Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

A Review on the Progress and Prospects of Dengue Drug Discovery Targeting NS5 RNA- Dependent RNA Polymerase

Author(s): Venkatanarayana C. Maddipati, Lovika Mittal, Manohar Mantipally, Shailendra Asthana, Sankar Bhattacharyya* and Rambabu Gundla*

Volume 26, Issue 35, 2020

Page: [4386 - 4409] Pages: 24

DOI: 10.2174/1381612826666200523174753

Price: $65

Abstract

Dengue virus (DENV) infection threatens the health and wellbeing of almost 100 million people in the world. Vectored by mosquitoes, DENV may cause a severe disease in human hosts called Dengue hemorrhagic fever (DHF)/Dengue shock syndrome (DSS), which is not preventable by any known drug. In the absence of a universally-accepted vaccine, a drug capable of inhibiting DENV multiplication is an urgent and unmet clinical need. Here we summarize inhibitory strategies by targeting either host biochemical pathways or virus-encoded proteins. A variety of approaches have been generated to design Directly-acting anti-virals or DAAs targeting different DENV proteins, with diverse success. Among them, DAAs targeting genome replicating viral enzymes have proven effective against many viruses including, Human Immuno-deficiency Virus and Hepatitis C Virus. DAAs may be derived either from existing compound libraries of novel molecules and plant secondary metabolites or devised through Computer-aided Drug design (CADD) methods. Here, we focus on compounds with reported DAA-activity against the DENV RNA-dependent RNA polymerase (RdRp), which replicate the viral RNA genome. The structure-activity relationship (SAR) and toxicity of the natural compounds, including secondary plant metabolites, have been discussed in detail. We have also tabulated novel compounds with known anti-RdRp activity. We concluded with a list of DAAs for which a co-crystal structure with RdRp is reported. Promising hit compounds are often discarded due to poor selectivity or unsuitable pharmacokinetics. We hope this review will provide a useful reference for further studies on the development of an anti-DENV drug.

Keywords: Dengue virus, directly-acting anti-viral, DAA, RNA-dependent RNA polymerase, plant secondary metabolites, nucleoside and non-nucleoside inhibitor.

[1]
Bennett Kelly L, et al. High infestation of invasive Aedes mosquitoes in used tires along the local transport network of Panama. Parasit Vectors 2019; 12(1): 264.
[http://dx.doi.org/10.1186/s13071-019-3522-8]
[2]
Pliego Pliego E, Velázquez-Castro J, Eichhorn MP, Fraguela Collar A. Increased efficiency in the second-hand tire trade provides opportunity for dengue control. J Theor Biol 2018; 437: 126-36.
[http://dx.doi.org/10.1016/j.jtbi.2017.10.025 ] [PMID: 29079324]
[4]
Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature 2013; 496(7446): 504-7.
[http://dx.doi.org/10.1038/nature12060 ] [PMID: 23563266]
[5]
Joshi V, Mourya DT, Sharma RC. Persistence of dengue-3 virus through transovarial transmission passage in successive generations of Aedes aegypti mosquitoes. Am J Trop Med Hyg 2002; 67(2): 158-61.
[http://dx.doi.org/10.4269/ajtmh.2002.67.158 ] [PMID: 12389940]
[6]
Cecílio SG, Júnior WF, Tótola AH, de Brito Magalhães CL, Ferreira JM, de Magalhães JC. Dengue virus detection in Aedes aegypti larvae from southeastern Brazil. J Vector Ecol 2015; 40(1): 71-4.
[http://dx.doi.org/10.1111/jvec.12134 ] [PMID: 26047186]
[7]
Carrington LB, Simmons CP. Human to mosquito transmission of dengue viruses. Front Immunol 2014; 5: 290.
[http://dx.doi.org/10.3389/fimmu.2014.00290 ] [PMID: 24987394]
[8]
Juliano SA, O’Meara GF, Morrill JR, Cutwa MM. Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 2002; 130(3): 458-69.
[http://dx.doi.org/10.1007/s004420100811 ] [PMID: 20871747]
[9]
Titus L. Skin self-examination and the ABCDE rule in the early diagnosis of melanoma: is the game over? Reply from author. Br J Dermatol 2013; 168(6): 1371-2.
[http://dx.doi.org/10.1111/bjd.12251 ] [PMID: 23738644]
[10]
Ten Bosch QA, Clapham HE, Lambrechts L, et al. Contributions from the silent majority dominate dengue virus transmission. PLoS Pathog 2018; 14(5)e1006965
[http://dx.doi.org/10.1371/journal.ppat.1006965 ] [PMID: 29723307]
[11]
Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 2005; 3(1): 13-22.
[http://dx.doi.org/10.1038/nrmicro1067 ] [PMID: 15608696]
[12]
Preugschat F, Yao CW, Strauss JH. In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. J Virol 1990; 64(9): 4364-74.
[http://dx.doi.org/10.1128/JVI.64.9.4364-4374.1990 ] [PMID: 2143543]
[13]
Chambers TJ, McCourt DW, Rice CM. Production of yellow fever virus proteins in infected cells: identification of discrete polyprotein species and analysis of cleavage kinetics using region-specific polyclonal antisera. Virology 1990; 177(1): 159-74.
[http://dx.doi.org/10.1016/0042-6822(90)90470-C ] [PMID: 2353452]
[14]
Guyatt KJ, Westaway EG, Khromykh AA. Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin. J Virol Methods 2001; 92(1): 37-44.
[http://dx.doi.org/10.1016/S0166-0934(00)00270-6 ] [PMID: 11164916]
[15]
Kuo MD, Chin C, Hsu SL, Shiao JY, Wang TM, Lin JH. Characterization of the NTPase activity of Japanese encephalitis virus NS3 protein. J Gen Virol 1996; 77(Pt 9): 2077-84.
[http://dx.doi.org/10.1099/0022-1317-77-9-2077 ] [PMID: 8811006]
[16]
Ma B, He LF, Zhang YL, et al. Characteristics and viral propagation properties of a new human diploid cell line, Walvax-2, and its suitability as a candidate cell substrate for vaccine production. Hum Vaccin Immunother 2015; 11(4): 998-1009.
[http://dx.doi.org/10.1080/21645515.2015.1009811 ] [PMID: 25803132]
[17]
Tian Y, Grifoni A, Sette A, Weiskopf D, Human T. Cell Response to Dengue Virus Infection. Front Immunol 2019; 10: 2125.
[http://dx.doi.org/10.3389/fimmu.2019.02125 ] [PMID: 31552052]
[18]
Yung CF, Lee KS, Thein TL, et al. Dengue serotype-specific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, singapore. Am J Trop Med Hyg 2015; 92(5): 999-1005.
[http://dx.doi.org/10.4269/ajtmh.14-0628 ] [PMID: 25825386]
[19]
Vicente CR, Herbinger KH, Fröschl G, Malta Romano C, de Souza Areias Cabidelle A, Cerutti C Junior. Serotype influences on dengue severity: a cross-sectional study on 485 confirmed dengue cases in Vitória, Brazil. BMC Infect Dis 2016; 16(1): 320.
[http://dx.doi.org/10.1186/s12879-016-1668-y ] [PMID: 27393011]
[20]
Sangiambut S, Keelapang P, Aaskov J, et al. Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection. J Gen Virol 2008; 89(Pt 5): 1254-64.
[http://dx.doi.org/10.1099/vir.0.83264-0 ] [PMID: 18420804]
[21]
Samsa MM, Mondotte JA, Iglesias NG, et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 2009; 5(10)e1000632
[http://dx.doi.org/10.1371/journal.ppat.1000632 ] [PMID: 19851456]
[22]
Martins IC, Gomes-Neto F, Faustino AF, et al. The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. Biochem J 2012; 444(3): 405-15.
[http://dx.doi.org/10.1042/BJ20112219 ] [PMID: 22428600]
[23]
Modis Y, Ogata S, Clements D, Harrison SC. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 2003; 100(12): 6986-91.
[http://dx.doi.org/10.1073/pnas.0832193100 ] [PMID: 12759475]
[24]
Mayhoub AS, Khaliq M, Kuhn RJ, Cushman M. Design, synthesis, and biological evaluation of thiazoles targeting flavivirus envelope proteins. J Med Chem 2011; 54(6): 1704-14.
[http://dx.doi.org/10.1021/jm1013538 ] [PMID: 21355607]
[25]
Wang QY, Patel SJ, Vangrevelinghe E, et al. A small-molecule dengue virus entry inhibitor. Antimicrob Agents Chemother 2009; 53(5): 1823-31.
[http://dx.doi.org/10.1128/AAC.01148-08 ] [PMID: 19223625]
[26]
De La Guardia C, Lleonart R, et al. Progress in the identification of dengue virus entry/fusion inhibitors. BioMed Res Int 2014; 2014825039
[27]
Stadler K, Allison SL, Schalich J, Heinz FX. Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 1997; 71(11): 8475-81.
[http://dx.doi.org/10.1128/JVI.71.11.8475-8481.1997 ] [PMID: 9343204]
[28]
Guirakhoo F, Bolin RA, Roehrig JT. The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 1992; 191(2): 921-31.
[http://dx.doi.org/10.1016/0042-6822(92)90267-S ] [PMID: 1280384]
[29]
Guirakhoo F, Heinz FX, Mandl CW, Holzmann H, Kunz C. Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J Gen Virol 1991; 72(Pt 6): 1323-9.
[http://dx.doi.org/10.1099/0022-1317-72-6-1323 ] [PMID: 1710648]
[30]
Imran M, Saleemi MK, Chen Z, et al. Decanoyl-Arg-Val-Lys-Arg-Chloromethylketone: An Antiviral Compound That Acts against Flaviviruses through the Inhibition of Furin-Mediated prM Cleavage. Viruses 2019; 11(11): 1011.
[http://dx.doi.org/10.3390/v11111011 ] [PMID: 31683742]
[31]
Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res 2015; 118: 148-58.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.014 ] [PMID: 25842996]
[32]
Yu CY, Chang TH, Liang JJ, et al. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog 2012; 8(6)e1002780
[http://dx.doi.org/10.1371/journal.ppat.1002780 ] [PMID: 22761576]
[33]
Dong H, Chang DC, Xie X, et al. Biochemical and genetic characterization of dengue virus methyltransferase. Virology 2010; 405(2): 568-78.
[http://dx.doi.org/10.1016/j.virol.2010.06.039 ] [PMID: 20655081]
[34]
Ray D, Shah A, Tilgner M, et al. West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol 2006; 80(17): 8362-70.
[http://dx.doi.org/10.1128/JVI.00814-06 ] [PMID: 16912287]
[35]
Lim SP, Wen D, Yap TL, Yan CK, Lescar J, Vasudevan SG. A scintillation proximity assay for dengue virus NS5 2′-O-methyltransferase-kinetic and inhibition analyses. Antiviral Res 2008; 80(3): 360-9.
[http://dx.doi.org/10.1016/j.antiviral.2008.08.005 ] [PMID: 18809436]
[36]
Selisko B, Dutartre H, Guillemot JC, et al. Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases. Virology 2006; 351(1): 145-58.
[http://dx.doi.org/10.1016/j.virol.2006.03.026 ] [PMID: 16631221]
[37]
Dong H, Ray D, Ren S, et al. Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. J Virol 2007; 81(9): 4412-21.
[http://dx.doi.org/10.1128/JVI.02455-06 ] [PMID: 17301144]
[38]
Chung KY, Dong H, Chao AT, Shi PY, Lescar J, Lim SP. Higher catalytic efficiency of N-7-methylation is responsible for processive N-7 and 2′-O methyltransferase activity in dengue virus. Virology 2010; 402(1): 52-60.
[http://dx.doi.org/10.1016/j.virol.2010.03.011 ] [PMID: 20350738]
[39]
Dong H, Fink K, Züst R, Lim SP, Qin CF, Shi PY. Flavivirus RNA methylation. J Gen Virol 2014; 95(Pt. 4): 763-78.
[http://dx.doi.org/10.1099/vir.0.062208-0 ] [PMID: 24486628]
[40]
Thomas E, Ghany MG, Liang TJ. The application and mechanism of action of ribavirin in therapy of hepatitis C. Antivir Chem Chemother 2012; 23(1): 1-12.
[http://dx.doi.org/10.3851/IMP2125 ] [PMID: 22592135]
[41]
Markland W, McQuaid TJ, Jain J, Kwong AD. Broad-spectrum antiviral activity of the IMP dehydrogenase inhibitor VX-497: a comparison with ribavirin and demonstration of antiviral additivity with alpha interferon. Antimicrob Agents Chemother 2000; 44(4): 859-66.
[http://dx.doi.org/10.1128/AAC.44.4.859-866.2000 ] [PMID: 10722482]
[42]
Tong X, Smith J, Bukreyeva N, et al. Merimepodib, an IMPDH inhibitor, suppresses replication of Zika virus and other emerging viral pathogens. Antiviral Res 2018; 149: 34-40.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.004 ] [PMID: 29126899]
[43]
To KKW, Mok KY, Chan ASF, et al. Mycophenolic acid, an immunomodulator, has potent and broad-spectrum in vitro antiviral activity against pandemic, seasonal and avian influenza viruses affecting humans. J Gen Virol 2016; 97(8): 1807-17.
[http://dx.doi.org/10.1099/jgv.0.000512 ] [PMID: 27259985]
[44]
Diamond MS, Zachariah M, Harris E. Mycophenolic acid inhibits dengue virus infection by preventing replication of viral RNA. Virology 2002; 304(2): 211-21.
[http://dx.doi.org/10.1006/viro.2002.1685 ] [PMID: 12504563]
[45]
Wang QY, Bushell S, Qing M, et al. Inhibition of dengue virus through suppression of host pyrimidine biosynthesis. J Virol 2011; 85(13): 6548-56.
[http://dx.doi.org/10.1128/JVI.02510-10 ] [PMID: 21507975]
[46]
Fontaine KA, Sanchez EL, Camarda R, Lagunoff M. Dengue virus induces and requires glycolysis for optimal replication. J Virol 2015; 89(4): 2358-66.
[http://dx.doi.org/10.1128/JVI.02309-14 ] [PMID: 25505078]
[47]
Carro AC, Piccini LE, Damonte EB. Blockade of dengue virus entry into myeloid cells by endocytic inhibitors in the presence or absence of antibodies. PLoS Negl Trop Dis 2018; 12(8)e0006685
[http://dx.doi.org/10.1371/journal.pntd.0006685 ] [PMID: 30092029]
[48]
Mayer KA, Stöckl J, Zlabinger GJ, Gualdoni GA. Hijacking the supplies: Metabolism as a novel facet of virus-host interaction. Front Immunol 2019; 10: 1533.
[http://dx.doi.org/10.3389/fimmu.2019.01533 ] [PMID: 31333664]
[49]
Wang Z, Shang H, Jiang Y. Chemokines and chemokine receptors: accomplices for human immunodeficiency virus infection and latency. Front Immunol 2017; 8: 1274.
[http://dx.doi.org/10.3389/fimmu.2017.01274 ] [PMID: 29085362]
[50]
Ackermann M, Padmanabhan R. De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 2001; 276(43): 39926-37.
[http://dx.doi.org/10.1074/jbc.M104248200 ] [PMID: 11546770]
[51]
Nomaguchi M, Teramoto T, Yu L, Markoff L, Padmanabhan R. Requirements for West Nile virus (-)- and (+)-strand subgenomic RNA synthesis in vitro by the viral RNA-dependent RNA polymerase expressed in Escherichia coli. J Biol Chem 2004; 279(13): 12141-51.
[http://dx.doi.org/10.1074/jbc.M310839200 ] [PMID: 14699096]
[52]
Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B. An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 2002; 21(11): 2757-68.
[http://dx.doi.org/10.1093/emboj/21.11.2757 ] [PMID: 12032088]
[53]
Dong H, Ren S, Zhang B, et al. West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism. J Virol 2008; 82(9): 4295-307.
[http://dx.doi.org/10.1128/JVI.02202-07 ] [PMID: 18305027]
[54]
Daffis S, Szretter KJ, Schriewer J, et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 2010; 468(7322): 452-6.
[http://dx.doi.org/10.1038/nature09489 ] [PMID: 21085181]
[55]
Zhao Y, Soh TS, Lim SP, et al. Molecular basis for specific viral RNA recognition and 2′-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5). Proc Natl Acad Sci USA 2015; 112(48): 14834-9.
[http://dx.doi.org/10.1073/pnas.1514978112 ] [PMID: 26578813]
[56]
Issur M, Geiss BJ, Bougie I, et al. The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 2009; 15(12): 2340-50.
[http://dx.doi.org/10.1261/rna.1609709 ] [PMID: 19850911]
[57]
Bollati M, Milani M, Mastrangelo E, et al. Recognition of RNA cap in the Wesselsbron virus NS5 methyltransferase domain: implications for RNA-capping mechanisms in Flavivirus. J Mol Biol 2009; 385(1): 140-52.
[http://dx.doi.org/10.1016/j.jmb.2008.10.028 ] [PMID: 18976670]
[58]
El Sahili A, Lescar J. Dengue virus non-structural protein 5. Viruses 2017; 9(4): 91.
[http://dx.doi.org/10.3390/v9040091 ] [PMID: 28441781]
[59]
Drake JW, Holland JJ. Mutation rates among RNA viruses. Proc Natl Acad Sci USA 1999; 96(24): 13910-3.
[http://dx.doi.org/10.1073/pnas.96.24.13910 ] [PMID: 10570172]
[60]
Lim SP, Noble CG, Shi PY. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res 2015; 119: 57-67.
[http://dx.doi.org/10.1016/j.antiviral.2015.04.010 ] [PMID: 25912817]
[61]
Koonin EV. Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus. J Gen Virol 1993; 74(Pt 4): 733-40.
[http://dx.doi.org/10.1099/0022-1317-74-4-733 ] [PMID: 8385698]
[62]
Koonin EV. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 1991; 72(Pt 9): 2197-206.
[http://dx.doi.org/10.1099/0022-1317-72-9-2197 ] [PMID: 1895057]
[63]
Bollati M, Alvarez K, Assenberg R, et al. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res 2010; 87(2): 125-48.
[http://dx.doi.org/10.1016/j.antiviral.2009.11.009 ] [PMID: 19945487]
[64]
Davidson AD. Chapter 2. New insights into flavivirus nonstructural protein 5. Adv Virus Res 2009; 74: 41-101.
[http://dx.doi.org/10.1016/S0065-3527(09)74002-3 ] [PMID: 19698895]
[65]
Sousa R. Structural and mechanistic relationships between nucleic acid polymerases. Trends Biochem Sci 1996; 21(5): 186-90.
[http://dx.doi.org/10.1016/S0968-0004(96)10023-2 ] [PMID: 8871404]
[66]
Yap TL, Xu T, Chen YL, et al. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 2007; 81(9): 4753-65.
[http://dx.doi.org/10.1128/JVI.02283-06 ] [PMID: 17301146]
[67]
Malet H, Egloff MP, Selisko B, et al. Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 2007; 282(14): 10678-89.
[http://dx.doi.org/10.1074/jbc.M607273200 ] [PMID: 17287213]
[68]
Caillet-Saguy C, Lim SP, Shi P-Y, Lescar J, Bressanelli S. Polymerases of hepatitis C viruses and flaviviruses: structural and mechanistic insights and drug development. Antiviral Res 2014; 105: 8-16.
[http://dx.doi.org/10.1016/j.antiviral.2014.02.006 ] [PMID: 24561230]
[69]
Selisko B, Wang C, Harris E, Canard B. Regulation of Flavivirus RNA synthesis and replication. Curr Opin Virol 2014; 9: 74-83.
[http://dx.doi.org/10.1016/j.coviro.2014.09.011 ] [PMID: 25462437]
[70]
Iglesias NG, Filomatori CV, Gamarnik AV. The F1 motif of dengue virus polymerase NS5 is involved in promoter-dependent RNA synthesis. J Virol 2011; 85(12): 5745-56.
[http://dx.doi.org/10.1128/JVI.02343-10 ] [PMID: 21471248]
[71]
Noble CG, Lim SP, Chen YL, et al. Conformational flexibility of the Dengue virus RNA-dependent RNA polymerase revealed by a complex with an inhibitor. J Virol 2013; 87(9): 5291-5.
[http://dx.doi.org/10.1128/JVI.00045-13 ] [PMID: 23408636]
[72]
Lim SP, Koh JH, Seh CC, et al. A crystal structure of the dengue virus non-structural protein 5 (NS5) polymerase delineates interdomain amino acid residues that enhance its thermostability and de novo initiation activities. J Biol Chem 2013; 288(43): 31105-14.
[http://dx.doi.org/10.1074/jbc.M113.508606 ] [PMID: 24025331]
[73]
Lu G, Gong P. Crystal Structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 2013; 9(8)e1003549
[http://dx.doi.org/10.1371/journal.ppat.1003549 ] [PMID: 23950717]
[74]
Bressanelli S, Tomei L, Roussel A, et al. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc Natl Acad Sci USA 1999; 96(23): 13034-9.
[http://dx.doi.org/10.1073/pnas.96.23.13034 ] [PMID: 10557268]
[75]
Hannemann H, Sung PY, Chiu HC, et al. Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization. J Biol Chem 2013; 288(31): 22621-35.
[http://dx.doi.org/10.1074/jbc.M113.481382 ] [PMID: 23770669]
[76]
Tay MY, Fraser JE, Chan WK, et al. Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res 2013; 99(3): 301-6.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.002 ] [PMID: 23769930]
[77]
Rawlinson SM, Pryor MJ, Wright PJ, Jans DA. CRM1-mediated nuclear export of dengue virus RNA polymerase NS5 modulates interleukin-8 induction and virus production. J Biol Chem 2009; 284(23): 15589-97.
[http://dx.doi.org/10.1074/jbc.M808271200 ] [PMID: 19297323]
[78]
Zou G, Chen YL, Dong H, et al. Functional analysis of two cavities in flavivirus NS5 polymerase. J Biol Chem 2011; 286(16): 14362-72.
[http://dx.doi.org/10.1074/jbc.M110.214189 ] [PMID: 21349834]
[79]
Coulerie P, Eydoux C, Hnawia E, et al. Biflavonoids of Dacrydium balansae with potent inhibitory activity on dengue 2 NS5 polymerase. Planta Med 2012; 78(7): 672-7.
[http://dx.doi.org/10.1055/s-0031-1298355 ] [PMID: 22411725]
[80]
Lin YM, Chen FC, Lee KH. Hinokiflavone, a cytotoxic principle from Rhus succedanea and the cytotoxicity of the related biflavonoids. Planta Med 1989; 55(2): 166-8.
[http://dx.doi.org/10.1055/s-2006-961914 ] [PMID: 2526343]
[81]
Coulerie P, Nour M, Maciuk A, et al. Structure-activity relationship study of biflavonoids on the Dengue virus polymerase DENV-NS5 RdRp. Planta Med 2013; 79(14): 1313-8.
[http://dx.doi.org/10.1055/s-0033-1350672 ] [PMID: 23929244]
[82]
A study on the anti-HIV activity of biflavonoid compounds by using quantum chemical and chemometric methods. J Mol Struct 2004; 674: 191-7.
[http://dx.doi.org/10.1016/j.theochem.2003.12.007]
[83]
Coulerie P, Maciuk A, Eydoux C, et al. New inhibitors of the DENV-NS5 RdRp from Carpolepislaurifolia as potential antiviral drugs for Dengue treatment. Rec Nat Prod 2014; 8(3): 286-9.
[84]
Noble CG, Shi PY. Structural biology of dengue virus enzymes: towards rational design of therapeutics. Antiviral Res 2012; 96(2): 115-26.
[http://dx.doi.org/10.1016/j.antiviral.2012.09.007 ] [PMID: 22995600]
[85]
Sanchez I, Gómez‐Garibay F, Taboada J. Antiviral effect of flavonoids on the dengue virus. Phytother Res 2000; 14(2): 89-92.
[PMID: 10685103] [http://dx.doi.org/10.1002/(SICI)1099-1573(200003)14:2<89:AID-PTR569>3.0.CO;2-C]
[86]
Kaul TN, Middleton E Jr, Ogra PL. Antiviral effect of flavonoids on human viruses. J Med Virol 1985; 15(1): 71-99.
[PMID: 2981979] [http://dx.doi.org/10.1002/jmv.1890150110]
[87]
Allard PM, Dau ET, Eydoux C, et al. Alkylated flavanones from the bark of Cryptocarya chartacea as dengue virus NS5 polymerase inhibitors. J Nat Prod 2011; 74(11): 2446-53.
[http://dx.doi.org/10.1021/np200715v ] [PMID: 22050318]
[88]
Kaou AM, Mahiou-Leddet V, Canlet C, et al. Antimalarial compounds from the aerial parts of Flacourtia indica (Flacourtiaceae). J Ethnopharmacol 2010; 130(2): 272-4.
[http://dx.doi.org/10.1016/j.jep.2010.04.045 ] [PMID: 20457242]
[89]
Bokesch HR, Wamiru A, Le Grice SF, Beutler JA, McKee TC, McMahon JB. HIV-1 ribonuclease H inhibitory phenolic glycosides from Eugenia hyemalis. J Nat Prod 2008; 71(9): 1634-6.
[http://dx.doi.org/10.1021/np8002518 ] [PMID: 18763827]
[90]
Bourjot M, Leyssen P, Eydoux C, et al. Flacourtosides A-F, phenolic glycosides isolated from Flacourtia ramontchi. J Nat Prod 2012; 75(4): 752-8.
[http://dx.doi.org/10.1021/np300059n ] [PMID: 22439591]
[91]
El-Jaber N, Estévez-Braun A, Ravelo AG, Muñoz-Muñoz O, Rodríguez-Afonso A, Murguia JR. Acetylenic acids from the aerial parts of Nanodea muscosa. J Nat Prod 2003; 66(5): 722-4.
[http://dx.doi.org/10.1021/np020513e ] [PMID: 12762819]
[92]
Li C, Lee D, Graf TN, et al. Bioactive constituents of the stem bark of Mitrephora glabra. J Nat Prod 2009; 72(11): 1949-53.
[http://dx.doi.org/10.1021/np900572g ] [PMID: 19874044]
[93]
Bourjot M, Leyssen P, Eydoux C, et al. Chemical constituents of Anacolosa pervilleana and their antiviral activities. Fitoterapia 2012; 83(6): 1076-80.
[http://dx.doi.org/10.1016/j.fitote.2012.05.004 ] [PMID: 22613073]
[94]
Peyrat L-A, Eparvier V, Eydoux C, Guillemot JC, Stien D, Litaudon M. Chemical diversity and antiviral potential in the pantropical Diospyros genus. Fitoterapia 2016; 112: 9-15.
[http://dx.doi.org/10.1016/j.fitote.2016.04.017 ] [PMID: 27126897]
[95]
Alakurtti S, Mäkelä T, Koskimies S, Yli-Kauhaluoma J. Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci 2006; 29(1): 1-13.
[http://dx.doi.org/10.1016/j.ejps.2006.04.006 ] [PMID: 16716572]
[96]
Suksamrarn A, Jankam A, Tarnchompoo B, Putchakarn S. Ecdysteroids from a Zoanthus sp. J Nat Prod 2002; 65(8): 1194-7.
[http://dx.doi.org/10.1021/np010645s ] [PMID: 12193031]
[97]
Báthori M, Pongrácz Z. Phytoecdysteroids-from isolation to their effects on humans. Curr Med Chem 2005; 12(2): 153-72.
[http://dx.doi.org/10.2174/0929867053363450 ] [PMID: 15638733]
[98]
Fomovskaia GN, Berdyshev AG, Kholodova I, et al. Immunomodulating effect of ecdysterones 1992.
[99]
Cheng YB, Lee JC, Lo IW, et al. Ecdysones from Zoanthus spp. with inhibitory activity against dengue virus 2. Bioorg Med Chem Lett 2016; 26(9): 2344-8.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.029 ] [PMID: 26988299]
[100]
Coulerie P, Maciuk A, Lebouvier N, et al. Phytochemical study of Myrtopsiscorymbosa, perspectives for anti-dengue natural compound research. Rec Nat Prod 2013; 7(3): 250.
[101]
Niyomrattanakit P, Chen YL, Dong H, et al. Inhibition of dengue virus polymerase by blocking of the RNA tunnel. J Virol 2010; 84(11): 5678-86.
[http://dx.doi.org/10.1128/JVI.02451-09 ] [PMID: 20237086]
[102]
Pelliccia S, Wu YH, Coluccia A, et al. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities. J Enzyme Inhib Med Chem 2017; 32(1): 1091-101.
[http://dx.doi.org/10.1080/14756366.2017.1355791 ] [PMID: 28776445]
[103]
Noble CG, Lim SP, Arora R, et al. A conserved pocket in the dengue virus polymerase identified through fragment-based screening. J Biol Chem 2016; 291(16): 8541-8.
[http://dx.doi.org/10.1074/jbc.M115.710731 ] [PMID: 26872970]
[104]
Yokokawa F, Nilar S, Noble CG, et al. Discovery of Potent Non-Nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from a Fragment Hit Using Structure-Based Drug Design. J Med Chem 2016; 59(8): 3935-52.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00143 ] [PMID: 26984786]
[105]
Lim SP, Noble CG, Seh CC, et al. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling. PLoS Pathog 2016; 12(8)e1005737
[http://dx.doi.org/10.1371/journal.ppat.1005737 ] [PMID: 27500641]
[106]
Manvar D, Küçükgüzel İ, Erensoy G, et al. Discovery of conjugated thiazolidinone-thiadiazole scaffold as anti-dengue virus polymerase inhibitors. Biochem Biophys Res Commun 2016; 469(3): 743-7.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.042 ] [PMID: 26697747]
[107]
Benmansour F, Eydoux C, Querat G, et al. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase. Eur J Med Chem 2016; 109: 146-56.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.046 ] [PMID: 26774922]
[108]
Manfroni G, Meschini F, Barreca ML, et al. Pyridobenzothiazole derivatives as new chemotype targeting the HCV NS5B polymerase. Bioorg Med Chem 2012; 20(2): 866-76.
[http://dx.doi.org/10.1016/j.bmc.2011.11.061 ] [PMID: 22197397]
[109]
Tarantino D, Cannalire R, Mastrangelo E, et al. Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antiviral Res 2016; 134: 226-35.
[http://dx.doi.org/10.1016/j.antiviral.2016.09.007 ] [PMID: 27649989]
[110]
Cannalire R, Tarantino D, Astolfi A, et al. Functionalized 2,1-benzothiazine 2,2-dioxides as new inhibitors of Dengue NS5 RNA-dependent RNA polymerase. Eur J Med Chem 2018; 143: 1667-76.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.064 ] [PMID: 29137867]
[111]
Yao X, Guo S, Wu W, et al. Q63, a novel DENV2 RdRp non-nucleoside inhibitor, inhibited DENV2 replication and infection. J Pharmacol Sci 2018; 138(4): 247-56.
[http://dx.doi.org/10.1016/j.jphs.2018.06.012 ] [PMID: 30518482]
[112]
Yin Z, Chen YL, Schul W, et al. An adenosine nucleoside inhibitor of dengue virus. Proc Natl Acad Sci USA 2009; 106(48): 20435-9.
[http://dx.doi.org/10.1073/pnas.0907010106 ] [PMID: 19918064]
[113]
Chen YL, Abdul Ghafar N, Karuna R, et al. Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir. J Virol 2014; 88(3): 1740-7.
[http://dx.doi.org/10.1128/JVI.02841-13 ] [PMID: 24257621]
[114]
Wang G, Lim SP, Chen YL, et al. Structure-activity relationship of uridine-based nucleoside phosphoramidate prodrugs for inhibition of dengue virus RNA-dependent RNA polymerase. Bioorg Med Chem Lett 2018; 28(13): 2324-7.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.069 ] [PMID: 29801997]
[115]
Riccio F, Talapatra SK, Oxenford S, Angell R, Mazzon M, Kozielski F. Development and validation of RdRp Screen, a crystallization screen for viral RNA-dependent RNA polymerases. Biol Open 2019; 8(1)bio037663
[http://dx.doi.org/10.1242/bio.037663 ] [PMID: 30602529]
[116]
Zhao Y, Soh TS, Zheng J, et al. A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathog 2015; 11(3)e1004682
[http://dx.doi.org/10.1371/journal.ppat.1004682 ] [PMID: 25775415]
[117]
Shimizu H, Saito A, Mikuni J, et al. Discovery of a small molecule inhibitor targeting dengue virus NS5 RNA-dependent RNA polymerase. PLoS Negl Trop Dis 2019; 13(11)e0007894
[http://dx.doi.org/10.1371/journal.pntd.0007894 ] [PMID: 31738758]
[118]
Shimizu H, Sekine S, et al.
[119]
El Sahili A, Soh TS, Schiltz J, et al. NS5 from Dengue Virus Serotype 2 Can Adopt a Conformation Analogous to That of Its Zika Virus and Japanese Encephalitis Virus Homologues. J Virol 2019; 94(1): e01294-19.
[http://dx.doi.org/10.1128/JVI.01294-19 ] [PMID: 31597763]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy