Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Bioanalytical Method Validation of an RP-HPLC Method for Determination of Rifampicin in Liver Perfusion Studies

Author(s): Nihan Izat, Ozan Kaplan, Mustafa Celebier and Selma Sahin*

Volume 17, Issue 7, 2021

Published on: 26 May, 2020

Page: [919 - 925] Pages: 7

DOI: 10.2174/1573412916999200526115445

Price: $65

conference banner
Abstract

Background: The number of validated quantification methods for rifampicin, a prototypical Oatp inhibitor, in biological rat samples is limited.

Objective: This study was conducted to validate a modified reversed-phase liquid chromatographic method for the determination of rifampicin in rat liver tissue according to the current ICH M10 Bioanalytical Method Validation Draft Guideline (2019) for application to samples of in situ rat liver perfusion studies.

Methods: Liver tissue samples were obtained from recirculatory in situ rat liver perfusion studies. The analysis was performed on a C18 column with a mobile phase composed of 0.05 M phosphate buffer (pH 4.58): acetonitrile (55:45, v/v). The assay was validated for selectivity, calibration curve and range, matrix effect, carry-over, accuracy and precision, reinjection reproducibility, and stability.

Results: The method was considered selective and stable, without having carry-over and matrix effects. The calibration curve was linear (R2: 0.9983) within the calibration range (0.5-60 ppm). Accuracy and precision values fulfilled the required limits. Liver concentrations of rifampicin in liver tissue, obtained after 60 min perfusion with 10 μM and 50 μM of rifampicin, were 45.1 ± 11.2 and 313.4 ± 84.4 μM, respectively.

Conclusion: The bioanalytical method validation was completed and the method was successfully applied for the determination of rifampicin in rat liver tissue.

Keywords: Rifampicin, HPLC, bioanalytical method validation, isolated perfused rat liver, rat liver, OATP.

Graphical Abstract

[1]
European Medicines Agency. Guideline on the Investigation of Drug Interactions, 2013 ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions_en.pdf [Accessed on: Feb 28, 2020];
[2]
The US Food and Drug Administration Vitro Drug Interaction Studies, Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry, 2020 fda.gov/media/134582/download [Accessed on: Feb 28, 2020];
[3]
Pharmaceuticals and Medical Devices Agency of Japan. Guideline on drug interaction for drug development and appropriate provision of information, 2019 pmda.go.jp/files/000228122.pdf [Accessed on: Feb 28, 2020];
[4]
Hagenbuch, B.; Meier, P.J. The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta, 2003, 1609(1), 1-18.
[http://dx.doi.org/10.1016/S0005-2736(02)00633-8] [PMID: 12507753]
[5]
Prueksaritanont, T.; Chu, X.; Evers, R.; Klopfer, S.O.; Caro, L.; Kothare, P.A.; Dempsey, C.; Rasmussen, S.; Houle, R.; Chan, G.; Cai, X.; Valesky, R.; Fraser, I.P.; Stoch, S.A. Pitavastatin is a more sensitive and selective organic anion-transporting polypeptide 1B clinical probe than rosuvastatin. Br. J. Clin. Pharmacol., 2014, 78(3), 587-598.
[http://dx.doi.org/10.1111/bcp.12377] [PMID: 24617605]
[6]
Zamek-Gliszczynski, M.J.; Taub, M.E.; Chothe, P.P.; Chu, X.; Giacomini, K.M.; Kim, R.B.; Ray, A.S.; Stocker, S.L.; Unadkat, J.D.; Wittwer, M.B.; Xia, C.; Yee, S.W.; Zhang, L.; Zhang, Y. International Transporter Consortium. I. Transporters in drug development: 2018 ITC recommendations for transporters of emerging clinical importance. Clin. Pharmacol. Ther., 2018, 104(5), 890-899.
[http://dx.doi.org/10.1002/cpt.1112] [PMID: 30091177]
[7]
Hagenbuch, B.; Meier, P.J. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch., 2004, 447(5), 653-665.
[http://dx.doi.org/10.1007/s00424-003-1168-y] [PMID: 14579113]
[8]
Ménochet, K.; Kenworthy, K.E.; Houston, J.B.; Galetin, A. Simultaneous assessment of uptake and metabolism in rat hepatocytes: a comprehensive mechanistic model. J. Pharmacol. Exp. Ther., 2012, 341(1), 2-15.
[http://dx.doi.org/10.1124/jpet.111.187112] [PMID: 22190645]
[9]
Lau, Y.Y.; Okochi, H.; Huang, Y.; Benet, L.Z. Multiple transporters affect the disposition of atorvastatin and its two active hydroxy metabolites: application of in vitro and ex situ systems. J. Pharmacol. Exp. Ther., 2006, 316(2), 762-771.
[http://dx.doi.org/10.1124/jpet.105.093088] [PMID: 16258024]
[10]
Pfeifer, N.D.; Yang, K.; Brouwer, K.L. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition I: characterization of basolateral versus biliary clearance using a novel protocol in sandwich-cultured hepatocytes. J. Pharmacol. Exp. Ther., 2013, 347(3), 727-736.
[http://dx.doi.org/10.1124/jpet.113.207472] [PMID: 24023367]
[11]
Pfeifer, N.D.; Bridges, A.S.; Ferslew, B.C.; Hardwick, R.N.; Brouwer, K.L. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition II: characterization of hepatic elimination by basolateral, biliary, and metabolic clearance pathways in rat isolated perfused liver. J. Pharmacol. Exp. Ther., 2013, 347(3), 737-745.
[http://dx.doi.org/10.1124/jpet.113.208314] [PMID: 24080682]
[12]
Hobbs, M.; Parker, C.; Birch, H.; Kenworthy, K. Understanding the interplay of drug transporters involved in the disposition of rosuvastatin in the isolated perfused rat liver using a physiologically-based pharmacokinetic model. Xenobiotica, 2012, 42(4), 327-338.
[http://dx.doi.org/10.3109/00498254.2011.625452] [PMID: 22035568]
[13]
Sahin, S. Perfused Liver preparation and its applications. Fabad J. Pharm. Sci., 2003, 28, 39-49.
[14]
Godoy, P.; Hewitt, N.J.; Albrecht, U.; Andersen, M.E.; Ansari, N.; Bhattacharya, S.; Bode, J.G.; Bolleyn, J.; Borner, C.; Böttger, J.; Braeuning, A.; Budinsky, R.A.; Burkhardt, B.; Cameron, N.R.; Camussi, G.; Cho, C-S.; Choi, Y-J.; Craig Rowlands, J.; Dahmen, U.; Damm, G.; Dirsch, O.; Donato, M.T.; Dong, J.; Dooley, S.; Drasdo, D.; Eakins, R.; Ferreira, K.S.; Fonsato, V.; Fraczek, J.; Gebhardt, R.; Gibson, A.; Glanemann, M.; Goldring, C.E.P.; Gómez-Lechón, M.J.; Groothuis, G.M.M.; Gustavsson, L.; Guyot, C.; Hallifax, D.; Hammad, S.; Hayward, A.; Häussinger, D.; Hellerbrand, C.; Hewitt, P.; Hoehme, S.; Holzhütter, H-G.; Houston, J.B.; Hrach, J.; Ito, K.; Jaeschke, H.; Keitel, V.; Kelm, J.M.; Kevin Park, B.; Kordes, C.; Kullak-Ublick, G.A.; LeCluyse, E.L.; Lu, P.; Luebke-Wheeler, J.; Lutz, A.; Maltman, D.J.; Matz-Soja, M.; McMullen, P.; Merfort, I.; Messner, S.; Meyer, C.; Mwinyi, J.; Naisbitt, D.J.; Nussler, A.K.; Olinga, P.; Pampaloni, F.; Pi, J.; Pluta, L.; Przyborski, S.A.; Ramachandran, A.; Rogiers, V.; Rowe, C.; Schelcher, C.; Schmich, K.; Schwarz, M.; Singh, B.; Stelzer, E.H.K.; Stieger, B.; Stöber, R.; Sugiyama, Y.; Tetta, C.; Thasler, W.E.; Vanhaecke, T.; Vinken, M.; Weiss, T.S.; Widera, A.; Woods, C.G.; Xu, J.J.; Yarborough, K.M.; Hengstler, J.G. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol., 2013, 87(8), 1315-1530.
[http://dx.doi.org/10.1007/s00204-013-1078-5] [PMID: 23974980]
[15]
Sahin, S.; Karabey, Y. Investigation of distribution and elimination of terbutaline sulfate in the perfused rat liver preparation. Eur. J. Drug Metab. Pharmacokinet., 2010, 35(1-2), 9-14.
[http://dx.doi.org/10.1007/s13318-010-0002-0] [PMID: 21495261]
[16]
Sahin, S.; Rowland, M. Development of an optimal method for the dual perfusion of the isolated rat liver. J. Pharmacol. Toxicol. Methods, 1998, 39(1), 35-43.
[http://dx.doi.org/10.1016/S1056-8719(97)00100-7] [PMID: 9596146]
[17]
Sahin, S.; Rowland, M. Disposition kinetics of diclofenac in the dual perfused rat liver. J. Pharm. Sci., 2013, 102(9), 3220-3227.
[http://dx.doi.org/10.1002/jps.23564] [PMID: 23613004]
[18]
Lau, Y.Y.; Wu, C.Y.; Okochi, H.; Benet, L.Z. Ex situ inhibition of hepatic uptake and efflux significantly changes metabolism: hepatic enzyme-transporter interplay. J. Pharmacol. Exp. Ther., 2004, 308(3), 1040-1045.
[http://dx.doi.org/10.1124/jpet.103.061770] [PMID: 14634033]
[19]
International Council for Harmonisation. ICH Harmonised Guideline Bioanalytical Method Validation M10 draft version, 2019.database.ich.org/sites/default/files/M10_EWG_Draft_Guideline.pdf [Accessed on: Feb 28, 2020];
[20]
Fattinger, K.; Cattori, V.; Hagenbuch, B.; Meier, P.J.; Stieger, B. Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2. Hepatology, 2000, 32(1), 82-86.
[http://dx.doi.org/10.1053/jhep.2000.8539] [PMID: 10869292]
[21]
Amor, D.; Goutal, S.; Marie, S.; Caillé, F.; Bauer, M.; Langer, O.; Auvity, S.; Tournier, N. Impact of rifampicin-inhibitable transport on the liver distribution and tissue kinetics of erlotinib assessed with PET imaging in rats. EJNMMI Res., 2018, 8(1), 81.
[http://dx.doi.org/10.1186/s13550-018-0434-0] [PMID: 30116910]
[22]
Alam, K.; Crowe, A.; Wang, X.; Zhang, P.; Ding, K.; Li, L.; Yue, W. Regulation of organic anion transporting polypeptides (OATP) 1B1- and OATP1B3-mediated transport: An updated review in the context of OATP-mediated drug-drug interactions. Int. J. Mol. Sci., 2018, 19(3), 855.
[http://dx.doi.org/10.3390/ijms19030855] [PMID: 29538325]
[23]
Watanabe, T.; Miyake, M.; Shimizu, T.; Kamezawa, M.; Masutomi, N.; Shimura, T.; Ohashi, R. Utility of bilirubins and bile acids as endogenous biomarkers for the inhibition of hepatic transporters. Drug Metab. Dispos., 2015, 43(4), 459-466.
[http://dx.doi.org/10.1124/dmd.114.061051] [PMID: 25581390]
[24]
Imaoka, T.; Mikkaichi, T.; Abe, K.; Hirouchi, M.; Okudaira, N.; Izumi, T. Integrated approach of in vivo and in vitro evaluation of the involvement of hepatic uptake organic anion transporters in the drug disposition in rats using rifampicin as an inhibitor. Drug Metab. Dispos., 2013, 41(7), 1442-1449.
[http://dx.doi.org/10.1124/dmd.113.051052] [PMID: 23640987]
[25]
Shingaki, T.; Takashima, T.; Ijuin, R.; Zhang, X.; Onoue, T.; Katayama, Y.; Okauchi, T.; Hayashinaka, E.; Cui, Y.; Wada, Y.; Suzuki, M.; Maeda, K.; Kusuhara, H.; Sugiyama, Y.; Watanabe, Y. Evaluation of Oatp and Mrp2 activities in hepatobiliary excretion using newly developed positron emission tomography tracer [11C]dehydropravastatin in rats. J. Pharmacol. Exp. Ther., 2013, 347(1), 193-202.
[http://dx.doi.org/10.1124/jpet.113.206425] [PMID: 23926287]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy