects pancreatic β-cells in streptozotocin-induced diabetic rats. J. Med. Food, 2013, 16(8), 719-727.
[http://dx.doi.org/10.1089/jmf.2012.2480] [PMID: 23957355]
[101]
Zhou, J.; Zhou, S.; Zeng, S. Experimental diabetes treated with trigonelline: effect on β cell and pancreatic oxidative parameters. Fundam. Clin. Pharmacol., 2013, 27(3), 279-287.
[http://dx.doi.org/10.1111/j.1472-8206.2011.01022.x] [PMID: 22172053]
[102]
Shimoda, M.; Kanda, Y.; Hamamoto, S.; Tawaramoto, K.; Hashiramoto, M.; Matsuki, M.; Kaku, K. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia, 2011, 54(5), 1098-1108.
[http://dx.doi.org/10.1007/s00125-011-2069-9] [PMID: 21340625]
[103]
Hamamoto, S.; Kanda, Y.; Shimoda, M.; Tatsumi, F.; Kohara, K.; Tawaramoto, K.; Hashiramoto, M.; Kaku, K. Vildagliptin preserves the mass and function of pancreatic β cells via the developmental regulation and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetes Obes. Metab., 2013, 15(2), 153-163.
[http://dx.doi.org/10.1111/dom.12005] [PMID: 22950702]
[104]
Mahadevan, J.; Parazzoli, S.; Oseid, E.; Hertzel, A.V.; Bernlohr, D.A.; Vallerie, S.N.; Liu, C.Q.; Lopez, M.; Harmon, J.S.; Robertson, R.P. Ebselen treatment prevents islet apoptosis, maintains intranuclear Pdx-1 and MafA levels, and preserves β-cell mass and function in ZDF rats. Diabetes, 2013, 62(10), 3582-3588.
[http://dx.doi.org/10.2337/db13-0357] [PMID: 23801580]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy