Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Determination of Free Amino Acids in Banlangen Granule and its Fractions by Solid Phase Extraction Combined with Ion-pair Hig-h Perfor mance Liquid Chromatography using a Corona-charged Aerosol Detector (SPE-HPLC-CAD)

Author(s): Xiuyu Qian, Lixing Nie*, Zhong Dai and Shuangcheng Ma*

Volume 17, Issue 7, 2021

Published on: 26 May, 2020

Page: [838 - 846] Pages: 9

DOI: 10.2174/1573412916999200526120449

Price: $65

Abstract

Background: Banlangen granules are broad-spectrum effective antiviral drugs, and have a large clinical demand in China. Free amino acid is one of the main antiviral active ingredients of Banlangen granules. The pre-processing of samples by the existing pre-column derivatization reversed- HPLC method is complicated. Therefore, the determination of free amino acids (AAs) by underivatized ion-pair HPLC-CAD is advantageous for simplifying the preparation process and improving sensitivity.

Objective: To better optimize AAs analysis methods, here a sensitive SPE-HPLC-CAD method with a better resolution was established for the determination of underivatized AAs in Banlangen Granule for the first time.

Methods: The analytes were separated by HPLC using a Hypercarb column with gradient elution of solvent A (20 mM nonafluorovaleric acid in water) and solvent B (0.3% trifluoroacetic acid in acetonitrile- 0.3% trifluoroacetic acid in water (1:9, v/v)) at a flow rate of 0.15 mL/min. N2 gas pressure and evaporation temperature of CAD were held at a constant 58.6 psi and 60 °C respectively.

Results: This method was linear over the respective concentration range of six amino acids. The precision, accuracy, stability and recovery were satisfactory in all samples examined. And the method was successfully applied to the determination of free amino acids in Banlangen granules and its fractions. The total contents of six amino acids in 28 batches of Banlangen Granule were between 1.36 mg/g- 11.62 mg/g.

Conclusion: The proposed method could be a simple, accurate and sensitive alternative approach for the determination of free AAs in Banlangen Granule.

Keywords: Amino acids, ion-pair HPLC, CAD, SPE, underivatized, determination.

Graphical Abstract

[1]
Tang, X. Medical history of Isatidis Radix. Global Traditional Chinese Med., 2014, 7(11), 869-871.
[2]
Zhang, Y.W. Pharmacological effects and adverse reactions of Isatidis Radix. Chin. J. Integr. Med., 2016, 4(15), 95-96.
[3]
Zhao, J. Pharmacological action and clinical application of Isatidis Radix. Lishizhen. Med. Mater. Med. Res., 2003, 14(4), 241-242.
[4]
Hsuan, S.L.; Chang, S.C.; Wang, S.Y.; Liao, T.L.; Jong, T.T.; Chien, M.S.; Lee, W.C.; Chen, S.S.; Liao, J.W. The cytotoxicity to leukemia cells and antiviral effects of Isatis indigotica extracts on pseudorabies virus. J. Ethnopharmacol., 2009, 123(1), 61-67.
[http://dx.doi.org/10.1016/j.jep.2009.02.028] [PMID: 19429341]
[5]
Yang, Z.; Wang, Y.; Zheng, Z.; Zhao, S.; Zhao, J.; Lin, Q.; Li, C.; Zhu, Q.; Zhong, N. Antiviral activity of Isatis indigotica root-derived clemastanin B against human and avian influenza A and B viruses in vitro. Int. J. Mol. Med., 2013, 31(4), 867-873.
[http://dx.doi.org/10.3892/ijmm.2013.1274] [PMID: 23403777]
[6]
Xiao, P.; Huang, H.; Chen, J.; Li, X. In vitro antioxidant and anti-inflammatory activities of Radix Isatidis extract and bioaccessibility of six bioactive compounds after simulated gastro-intestinal digestion. J. Ethnopharmacol., 2014, 157, 55-61.
[http://dx.doi.org/10.1016/j.jep.2014.09.005] [PMID: 25256688]
[7]
Li, J.; Zhou, B.; Li, C.; Chen, Q.; Wang, Y.; Li, Z.; Chen, T.; Yang, C.; Jiang, Z.; Zhong, N.; Yang, Z.; Chen, R. Lariciresinol-4-O-β-D-glucopyranoside from the root of Isatis indigotica inhibits influenza A virus-induced pro-inflammatory response. J. Ethnopharmacol., 2015, 174, 379-386.
[http://dx.doi.org/10.1016/j.jep.2015.08.037] [PMID: 26320688]
[8]
Xiao, P.; Ye, W.; Chen, J.; Li, X. Antiviral activities against influenza virus (FM1) of bioactive fractions and representative compounds extracted from Banlangen (Radix Isatidis). J. Tradit. Chin. Med., 2016, 36(3), 369-376.
[http://dx.doi.org/10.1016/S0254-6272(16)30051-6] [PMID: 27468553]
[9]
He, L.; Fan, F.; Hou, X.; Wu, H.; Wang, J.; Xu, H.; Sun, Y. 4(3H)-Quinazolone regulates innate immune signaling upon respiratory syncytial virus infection by moderately inhibiting the RIG-1 pathway in RAW264.7 cell. Int. Immunopharmacol., 2017, 52, 245-252.
[http://dx.doi.org/10.1016/j.intimp.2017.09.010] [PMID: 28957692]
[10]
Liu, S.F.; Zhang, Y.Y.; Zhou, L.; Lin, B.; Huang, X.X.; Wang, X.B.; Song, S.J. Alkaloids with neuroprotective effects from the leaves of Isatis indigotica collected in the Anhui Province, China. Phytochemistry, 2018, 149, 132-139.
[http://dx.doi.org/10.1016/j.phytochem.2018.02.016] [PMID: 29499466]
[11]
Yang, Z.; Wang, Y.; Zhong, S.; Zhao, S.; Zeng, X.; Mo, Z.; Qin, S.; Guan, W.; Li, C.; Zhong, N. In vitro inhibition of influenza virus infection by a crude extract from Isatis indigotica root resulting in the prevention of viral attachment. Mol. Med. Rep., 2012, 5(3), 793-799.
[PMID: 22179315]
[12]
Meng, L.J.; Guo, Q.L.; Liu, Y.F.; Chen, M.H.; Li, Y.H. Indole alkaloid sulfonic acids from an aqueous extract of Isatidis indigotica roots and their antiviral activity. Acta Pharm. Sin. B, 2017, 03, 96-103.
[13]
Sun, D.D.; Dong, W.W.; Li, X.; Zhang, H.Q. Indole alkaloids from the roots of Isatidis ingigotica and their antiherpes simplex virus type 2 (HSV-2) activity in vitro. Chem. Nat. Compd., 2010, 46(5), 763-766.
[http://dx.doi.org/10.1007/s10600-010-9735-x]
[14]
Wu, Y.; Zhang, Z.X.; Hu, H.; Li, D.; Qiu, G.; Hu, X.; He, X. Novel indole C-glycosides from Isatis indigotica and their potential cytotoxic activity. Fitoterapia, 2011, 82(2), 288-292.
[http://dx.doi.org/10.1016/j.fitote.2010.10.016] [PMID: 20971167]
[15]
Zhou, W.; Zhang, X.Y. Research progress of Chinese herbal medicine Radix isatidis (banlangen). Am. J. Chin. Med., 2013, 41(4), 743-764.
[http://dx.doi.org/10.1142/S0192415X1350050X] [PMID: 23895149]
[16]
Liu, Y.; Chen, M.; Guo, Q.; Li, Y.; Jiang, J.; Shi, J. Aromatic compounds from an aqueous extract of “ban lan gen” and their antiviral activities. Acta Pharm. Sin. B, 2017, 7(2), 179-184.
[http://dx.doi.org/10.1016/j.apsb.2016.09.004] [PMID: 28303224]
[17]
Shi, Y.; Zheng, C.; Li, J.; Yang, L.; Wang, Z.; Wang, R. Separation and quantification of four main chiral glucosinolates in Radix Isatidis and its granules using high-performance liquid chromatography/diode array detector coupled with circular dichroism detection. Molecules, 2018, 23(6), 1305-1314.
[http://dx.doi.org/10.3390/molecules23061305] [PMID: 29844266]
[18]
Qiao-Shu, H.; Yoshihira, K.; Natori, S. Isolation of 2-hydroxy-3-butenyl thiocyanate, epigoitrin, and adenosine from ‘Banlangen’, Isatis indigotica root. Planta Med., 1981, 42(7), 308-310.
[http://dx.doi.org/10.1055/s-2007-971650] [PMID: 17401984]
[19]
Yang, L.G.; Jiang, H.M.; Wang, G.; Wang, M.; Ding, L.Q.; Chen, L.X.; Qiu, F. Phenylpropanoids and some nitrogen-containing constituents from the roots of Isatidis indigotica Fort. (Cruciferae). Biochem. Syst. Ecol., 2014, 54, 313-315.
[http://dx.doi.org/10.1016/j.bse.2014.03.004]
[20]
Li, X.; Sun, D.D.; Chen, J.W.; He, L.W.; Zhang, H.Q.; Xu, H.Q. New sphingolipids from the root of Isatis indigotica and their cytotoxic activity. Fitoterapia, 2007, 78(7-8), 490-495.
[http://dx.doi.org/10.1016/j.fitote.2007.03.017] [PMID: 17590532]
[21]
Wu, X.Y.; Qin, G.W.; Cheung, K.K.; Cheng, K.F. New alkaloids from Isatidis indigotica. Tetrahedron, 1997, 53(39), 13323-13328.
[http://dx.doi.org/10.1016/S0040-4020(97)00846-6]
[22]
Chen, W.S.; Li, B.; Zhang, W.D.; Yang, G.J.; Qiao, C.Z. A New Alkaloid from the root of Isatidis indigotica Fort. Chin. Chem. Lett., 2001, 12(6), 501-502.
[23]
Sun, D.D.; Dong, W.W.; Li, X.; Zhang, H.Q. Isolation, structural determination and cytotoxic activity of two new ceramides from the root of Isatidis indigotica. Sci. China. Ser. B. Chem., 2009, 52(5), 621-625.
[http://dx.doi.org/10.1007/s11426-008-0146-9]
[24]
Shan, J.; Sun, G.; Ren, J.; Zhu, T.; Jia, P.; Qu, W.; Li, Q.; Wu, J.; Ma, H.; Wen, S.; Wang, Y. An α-glucan isolated from root of Isatis Indigotica, its structure and adjuvant activity. Glycoconj. J., 2014, 31(4), 317-326.
[http://dx.doi.org/10.1007/s10719-014-9525-y] [PMID: 24777783]
[25]
Meng, L.; Guo, Q.; Liu, Y.; Shi, J. 8,4′-Oxyneolignane glucosides from an aqueous extract of “ban lan gen” (Isatis indigotica root) and their absolute configurations. Acta Pharm. Sin. B, 2017, 7(6), 638-646.
[http://dx.doi.org/10.1016/j.apsb.2017.09.006] [PMID: 29159023]
[26]
Liu, Y.; Wang, X.; Chen, M.; Lin, S.; Li, L.; Shi, J. Three pairs of alkaloid enantiomers from the root of Isatis indigotica. Acta Pharm. Sin. B, 2016, 6(2), 141-147.
[http://dx.doi.org/10.1016/j.apsb.2016.01.003] [PMID: 27006898]
[27]
Sun, D.D.; Dong, W.W.; Li, X.; Zhang, H.Q.; Huang, X.F. A new trihydroxy fatty acid ester from the root of Isatidis indigotica. Chem. Nat. Compd., 2011, 47(3), 352-354.
[http://dx.doi.org/10.1007/s10600-011-9930-4]
[28]
Wu, X.; Liu, Y.; Sheng, W.; Sun, J.; Qin, G. Chemical constituents of Isatis indigotica. Planta Med., 1997, 63(1), 55-57.
[http://dx.doi.org/10.1055/s-2006-957604] [PMID: 17252328]
[29]
Sun, D.D.; Dong, W.W.; Zhang, H.Q.; Huang, X.F. A new ceramide from the root of Isatidis Indigotica and its cytotoxic activity. Chem. Nat. Compd., 2010, 46(2), 180-183.
[http://dx.doi.org/10.1007/s10600-010-9562-0]
[30]
Meng, L.J.; Guo, Q.L.; Xu, C.B.; Zhu, C.G.; Liu, Y.F.; Chen, M.H.; Lin, S.; Li, Y.H.; Jiang, J.D.; Shi, J.G. Diglycosidic indole alkaloid derivatives from an aqueous extract of Isatis indigotica roots. J. Asian Nat. Prod. Res., 2017, 19(6), 529-540.
[http://dx.doi.org/10.1080/10286020.2017.1320547] [PMID: 28475367]
[31]
Liu, Y.F.; Chen, M.H.; Wang, X.L.; Guo, Q.L.; Zhu, C.G.; Lin, S.; Xu, C.B.; Jiang, Y.P.; Li, Y.H.; Jiang, J.D.; Li, Y.; Shi, J.G. Antiviral enantiomers of a bisindole alkaloid with a new carbon skeleton from the roots of Isatidis indigotica. Chin. Chem. Lett., 2015, 26(8), 931-936.
[http://dx.doi.org/10.1016/j.cclet.2015.05.052]
[32]
Chen, M.; Gan, L.; Lin, S.; Wang, X.; Li, L.; Li, Y.; Zhu, C.; Wang, Y.; Jiang, B.; Jiang, J.; Yang, Y.; Shi, J. Alkaloids from the root of Isatis indigotica. J. Nat. Prod., 2012, 75(6), 1167-1176.
[http://dx.doi.org/10.1021/np3002833] [PMID: 22694318]
[33]
Liu, Y.F.; Chen, M.H.; Lin, S.; Li, Y.H.; Zhang, D.; Jiang, J.D.; Shi, J.G. Indole alkaloid glucosides from the roots of Isatis indigotica. J. Asian Nat. Prod. Res., 2016, 18(1), 1-12.
[http://dx.doi.org/10.1080/10286020.2015.1117452] [PMID: 26651370]
[34]
Yang, L.; Wang, G.; Wang, M.; Jiang, H.; Chen, L.; Zhao, F.; Qiu, F. Indole alkaloids from the roots of Isatis indigotica and their inhibitory effects on nitric oxide production. Fitoterapia, 2014, 95, 175-181.
[http://dx.doi.org/10.1016/j.fitote.2014.03.019] [PMID: 24685504]
[35]
Meng, L.J.; Guo, Q.L.; Zhu, C.G.; Xu, C.B.; Shi, J.G. Isatindigodiphindoside, an alkaloid glycoside with a new diphenylpropylindole skeleton from the root of Isatidis indigotica. Chin. Chem. Lett., 2018, 29(1), 119-122.
[http://dx.doi.org/10.1016/j.cclet.2017.05.019]
[36]
Liu, Y.F.; Chen, M.H.; Guo, Q.L.; Lin, S.; Xu, C.B.; Jiang, Y.P.; Li, Y.H.; Jiang, J.D.; Shi, J.G. Antiviral glycosidic bisindole alkaloids from the roots of Isatis indigotica. J. Asian Nat. Prod. Res., 2015, 17(7), 689-704.
[http://dx.doi.org/10.1080/10286020.2015.1055729] [PMID: 26123248]
[37]
Xi, Y.F.; Zhou, L.; Bai, M.; Wang, J.; Lin, B.; Wang, X.B.; Huang, X.X.; Song, S.J. N-acylanthranilic acid derivatives with anti-Aβ1-42 aggregation activity from the leaves of Isatis indigotica fortune. Fitoterapia, 2018, 128, 169-174.
[http://dx.doi.org/10.1016/j.fitote.2018.05.025] [PMID: 29787805]
[38]
Liu, S.F.; Lin, B.; Xi, Y.F.; Zhou, L.; Lou, L.L.; Huang, X.X.; Wang, X.B.; Song, S.J. Bioactive spiropyrrolizidine oxindole alkaloid enantiomers from Isatis indigotica Fortune. Org. Biomol. Chem., 2018, 16(48), 9430-9439.
[http://dx.doi.org/10.1039/C8OB02046A] [PMID: 30511067]
[39]
Xiao, S.S.; Bi, K.S.; Sun, Y.Q. Identification of chemical constituents in the root of Isatidis Indigotica fort. by LC/DAD/ESI/MS/MS. J. Liq. Chromatogr. Relat. Technol., 2007, 30(1), 73-85.
[http://dx.doi.org/10.1080/10826070601034295]
[40]
Chen, M.; Lin, S.; Li, L.; Zhu, C.; Wang, X.; Wang, Y.; Jiang, B.; Wang, S.; Li, Y.; Jiang, J.; Shi, J. Enantiomers of an indole alkaloid containing unusual dihydrothiopyran and 1,2,4-thiadiazole rings from the root of Isatis indigotica. Org. Lett., 2012, 14(22), 5668-5671.
[http://dx.doi.org/10.1021/ol302660t] [PMID: 23131196]
[41]
ChP 2015, 2015, Vol IV., p. 1033.
[42]
Sun, X.X.; Zhang, L.L.; Sun, C.L. The anti-virus effect of an active ingredient from a Chinese traditional herb Isatidis indigotica Fort. Chin. Pharmacol. Bull., 2007, 23(6), 835-836.
[43]
Rudman, D.; Galambos, J.T.; Smith, R.B., III; Salam, A.A.; Warren, W.D. Comparison of the effect of various amino acids upon the blood ammonia concentration of patients with liver disease. Am. J. Clin. Nutr., 1973, 26(9), 916-925.
[http://dx.doi.org/10.1093/ajcn/26.9.916] [PMID: 4727750]
[44]
Wan, S.H.; Xu, M.; Wang, L.; Kang, Y.G.; Zhao, C.J. Determination of amino acids in compound Banlangen Granule by RP-HPLC with pre-column derivatization. Zhong Yao Cai, 2005, 28(7), 594-596.
[PMID: 16252729]
[45]
Xin, M.T.; Fu, X.T.; Chen, Y.G.; Guo, H.Z. Determination of main free amino acids in Banlangen Granule by pre-column derivatization UPLC. China. J. Chin. Mater. Med., 2011, 36(23), 3306-3309.
[46]
Moore, S.; Stein, W.H. Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem., 1948, 176(1), 367-388.
[PMID: 18886175]
[47]
Moore, S.; Stein, W.H. Chromatography of amino acids on sulfonated polystyrene resins. J. Biol. Chem., 1951, 192(2), 663-681.
[PMID: 14907661]
[48]
Moore, S.; Stein, W.H. Procedures for the chromatographic determination of amino acids on four per cent cross-linked sulfonated polystyrene resins. J. Biol. Chem., 1954, 211(2), 893-906.
[PMID: 13221595]
[49]
Zahradnícková, H.; Husek, P.; Simek, P. GC separation of amino acid enantiomers via derivatization with heptafluorobutyl chloroformate and Chirasil-L-Val column. J. Sep. Sci., 2009, 32(22), 3919-3924.
[http://dx.doi.org/10.1002/jssc.200900400] [PMID: 19842122]
[50]
Silva, B.M.; Casal, S.; Andrade, P.B.; Seabra, R.M.; Oliveira, M.B.; Ferreira, M.A. Development and evaluation of a GC/FID method for the analysis of free amino acids in quince fruit and jam. Anal. Sci., 2003, 19(9), 1285-1290.
[http://dx.doi.org/10.2116/analsci.19.1285] [PMID: 14516081]
[51]
Nagasaki, T.; Koito, T.; Nemoto, S.; Ushio, H.; Inoue, K. Simultaneous analysis of free amino acids and taurine-related compounds in deep-sea mussel tissues using reversed-phase HPLC. Fish. Sci., 2017, 84(1), 127-134.
[http://dx.doi.org/10.1007/s12562-017-1143-8]
[52]
Francioso, A.; Fanelli, S.; Vigli, D.; Ricceri, L.; Cavallaro, R.A.; Baseggio Conrado, A.; Fontana, M.; D’Erme, M.; Mosca, L. HPLC determination of bioactive sulfur compounds, amino acids and biogenic amines in biological specimens. Adv. Exp. Med. Biol., 2017, 975(Pt 1), 535-549.
[http://dx.doi.org/10.1007/978-94-024-1079-2_42] [PMID: 28849480]
[53]
Jakó, T.; Szabó, E.; Tábi, T.; Zachar, G.; Csillag, A.; Szökő, E. Chiral analysis of amino acid neurotransmitters and neuromodulators in mouse brain by CE-LIF. Electrophoresis, 2014, 35(19), 2870-2876.
[http://dx.doi.org/10.1002/elps.201400224] [PMID: 24931272]
[54]
Poinsot, V.; Rodat, A.; Gavard, P.; Feurer, B.; Couderc, F. Recent advances in amino acid analysis by CE. Electrophoresis, 2008, 29(1), 207-223.
[http://dx.doi.org/10.1002/elps.200700482] [PMID: 18058772]
[55]
Azevedo, M.S.; Seraglio, S.K.T.; Rocha, G.; Balderas, C.B.; Piovezan, M.; Gonzaga, L.V.; Falkenberg, D.B. Fett, Roseane.; Oliveira, M.A.L.; Costa, A. C. O. Free amino acid determination by GC-MS combined with a chemometric approach for geographical classification of bracatinga honeydew honey (Mimosa scabrella Bentham). Food Control, 2017, 78, 383-392.
[http://dx.doi.org/10.1016/j.foodcont.2017.03.008]
[56]
Tumanov, S.; Zubenko, Y.; Obolonkin, V.; Greenwood, D.R.; Shmanai, V.; Villas-Bôas, S.G. Calibration curve-free GC–MS method for quantitation of amino and non-amino organic acids in biological samples. Metabolomics, 2016, 12(4), 64.
[http://dx.doi.org/10.1007/s11306-016-0994-9]
[57]
Tie, M.; Sun, J.f.; Gao, Y.; Yao, Y.; Wang, T.T.; Zhong, H.L.; Li, H.W. Identification and quantitation of seleno-amino acids in mung bean sprouts by high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS). Eur. Food Res. Technol., 2017, 244(3), 491-500.
[http://dx.doi.org/10.1007/s00217-017-2967-2]
[58]
Gómez-Ariza, J.L.; Villegas-Portero, M.J.; Bernal-Daza, V. Characterization and analysis of amino acids in orange juice by HPLC–MS/MS for authenticity assessment. Anal. Chim. Acta, 2005, 540(1), 221-230.
[http://dx.doi.org/10.1016/j.aca.2004.08.048]
[59]
Kler, P.A.; Huhn, C. Non-aqueous electrolytes for isotachophoresis of weak bases and its application to the comprehensive preconcentration of the 20 proteinogenic amino acids in column-coupling ITP/CE-MS. Anal. Bioanal. Chem., 2014, 406(28), 7163-7174.
[http://dx.doi.org/10.1007/s00216-014-8152-6] [PMID: 25260406]
[60]
Lu, M.; Zhang, L.; Lu, Q.; Chi, Y.; Chen, G. Rapid analysis of peptides and amino acids by CE-ESI-MS using chemically modified fused-silica capillaries. Electrophoresis, 2009, 30(13), 2273-2279.
[http://dx.doi.org/10.1002/elps.200800683] [PMID: 19572321]
[61]
Quigley, A.; Connolly, D.; Cummins, W. Determination of selected amino acids in milk using dispersive liquid–liquid microextraction and GC-MS. Anal. Methods, 2019, 11, 3538-3545.
[http://dx.doi.org/10.1039/C9AY00995G]
[62]
Huang, X.; Kao, S.J.; Lin, J.; Qin, X.; Deng, C. Development and validation of a HPLC/FLD method combined with online derivatization for the simple and simultaneous determination of trace amino acids and alkyl amines in continental and marine aerosols. PLoS One, 2018, 13(11), e0206488.
[http://dx.doi.org/10.1371/journal.pone.0206488] [PMID: 30419031]
[63]
Zhou, W.; Zhanga, X.Y.; Duana, G.L. Liquid-chromatography quantitative analysis of 20 amino acids after derivatization with FMOC-Cl and its application to different origin Radix isatidis. J. Chin. Chem. Soc. (Taipei), 2011, 58(4), 509-515.
[http://dx.doi.org/10.1002/jccs.201190014]
[64]
Oldekop, M.L.; Herodes, K.; Rebane, R. Comparison of amino acid derivatization reagents for liquid chromatography atmospheric pressure chemical ionization mass spectrometric analysis of seven amino acids in tea extract. Int. J. Mass Spectrom., 2017, 421, 189-195.
[http://dx.doi.org/10.1016/j.ijms.2017.07.004]
[65]
Perucho, J.; Gonzalo-Gobernado, R.; Bazan, E.; Casarejos, M.J.; Jiménez-Escrig, A.; Asensio, M.J.; Herranz, A.S. Optimal excitation and emission wavelengths to analyze amino acids and optimize neurotransmitters quantification using precolumn OPA-derivatization by HPLC. Amino Acids, 2015, 47(5), 963-973.
[http://dx.doi.org/10.1007/s00726-015-1925-1] [PMID: 25691143]
[66]
Pretorius, C.J.; McWhinney, B.C.; Sipinkoski, B.; Wilce, A.; Cox, D.; McWhinney, A.; Ungerer, J.P.J. Rapid amino acid quantitation with pre-column derivatization; ultra-performance reverse phase liquid chromatography and single quadrupole mass spectrometry. Clin. Chim. Acta, 2018, 478, 132-139.
[http://dx.doi.org/10.1016/j.cca.2017.12.027] [PMID: 29274329]
[67]
Smon, A.; Cuk, V.; Brecelj, J.; Murko, S.; Groselj, U.; Zerjav Tansek, M.; Battelino, T.; Repic Lampret, B. Comparison of liquid chromatography with tandem mass spectrometry and ion-exchange chromatography by post-column ninhydrin derivatization for amino acid monitoring. Clin. Chim. Acta, 2019, 495, 446-450.
[http://dx.doi.org/10.1016/j.cca.2019.05.007] [PMID: 31077651]
[68]
Kambhampati, S.; Li, J.; Evans, B.S.; Allen, D.K. Accurate and efficient amino acid analysis for protein quantification using hydrophilic interaction chromatography coupled tandem mass spectrometry. Plant Methods, 2019, 15, 46-57.
[http://dx.doi.org/10.1186/s13007-019-0430-z] [PMID: 31110556]
[69]
Li, L.; Qin, Y.R.; Ma, B.Y.; Cui, H.Y.; Qiao, P.; Jiang, H.; Zhang, M. Direct and simultaneous determination of methionine sulfoxide and pyroglutamic acid impurities in Compound Amino Acid Injection-18 AA by ion-pair reversed-phase HPLC. Sep. Sci. plus., 2018, 1(7), 483-489.
[http://dx.doi.org/10.1002/sscp.201800059]
[70]
Ivano, A.R.; Nazimov, I.V.; Lobazov, A.P.; Popkovich, G.B. Direct determination of amino acids and carbohydrates by high-performance capillary electrophoresis with refractometric detection. J. Chromatogr. A, 2000, 894(1-2), 253-257.
[http://dx.doi.org/10.1016/S0021-9673(00)00705-6] [PMID: 11100867]
[71]
Zhang, H.Q.; Liu, P.; Duan, J.A.; Dong, L.; Shang, E.X.; Qian, D.W.; Zhu, Z.H.; Li, H.W.; Li, W.W. Comparative analysis of carbohydrates, nucleosides and amino acids in different parts of Trichosanthes kirilowii Maxim. by (ultra) high-performance liquid chromatography coupled with tandem mass spectrometry and evaporative light scattering detector methods. Molecules, 2019, 24(7), 1440.
[http://dx.doi.org/10.3390/molecules24071440] [PMID: 30979080]
[72]
Petritis, K.; Person, M.D.; Elfakir, C.; Dreux, M. Validation of an ion-interaction chromatography analysis of underivatized amino acids in commercial preparation using evaporative light scattering detection. Chromatographia, 2004, 60(5-6), 293-298.
[http://dx.doi.org/10.1365/s10337-004-0347-0]
[73]
Pan, Y.L.; Li, J.; Li, X.; Chen, J.W.; Bai, G.G. Determination of free amino acids in Isatidis Radix by HILIC-UPLC-MS/MS. Bull. Korean Chem. Soc., 2014, 35(1), 197-203.
[http://dx.doi.org/10.5012/bkcs.2014.35.1.197]
[74]
Petritis, K.; Elfakir, C.; Dreux, M. A comparative study of commercial liquid chromatographic detectors for the analysis of underivatized amino acids. J. Chromatogr. A, 2002, 961(1), 9-21.
[http://dx.doi.org/10.1016/S0021-9673(02)00377-1] [PMID: 12186396]
[75]
Furota, S.; Ogawa, N.O.; Takano, Y.; Yoshimura, T.; Ohkouchi, N. Quantitative analysis of underivatized amino acids in the sub- to several-nanomolar range by ion-pair HPLC using a corona-charged aerosol detector (HPLC-CAD). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1095, 191-197.
[http://dx.doi.org/10.1016/j.jchromb.2018.07.033] [PMID: 30077100]
[76]
Szekeres, A.; Budai, A.; Bencsik, O.; Németh, L.; Bartók, T.; Szécsi, A.; Mesterházy, A.; Vágvölgyi, C. Fumonisin measurement from maize samples by high-performance liquid chromatography coupled with corona charged aerosol detector. J. Chromatogr. Sci., 2014, 52(10), 1181-1185.
[http://dx.doi.org/10.1093/chromsci/bmt173] [PMID: 24287593]
[77]
Takahashi, K.; Kinugasa, S.; Senda, M.; Kimizuka, K.; Fukushima, K.; Matsumoto, T.; Shibata, Y.; Christensen, J. Quantitative comparison of a corona-charged aerosol detector and an evaporative light-scattering detector for the analysis of a synthetic polymer by supercritical fluid chromatography. J. Chromatogr. A, 2008, 1193(1-2), 151-155.
[http://dx.doi.org/10.1016/j.chroma.2008.04.012] [PMID: 18439611]
[78]
Sun, X.X.; Zhang, L.L.; Sun, C.L. The anti-virus effect of anactive in gradient from aChinese traditional herb - Isatis indigotica Fort. Chin. Pharmacol. Bull., 2007, 27(6), 835.
[79]
Chen, k.; Dou, Y; Meng, F.G.; Tian, Y.; Chen, Z.; Tian, J.Z. Preliminary screening of anti-inflammatory fraction of Isatidis Radix. Chin. J. Exp. Tradit. Med. Form., 2012, 18(6), 200-202.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy