Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Smart Multivariate Spectrophotometric Assisted Techniques for Simultaneous Determination of Ephedrine Hydrochloride and Naphazoline Nitrate in the Presence of Interfering Parabens

Author(s): Basma M. Eltanany, Aya A. Mouhamed*, Nesrine T. Lamie* and Nadia M. Mostafa

Volume 17, Issue 8, 2021

Published on: 24 May, 2020

Page: [1104 - 1112] Pages: 9

DOI: 10.2174/1573412916999200525011749

Price: $65

Abstract

Background: PARTIAL Least Squares (PLS) and Principal Component Regression (PCR) are two well-known chemometric methods based on dimension reduction techniques. They can be very practical analyzing a large data set of multiple correlated predictor variables.

Objective: In the presented work, the resolving power of spectrophotometric assisted mathematical techniques was implemented for the simultaneous determination of two active ingredients; Ephedrine Hydrochloride (EPH) and naphazoline nitrate (NAPH), in a matrix of excipients.

Methods: To build the PLS and PCR models, a calibration set was prepared where the two drugs, in combination with the interfering parabens, were modeled by multilevel multifactor design. The proposed models successfully predicted the concentrations of both drugs in validation samples with low Root Mean Squared Error of Prediction (RMSEP).

Results: The results revealed the ability of the mentioned multivariate calibration models to analyze EPH and NAPH in the presence of the interfering parabens with high selectivity in the concentration ranges of 4.00-20.00 μg mL-1 and 1.00-9.00 μg mL-1, respectively.

Conclusion: A commercially available nasal spray was successfully analyzed using the developed methods without interfering with other dosage form additives.

Keywords: PCR, PLS, multivariate calibration, ephedrine hydrochloride, naphazoline nitrate, excipients.

Graphical Abstract

[1]
Richards, A. XPharm: The Comprehensive Pharmacology Reference; Enna, S.J; Bylund, D.B., Ed.; Elsevier Inc., 2007.
[2]
The British Pharmacopoeia. The Stationary office; London, 2016.
[3]
Newhouse, K.E. Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 1986, 59
[http://dx.doi.org/10.1213/00000539-198105000-00027]
[4]
Bvg, Z.V. Pharmaceutical Exipients, 6th ed; Royal Pharmaceutical Society of Great Britain: London, 2009.
[5]
Japanese Pharmacopoeia, 14th ed; Tokyo, 2002.
[6]
Abdel Salam, R.A.; Hadad, G.M.; Abdel Hameed, E.A. Simultaneous determination of two multicomponent mixtures containing phenobarbitone and ephedrine hydrochloride using hplc and chemometric assisted spectrophotometric methods. J. Liq. Chromatogr. Relat. Technol., 2013, 36(3), 384-405.
[http://dx.doi.org/10.1080/10826076.2012.657735]
[7]
Imamoglu, E.; Tunca, A.K. Simultaneous Determination of Guaifenesin and Ephedrine HCl Binary Mixture in Syrup Dosage Forms and Human Plasma by Using Rp-Hplc-Dad. J. Liq. Chromatogr. Relat. Technol., 2014, 37(7), 1039-1051.
[http://dx.doi.org/10.1080/10826076.2013.765459]
[8]
Zhang, J.; Xie, J.; Chen, X.; Hua, Z. Sensitive determination of ephedrine and pseudoephedrine by capillary electrophoresis with laser-induced fluorescence detection. Analyst (Lond.), 2003, 128(4), 369-372.
[http://dx.doi.org/10.1039/b211862a] [PMID: 12741643]
[9]
Haque, A.; Xu, X.; Stewart, J.T. Determination of ephedrine, theophylline and phenobarbital in a tablet dosage form by capillary electrophoresis. J. Pharm. Biomed. Anal., 1999, 21(5), 1063-1067.
[http://dx.doi.org/10.1016/S0731-7085(99)00226-5] [PMID: 10703975]
[10]
Sentürk, Z.; Erk, N.; Ozkan, S.A.; Akay, C.; Cevheroğlu, S. Determination of theophylline and ephedrine HCL in tablets by ratio-spectra derivative spectrophotometry and LC. J. Pharm. Biomed. Anal., 2002, 29(1-2), 291-298.
[http://dx.doi.org/10.1016/S0731-7085(02)00065-1] [PMID: 12062689]
[11]
Korodi, T.; Dulavová, M.; Urban, E.; Kopelent-Frank, H.; Lachmann, B. A stability-indicating HPLC Method for the determination of naphazoline and its degradation product and methyl parahydroxybenzoate in pharmaceutical preparations. J. Liq. Chromatogr. Relat. Technol., 2014, 37(10), 1321-1333.
[http://dx.doi.org/10.1080/10826076.2013.789802]
[12]
Hoang, V.D.; Hue, N.T.; Tho, N.H.; Nguyen, H.M.T. Simultaneous determination of chloramphenicol, dexamethasone and naphazoline in ternary and quaternary mixtures by RP-HPLC, derivative and wavelet transforms of UV ratio spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 139, 20-27.
[http://dx.doi.org/10.1016/j.saa.2014.11.101] [PMID: 25546493]
[13]
Ali, A.; Farooq, U.; Ahmed, M.; Athar, M.; Nadeem, K.; Murtaza, G. Stability Indicating UHPLC-PDA Assay for Simultaneous Determination of Antazoline Hydrochloride and Naphazoline Hydrochloride in Ophthalmic Formulations. Acta Chim. Slov., 2017, 64(2), 332-341.
[http://dx.doi.org/10.17344/acsi.2017.3166] [PMID: 28621384]
[14]
Attia, K.A.M.; Mohamad, A.A.; Emara, M.S. Comparative study among area under the curve, graphical absorbance ratio and isosbestic point as analytical tools applied for the simultaneous determination of chlorpheniramine maleate and naphazoline hydrochloride. Anal. Chem. Lett., 2016, 6(4), 421-430.
[http://dx.doi.org/10.1080/22297928.2016.1217788]
[15]
De Orsi, D.; Gagliardi, L.; Cavazzutti, G. simultaneous determination of ephedrine and 2-imidazolines in pharmaceutical formulations by reversed-phase HPLC. J. Liq. Chromatogr., 2006, 18(16), 37-41.
[http://dx.doi.org/10.1080/10826079508010447]
[16]
Malinowski, E.R. Factor Analysis in Chemistry, 3rd ed; , 2002.
[17]
Zhang, X.; Xi, Z.; Machuki, J.O.A.; Luo, J.; Yang, D.; Li, J.; Cai, W.; Yang, Y.; Zhang, L.; Tian, J.; Guo, K.; Yu, Y.; Gao, F. Gold Cube-in-cube based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging. ACS Nano, 2019, 13(5), 5306-5325.
[http://dx.doi.org/10.1021/acsnano.8b09786] [PMID: 31018094]
[18]
Yao, Y.; Zhao, D.; Li, N.; Shen, F.; Machuki, J.O.; Yang, D.; Li, J.; Tang, D.; Yu, Y.; Tian, J.; Dong, H.; Gao, F. Multifunctional Fe3O4@polydopamine@DNA-fueled molecular machine for magnetically targeted intracellular zn2+ imaging and fluorescence/mri guided photodynamic-photothermal therapy. Anal. Chem., 2019, 91(12), 7850-7857.
[http://dx.doi.org/10.1021/acs.analchem.9b01591] [PMID: 31117411]
[19]
Richard, G.B. Multilevel multifactor designs for multivariate Calibration. Analyst (Lond.), 1997, 122(12), 1521-1529.
[http://dx.doi.org/10.1039/a703654j]
[20]
Wu, J.; Li, N.; Yao, Y.; Tang, D.; Yang, D.; Ong’achwa Machuki, J.; Li, J.; Yu, Y.; Gao, F. DNA-stabilized silver nanoclusters for label-free fluorescence imaging of cell surface glycans and fluorescence guided photothermal therapy. Anal. Chem., 2018, 90(24), 14368-14375.
[http://dx.doi.org/10.1021/acs.analchem.8b03837] [PMID: 30484316]
[21]
Yao, Y.; Li, N.; Zhang, X.; Ong’achwa Machuki, J.; Yang, D.; Yu, Y.; Li, J.; Tang, D.; Tian, J.; Gao, F. DNA-templated silver nanocluster/Porphyrin/MnO2 Platform for label-free intracellular zn2+ imaging and fluorescence-/magnetic resonance imaging-guided photodynamic therapy. ACS Appl. Mater. Interfaces, 2019, 11(15), 13991-14003.
[http://dx.doi.org/10.1021/acsami.9b01530] [PMID: 30901195]
[22]
David, M. Haaland; Edward V. Thomas. Partial least-squares methods for spectral analyses. 1. relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem., 1988, 60(11), 1193-1202.
[http://dx.doi.org/10.1021/ac00162a020]
[23]
kramer, R. Chemometric Techniques for Quantitative Analysis Maecel Dekker Inc, New York, 1998.
[24]
Donahue, S.M.; Brown, C.W.; Caputo, B.; Modell, M.D. Near-Infrared multicomponent analysis in the spectral and fourier domains: energy content of high-pressure natural gas. Anal. Chem., 1988, 60, 1873-1878.
[http://dx.doi.org/10.1021/ac00169a007]
[25]
Haaland, D.M. Quantitative infrared analysis of borophosphosilicate films using multivariate statistical methods. Anal. Chem., 1988, 60(11), 1208-1217.
[http://dx.doi.org/10.1021/ac00162a022]
[26]
Lindberg, W.; Persson, J.; Wold, S. Partial Least-squares method for spectrofluorimetric analysis of mixtures of humic acid and lignin sulfonate. Anal. Chem., 1983, 55, 643-648.
[http://dx.doi.org/10.1021/ac00255a014]
[27]
Kenneth, R.; Randy, J.; Seasholtz, M. Chemometrics: A Practical Guide, 1st ed; Jone Wiley and Sons Inc.: New York, USA, 1998.
[28]
Shendy, A.H.; Eltanany, B.M.; Al-Ghobashy, M.A. coupling of gc-ms/ms to principal component analysis for assessment of matrix effect: efficient determination of ultra-low levels of pesticide residues in some functional foods. Food Anal. Methods, 2019, (12), 2870-2885.
[http://dx.doi.org/10.1007/s12161-019-01643-z]
[29]
Espinosa-Mansilla, A.; Salinas, F.; De Orbe Paya, I. Simultaneous determination of sulfadiazine, doxycycline, furaltadone and trimethoprim by partial least squares multivariate calibration. Anal. Chim. Acta, 1995, 313(1–2), 103-112.
[http://dx.doi.org/10.1016/0003-2670(95)00252-U]
[30]
Navarro-Villoslada, F.; Pérez-Arribas, L.; Léon-González, M.; Polo-Díez, L. Selection of calibration mixtures and wavelengths for different multivariate calibration methods. Anal. Chim. Acta, 1995, 313(1–2), 93-101.
[http://dx.doi.org/10.1016/0003-2670(95)00226-P]
[31]
Frenicha, A.G. Jouan-Rimbaudb, D.; D. L. Massartb; S. Kuttatharmmakulb; M. Martinez Galeraa; J. L. Martinez VidaP. Wavelength selection method for multicomponent spectrophotometric determinations using partial least squares. Analyst (Lond.), 1995, 120(12), 2787-2792.
[http://dx.doi.org/10.1039/an9952002787]

© 2025 Bentham Science Publishers | Privacy Policy