Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Raman and Terahertz Spectroscopic Characterization of Solid-state Cocrystal Formation within Specific Active Pharmaceutical Ingredients

Author(s): Yong Du*, Jiadan Xue and Zhi Hong

Volume 26, Issue 38, 2020

Page: [4829 - 4846] Pages: 18

DOI: 10.2174/1381612826666200523173448

Price: $65

Abstract

Cocrystallization of specific active pharmaceutical ingredients (APIs) in the solid-state phase is becoming a feasible way to improve their corresponding physicochemical properties and ultimate bioavailability without making and breaking any covalent bonds within them. Many recent reports deal with the characterization and analysis topics of pharmaceutical APIs-based cocrystals. In this mini-review, we will focus on the recent steady-state and time-dependent spectroscopic investigation into the cocrystallization of specific APIs based on both Raman and emerging terahertz spectroscopy in pharmaceutical fields. Distinctive spectral, structural and also kinetic information of pharmaceutical APIs-based cocrystals are obtained and discussed, which would highlight the potential of vibrational spectroscopy as an attractive technique for various drug research and development during cocrystallization of specific APIs.

Keywords: Cocrystallization, Raman spectroscopy, terahertz time-domain spectroscopy (THz-TDS), active pharmaceutical ingredients (APIs), solid-state APIs-based cocrystals, covalent, kinetic.

Next »
[1]
Aitipamula S, Banerjee R, Bansal AK, et al. Polymorphs, Salts, and cocrystals: What’s in a Name? Cryst Growth Des 2012; 12: 2147-52.
[http://dx.doi.org/10.1021/cg3002948]
[2]
Haneef J, Chadha R. Drug-Drug Multicomponent solid forms: Cocrystal, coamorphous and eutectic of three poorly soluble antihypertensive drugs using mechanochemical approach. AAPS PharmSciTech 2017; 18(6): 2279-90.
[http://dx.doi.org/10.1208/s12249-016-0701-1 ] [PMID: 28101724]
[3]
Grothe E, Meekes H, Vlieg E, ter Horst JH, de Gelder R. Solvates, salts, and cocrystals: A proposal for a feasible classification system. Cryst Growth Des 2016; 16: 3237-43.
[http://dx.doi.org/10.1021/acs.cgd.6b00200]
[4]
Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm 2013; 453(1): 101-25.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.043 ] [PMID: 23207015]
[5]
Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun (Camb) 2016; 52(4): 640-55.
[http://dx.doi.org/10.1039/C5CC08216A ] [PMID: 26565650]
[6]
Chieng N, Rades T, Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J Pharm Biomed Anal 2011; 55(4): 618-44.
[http://dx.doi.org/10.1016/j.jpba.2010.12.020 ] [PMID: 21237609]
[7]
Bezerra da Silva M, Santos RCR, Freire PTC, Caetano EWS, Freire VN. Bezera Dasilva. Vibrational properties of bulk boric acid 2A and 3T polymorphs and their two-dimensional layers: Measurements and density functional theory calculations. J Phys Chem A 2018; 122(5): 1312-25.
[http://dx.doi.org/10.1021/acs.jpca.7b10083 ] [PMID: 29328646]
[8]
Lin SY. An overview of famotidine polymorphs: solid-state characteristics, thermodynamics, polymorphic transformation and quality control. Pharm Res 2014; 31(7): 1619-31.
[http://dx.doi.org/10.1007/s11095-014-1323-5 ] [PMID: 24577998]
[9]
Silva LF, Paschoal JRW, Pinheiro GS, et al. Understanding the effect of the solvent polarity on polymorphism of octadecanoic acid through spectroscopic techniques and DFT calculations. CrystEngComm 2018; 21: 297-309.
[http://dx.doi.org/10.1039/C8CE01402G]
[10]
Atassi F, Mao C, Masadeh AS, Byrn SR. Solid-state characterization of amorphous and mesomorphous calcium ketoprofen. J Pharm Sci 2010; 99(9): 3684-97.
[http://dx.doi.org/10.1002/jps.21925 ] [PMID: 19780126]
[11]
Brittain HG. Vibrational spectroscopic studies of cocyrstal and salts 1: benzamide- benzoic acid system. Cryst Growth Des 2009; 9: 2492-9.
[http://dx.doi.org/10.1021/cg801397t]
[12]
Brittain HG. Vibrational spectroscopic studies of cocyrstal and salts 2: benzylamine-benzoic acid system. Cryst Growth Des 2009; 9: 3497-503.
[http://dx.doi.org/10.1021/cg9001972]
[13]
Wang L, Zhao Y, Zhang Z, et al. Polymorphs of acyclovir-maleic acid salt and their reversible phase transition. J Mol Struct 2017; 1127: 247-51.
[http://dx.doi.org/10.1016/j.molstruc.2016.07.103]
[14]
Fernandes P, Shankland K, Florence AJ, Shankland N, Johnston A. Solving molecular crystal structures from X-ray powder diffraction data: the challenges posed by gamma-carbamazepine and chlorothiazide N,N,-dimethylformamide (1/2) solvate. J Pharm Sci 2007; 96(5): 1192-202.
[http://dx.doi.org/10.1002/jps.20942 ] [PMID: 17455337]
[15]
Cruz-Cabeza AJ, Day GM, Jones W. Structure prediction, disorder and dynamics in a DMSO solvate of carbamazepine. Phys Chem Chem Phys 2011; 13(28): 12808-16.
[http://dx.doi.org/10.1039/c1cp20927b ] [PMID: 21670828]
[16]
Lutker KM, Quiñones R, Xu J, Ramamoorthy A, Matzger AJ. Polymorphs and hydrates of acyclovir. J Pharm Sci 2011; 100(3): 949-63.
[http://dx.doi.org/10.1002/jps.22336 ] [PMID: 21280051]
[17]
Healy AM, Worku ZA, Kumar D, Madi AM. Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Adv Drug Deliv Rev 2017; 117: 25-46.
[http://dx.doi.org/10.1016/j.addr.2017.03.002 ] [PMID: 28342786]
[18]
Du S, Wang Y, Wu S, et al. Two novel cocrystals of lamotrigine with isomeric bipyridines and in situ monitoring of the cocrystallization. Eur J Pharm Sci 2017; 110: 19-25.
[http://dx.doi.org/10.1016/j.ejps.2017.06.001 ] [PMID: 28587788]
[19]
Zhang X, Sun F, Zhang T, et al. Three pharmaceuticals cocrystals of adefovir: Syntheses, structures and dissolution study. J Mol Struct 2015; 1100: 395-400.
[http://dx.doi.org/10.1016/j.molstruc.2015.07.033]
[20]
Zhang X, Yang J, Wu Y, Zhou X. The urea-barbituric acid polymorphic co-crystal system: Characterization, thermodynamics and crystallization. J Cryst Growth 2018; 502: 45-53.
[http://dx.doi.org/10.1016/j.jcrysgro.2018.07.001]
[21]
Zheng SL, Chen JM, Zhang WX, Lu TB. Structures of polymorphic agomelatine and its cocrystals with acetic acid and ethylene glycol. Cryst Growth Des 2011; 11: 466-71.
[http://dx.doi.org/10.1021/cg101234p]
[22]
Kozak A, Marek PH, Pindelska E. Structural characterization and pharmaceutical properties of three novel cocrystals of ethenzamide with aliphatic dicarboxylic acids. J Pharm Sci 2019; 108(4): 1476-85.
[http://dx.doi.org/10.1016/j.xphs.2018.10.060 ] [PMID: 30414866]
[23]
Jung S, Lee J, Kim IW. Structures and physical properties of the cocrystals of adefovir dipivoxil with dicarboxylic acids. J Cryst Growth 2013; 373: 59-63.
[http://dx.doi.org/10.1016/j.jcrysgro.2012.10.044]
[24]
Kozak A, Pindelska E. Spectroscopic analysis of the influence of various external factors on ethenzamide-glutaric acid (1:1) cocrystal formation. Eur J Pharm Sci 2019; 133: 59-68.
[http://dx.doi.org/10.1016/j.ejps.2019.03.017 ] [PMID: 30910648]
[25]
Khan E, Shukla A, Jadav N, et al. Study of molecular structure, chemical reactivity and H-bonding interactions in the cocrystal of nitrofurantoin with urea. New J Chem 2017; 41: 11069-78.
[http://dx.doi.org/10.1039/C7NJ01345K]
[26]
Prohens R, Barbas R, Portell A, Font-Bardia M, Alcobé X, Puigjaner C. Polymorphism of cocrystals: The promiscuous behavior of agomelatine. Cryst Growth Des 2016; 16: 1063-70.
[http://dx.doi.org/10.1021/acs.cgd.5b01628]
[27]
Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics 2018; 10(1): 10.
[http://dx.doi.org/10.3390/pharmaceutics10010018 ] [PMID: 29370068]
[28]
Berry DJ, Steed JW. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv Drug Deliv Rev 2017; 117: 3-24.
[http://dx.doi.org/10.1016/j.addr.2017.03.003 ] [PMID: 28344021]
[29]
Pindelska E, Sokal A, Kolodziejski W. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Adv Drug Deliv Rev 2017; 117: 111-46.
[http://dx.doi.org/10.1016/j.addr.2017.09.014 ] [PMID: 28931472]
[30]
Diniz LF, Souza MS, Carvalho PS, da Silva CCP, D’Vries RF, Ellena J. Novel Isoniazid cocrystals with aromatic carboxylic acids: Crystal engineering, spectroscopy and thermochemical investigations. J Mol Struct 2018; 1153: 58-68.
[http://dx.doi.org/10.1016/j.molstruc.2017.09.115]
[31]
Évora AOL, Castro RAE, Maria TMR, Ramos Silva M, Canotilho J, Eusébio MES. Lamotrigine: Design and synthesis of new multicomponent solid forms. Eur J Pharm Sci 2019; 129: 148-62.
[http://dx.doi.org/10.1016/j.ejps.2019.01.007 ] [PMID: 30639400]
[32]
Mashhadi SMA, Yunus U, Bhatti MH, Ahmed I, Tahir MN. Synthesis, characterization, solubility and stability studies of hydrate cocrystal of antitubercular Isoniazid with antioxidant and anti-bacterial Protocatechuic acid. J Mol Struct 2016; 1117: 17-21.
[http://dx.doi.org/10.1016/j.molstruc.2016.03.057]
[33]
Lemmerer A, Bernstein J, Kahlenberg V. Hydrogen bonding patterns of the co-crystal containing the pharmaceutically active ingredient isoniazid and terephthalic acid. J Chem Crystallogr 2011; 41: 991-7.
[http://dx.doi.org/10.1007/s10870-011-0031-9]
[34]
Fang H, Zhang Q, Zhang H, Du Y, Hong Z. Terahertz spectroscopic analysis of adenine and fumaric acid cocrystals. Wuli Huaxue Xuebao 2015; 31: 221-6.
[35]
Rodrigues M, Baptista B, Lopes JA, Sarraguça MC. Pharmaceutical cocrystallization techniques. Advances and challenges. Int J Pharm 2018; 547(1-2): 404-20.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.024 ] [PMID: 29890258]
[36]
Karimi-Jafari M, Padrela L, Walker GM, Croker DM. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des 2018; 18: 6370-87.
[http://dx.doi.org/10.1021/acs.cgd.8b00933]
[37]
Sinha AS, Maguire AR, Lawrence SE. Cocrystallization of Nutraceuticals. Cryst Growth Des 2015; 15: 984-1009.
[http://dx.doi.org/10.1021/cg501009c]
[38]
Évora AOL, Castro RAE, Maria TMR, et al. Pyrazinamide-diflunisal: A new dual-drug co-crystal. Cryst Growth Des 2011; 11: 4780-8.
[http://dx.doi.org/10.1021/cg200288b]
[39]
Abundo MP, Yu Z-Q, Chow PS, Tan RBH. Elucidating the complex phase behavior of a cocrystal system containing two apis and one coformer. Cryst Growth Des 2018; 19: 157-65.
[http://dx.doi.org/10.1021/acs.cgd.8b01238]
[40]
Thakuria R, Sarma B. Drug-drug and drug-nutraceutical cocrystal/salt as alternative medicine for combination therapy: A crystal engineering approach. Crystals (Basel) 2018; 8: 101.
[http://dx.doi.org/10.3390/cryst8020101]
[41]
Pawel Grobelny AMaGRD. Drug-drug co-crystals: Temperature-dependent proton mobility in the molecular complex of isoniazid with 4-aminosalicylic acid. CrystEngComm 2011; 13: 4358-64.
[http://dx.doi.org/10.1039/c0ce00842g]
[42]
Nechipadappu SK, Tekuri V, Trivedi DR. Pharmaceutical Co-crystal of flufenamic acid: synthesis and characterization of two novel drug-drug co-crystal. J Pharm Sci 2017; 106(5): 1384-90.
[http://dx.doi.org/10.1016/j.xphs.2017.01.033 ] [PMID: 28185907]
[43]
Aitipamula S, Wong ABH, Chow PS, Tan RBH. Novel solid forms of the anti-tuberculosis drug, Isoniazid: ternary and polymorphic cocrystals. CrystEngComm 2013; 15: 5877.
[http://dx.doi.org/10.1039/c3ce40729b]
[44]
Zhang GC, Lin HL, Lin SY. Thermal analysis and FTIR spectral curve-fitting investigation of formation mechanism and stability of indomethacin-saccharin cocrystals via solid-state grinding process. J Pharm Biomed Anal 2012; 66: 162-9.
[http://dx.doi.org/10.1016/j.jpba.2012.03.039 ] [PMID: 22497855]
[45]
Tireli M, Juribašić Kulcsár M, Cindro N, et al. Mechanochemical reactions studied by in situ Raman spectroscopy: base catalysis in liquid-assisted grinding. Chem Commun (Camb) 2015; 51(38): 8058-61.
[http://dx.doi.org/10.1039/C5CC01915J ] [PMID: 25866133]
[46]
Rehder S, Klukkert M, Löbmann KA, et al. Investigation of the formation process of two piracetam cocrystals during grinding. Pharmaceutics 2011; 3(4): 706-22.
[http://dx.doi.org/10.3390/pharmaceutics3040706 ] [PMID: 24309304]
[47]
Lin H-L, Zhang G-C, Hsu P-C, Lin S-Y. A portable fiber-optic Raman analyzer for fast real-time screening and identifying cocrystal formation of drug-coformer via grinding process. Microchem J 2013; 110: 15-20.
[http://dx.doi.org/10.1016/j.microc.2013.01.004]
[48]
Kulla H, Greiser S, Benemann S, Rademann K, Emmerling F. In situ investigation of a self-accelerated cocrystal formation by grinding pyrazinamide with oxalic acid. Molecules 2016; 21(7): 21.
[http://dx.doi.org/10.3390/molecules21070917 ] [PMID: 27428942]
[49]
Hasa D, Rauber GS, Voinovich D, Jones W. Cocrystal formation through mechanochemistry: from neat and liquid-assisted grinding to polymer-assisted grinding. Angew Chem Int Ed Engl 2015; 54(25): 7371-5.
[http://dx.doi.org/10.1002/anie.201501638 ] [PMID: 25939405]
[50]
Naelapää K, Boetker JP, Veski P, Rantanen J, Rades T, Kogermann K. Polymorphic form of piroxicam influences the performance of amorphous material prepared by ball-milling. Int J Pharm 2012; 429(1-2): 69-77.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.008 ] [PMID: 22433471]
[51]
Kojima T, Tsutsumi S, Yamamoto K, Ikeda Y, Moriwaki T. High-throughput cocrystal slurry screening by use of in situ Raman microscopy and multi-well plate. Int J Pharm 2010; 399(1-2): 52-9.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.055 ] [PMID: 20696223]
[52]
Sarceviča I, Orola L, Nartowski KP, Khimyak YZ, Round AN, Fábián L. Mechanistic and kinetic insight into spontaneous cocrystallization of isoniazid and benzoic acid. Mol Pharm 2015; 12(8): 2981-92.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00250 ] [PMID: 26086552]
[53]
Mesallati H, Mugheirbi NA, Tajber L. Two faces of ciprofloxacin: investigation of proton transfer in solid state transformations. Cryst Growth Des 2016; 16: 6574-85.
[http://dx.doi.org/10.1021/acs.cgd.6b01283]
[54]
Sarkar A, Rohani S. Cocrystals of acyclovir with promising physicochemical properties. J Pharm Sci 2015; 104(1): 98-105.
[http://dx.doi.org/10.1002/jps.24248 ] [PMID: 25407552]
[55]
Zhang Q, Fang H, Zhang H, Qin D, Hong Z, Du Y. Co-crystal between nitrofurantion and urea investigated by terahertz spectroscopy and density functional theory. Acta Chimi Sin 2015; 73: 1069-73.
[56]
Du Y, Xue J, Cai Q, Zhang Q. Spectroscopic investigation on structure and pH dependent Cocrystal formation between gamma-aminobutyric acid and benzoic acid. Spectrochim Acta A Mol Biomol Spectrosc 2018; 191: 377-81.
[http://dx.doi.org/10.1016/j.saa.2017.10.036 ] [PMID: 29055755]
[57]
Du Y, Xia Y, Zhang H, Hong Z. Using terahertz time-domain spectroscopical technique to monitor cocrystal formation between piracetam and 2,5-dihydroxybenzoic acid. Spectrochim Acta A Mol Biomol Spectrosc 2013; 111: 192-5.
[http://dx.doi.org/10.1016/j.saa.2013.03.081 ] [PMID: 23639736]
[58]
Wang Y, Xue J, Wang Q, et al. Structural investigation of a 2:1 co-crystal between diflunisal and isonicotinamide based on terahertz and Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2019; 216: 98-104.
[http://dx.doi.org/10.1016/j.saa.2019.03.023 ] [PMID: 30884353]
[59]
L. Sreenivas Reddy, Bethune SJ, Kampf JW. Naı’r Rodrı’guez-Hornedo. Cocrystals and salts of gabapentin: pH dependent cocrystal stability and solubility. Cryst Growth Des 2009; 9: 378-85.
[http://dx.doi.org/10.1021/cg800587y]
[60]
Boyd S, Back K, Chadwick K, Davey RJ, Seaton CC. Solubility, metastable zone width measurement and crystal growth of the 1:1 benzoic acid/isonicotinamide cocrystal in solutions of variable stoichiometry. J Pharm Sci 2010; 99(9): 3779-86.
[http://dx.doi.org/10.1002/jps.22184 ] [PMID: 20665843]
[61]
Bethune SJ, Huang N, Jayasankar A, Rodríguez-Hornedo Nr. Understanding and predicting the effect of cocrystal components and ph on cocrystal solubility. Cryst Growth Des 2009; 9: 3976-88.
[http://dx.doi.org/10.1021/cg9001187]
[62]
Arenas-García JI, Herrera-Ruiz D, Mondragón-Vásquez K, Morales-Rojas H, Höpfl H. Co-crystals of active pharmaceutical ingredients - acetazolamide. Cryst Growth Des 2010; 10: 3732-42.
[http://dx.doi.org/10.1021/cg1005693]
[63]
Cuadra IA, Cabañas A, Cheda JAR, Martínez-Casado FJ, Pando C. Pharmaceutical co-crystals of the anti-inflammatory drug diflunisal and nicotinamide obtained using supercritical CO2 as an antisolvent J CO2 Utilization 2016; 13: 29-37.
[http://dx.doi.org/10.1016/j.jcou.2015.11.006]
[64]
Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm 2011; 419(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.037 ] [PMID: 21827842]
[65]
Ma K, Wang N, Cheng L, et al. Identification of novel adefovir dipivoxil-saccharin cocrystal polymorphs and their thermodynamic polymorphic transformations. Int J Pharm 2019; 566: 361-70.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.071 ] [PMID: 31152792]
[66]
Evora AO, Castro RA, Maria TM, et al. A thermodynamic based approach on the investigation of a diflunisal pharmaceutical co-crystal with improved intrinsic dissolution rate. Int J Pharm 2014; 466(1-2): 68-75.
[http://dx.doi.org/10.1016/j.ijpharm.2014.02.048 ] [PMID: 24607201]
[67]
Évora AOL, Castro RAE, Maria TMR, et al. Co-crystals of diflunisal and isomeric pyridinecarboxamides - a thermodynamics and crystal engineering contribution. CrystEngComm 2016; 18: 4749-59.
[http://dx.doi.org/10.1039/C6CE00380J]
[68]
Drozd KV, Manin AN, Churakov AV, Perlovich GL. Drug-drug cocrystals of antituberculous 4-aminosalicylic acid: Screening, crystal structures, thermochemical and solubility studies. Eur J Pharm Sci 2017; 99: 228-39.
[http://dx.doi.org/10.1016/j.ejps.2016.12.016 ] [PMID: 28011126]
[69]
Sokal A, Pindelska E, Szeleszczuk L, Kolodziejski W. Pharmaceutical properties of two ethenzamide-gentisic acid cocrystal polymorphs: Drug release profiles, spectroscopic studies and theoretical calculations. Int J Pharm 2017; 522(1-2): 80-9.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.004 ] [PMID: 28274662]
[70]
Lin Y, Yang H, Yang C, Wang J. Preparation, characterization, and evaluation of dipfluzine-benzoic acid co-crystals with improved physicochemical properties. Pharm Res 2014; 31(3): 566-78.
[http://dx.doi.org/10.1007/s11095-013-1181-6 ] [PMID: 24065588]
[71]
Kerr HE, Softley LK, Suresh K, Hodgkinson P, Evans IR. Structure and physicochemical characterization of a naproxen-picolinamide cocrystal. Acta Crystallogr C Struct Chem 2017; 73(Pt 3): 168-75.
[http://dx.doi.org/10.1107/S2053229616011980 ] [PMID: 28257010]
[72]
Łuczyńska K, Drużbicki K, Lyczko K, Dobrowolski JC. Experimental (X-ray, (13)C CP/MAS NMR, IR, RS, INS, THz) and solid-state DFT study on (1:1) co-crystal of bromanilic acid and 2,6-dimethylpyrazine. J Phys Chem B 2015; 119(22): 6852-72.
[http://dx.doi.org/10.1021/acs.jpcb.5b03279 ] [PMID: 25961154]
[73]
Limwikrant W, Higashi K, Yamamoto K, Moribe K. Characterization of ofloxacin-oxalic acid complex by PXRD, NMR, and THz spectroscopy. Int J Pharm 2009; 382(1-2): 50-5.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.005 ] [PMID: 19666098]
[74]
Sharma P, Gangopadhyay D, Umrao S, et al. A novel Raman spectroscopic approach to identify polymorphism in leflunomide: a combined experimental and theoretical study. J Raman Spectrosc 2016; 47: 468-75.
[http://dx.doi.org/10.1002/jrs.4834]
[75]
Lee K-S, Kim K-J, Ulrich J. Formation of salicylic acid/4,4′-dipyridyl cocrystals based on the ternary phase diagram. Chem Eng Technol 2015; 38: 1073-80.
[http://dx.doi.org/10.1002/ceat.201400738]
[76]
James SL, Adams CJ, Bolm C, et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 2012; 41(1): 413-47.
[http://dx.doi.org/10.1039/C1CS15171A ] [PMID: 21892512]
[77]
Swapna B, Maddileti D, Nangia A. Cocrystals of the tuberculosis drug isoniazid: polymorphism, isostructurality, and stability. Cryst Growth Des 2014; 14: 5991-6005.
[http://dx.doi.org/10.1021/cg501182t]
[78]
Heiden S, Tröbs L, Wenzel K-J, Emmerling F. Mechanochemical synthesis and structural characterisation of a theophylline-benzoic acid cocrystal (1 : 1). CrystEngComm 2012; 14: 5128.
[http://dx.doi.org/10.1039/c2ce25236h]
[79]
Drużbicki K, Mielcarek J, Kiwilsza A, et al. Computationally assisted (solid-state density functional theory) structural (x-ray) and vibrational spectroscopy (FT-IR, FT-RS, TDs-THz) characterization of the cardiovascular drug lacidipine. Cryst Growth Des 2015; 15: 2817-30.
[http://dx.doi.org/10.1021/acs.cgd.5b00251]
[80]
Amombo Noa FM, Jacobs A. Phenylacetic acid co-crystals with acridine, caffeine, isonicotinamide and nicotinamide: Crystal structures, thermal analysis, FTIR spectroscopy and Hirshfeld surface analysis. J Mol Struct 2017; 1139: 60-6.
[http://dx.doi.org/10.1016/j.molstruc.2017.02.066]
[81]
Wang Y, Xue J, Qin J, Liu J, Du Y. Structure and spectroscopic characterization of pharmaceutical co-crystal formation between acetazolamide and 4-hydroxybenzoic acid. Spectrochim Acta A Mol Biomol Spectrosc 2019; 219: 419-26.
[http://dx.doi.org/10.1016/j.saa.2019.04.082 ] [PMID: 31063956]
[82]
Wang Q, Xue J, Wang Y, Jin S, Zhang Q, Du Y. Investigation into tautomeric polymorphism of 2-thiobarbituric acid using experimental vibrational spectroscopy combined with DFT theoretical simulation. Spectrochim Acta A Mol Biomol Spectrosc 2018; 204: 99-104.
[http://dx.doi.org/10.1016/j.saa.2018.06.034 ] [PMID: 29909217]
[83]
Du Y, Zhang H, Xue J, et al. Vibrational spectroscopic study of polymorphism and polymorphic transformation of the anti-viral drug lamivudine. Spectrochim Acta A Mol Biomol Spectrosc 2015; 137: 1158-63.
[http://dx.doi.org/10.1016/j.saa.2014.08.128 ] [PMID: 25305607]
[84]
Du Y, Zhang H, Xue J, et al. Raman and terahertz spectroscopical investigation of cocrystal formation process of piracetam and 3-hydroxybenzoic acid. Spectrochim Acta A Mol Biomol Spectrosc 2015; 139: 488-94.
[http://dx.doi.org/10.1016/j.saa.2014.11.109 ] [PMID: 25576947]
[85]
Du Y, Wang Y, Xue J, Liu J, Qin J, Hong Z. Structural insights into anhydrous and monohydrated forms of 2,4,6-trihydroxybenzoic acid based on Raman and terahertz spectroscopic characterization. Spectrochim Acta A Mol Biomol Spectrosc 2020; 224: 117436.
[http://dx.doi.org/10.1016/j.saa.2019.117436 ] [PMID: 31394390]
[86]
Du Y, Fang HX, Zhang Q, Zhang HL, Hong Z. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques. Spectrochim Acta A Mol Biomol Spectrosc 2016; 153: 580-5.
[http://dx.doi.org/10.1016/j.saa.2015.09.020 ] [PMID: 26436846]
[87]
Du Y, Cai Q, Xue J, Zhang Q, Qin D. Structural investigation of the cocrystal formed between 5-fluorocytosine and fumaric acid based on vibrational spectroscopic technique. Spectrochim Acta A Mol Biomol Spectrosc 2017; 178: 251-7.
[http://dx.doi.org/10.1016/j.saa.2017.02.004 ] [PMID: 28213313]
[88]
Cai Q, Xue J, Wang Q, Du Y. Investigation into structure and dehydration dynamic of gallic acid monohydrate: A Raman spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 2018; 201: 128-33.
[http://dx.doi.org/10.1016/j.saa.2018.05.002 ] [PMID: 29742487]
[89]
Cai Q, Xue J, Wang Q, Du Y. Structural investigation of anhydrous nitrofurantion and its monohydrate based on terahertz/Raman vibrational spectroscopy and density functional theory. J Mol Struct 2018; 1153: 170-8.
[http://dx.doi.org/10.1016/j.molstruc.2017.10.003]
[90]
Cai Q, Xue J, Wang Q, Du Y. Solid-state cocrystal formation between acyclovir and fumaric acid: Terahertz and Raman vibrational spectroscopic studies. Spectrochim Acta A Mol Biomol Spectrosc 2017; 186: 29-36.
[http://dx.doi.org/10.1016/j.saa.2017.06.011 ] [PMID: 28605686]
[91]
Esmonde-White KA, Cuellar M, Uerpmann C, Lenain B, Lewis IR. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal Bioanal Chem 2017; 409(3): 637-49.
[http://dx.doi.org/10.1007/s00216-016-9824-1 ] [PMID: 27491299]
[92]
Silva Filho SF, Pereira AC, Sarraguça JMG, et al. Synthesis of a glibenclamide cocrystal: full spectroscopic and thermal characterization. J Pharm Sci 2018; 107(6): 1597-604.
[http://dx.doi.org/10.1016/j.xphs.2018.01.029 ] [PMID: 29432762]
[93]
McGoverin CM, Rades T, Gordon KC. Recent pharmaceutical applications of Raman and terahertz spectroscopies. J Pharm Sci 2008; 97(11): 4598-621.
[http://dx.doi.org/10.1002/jps.21340 ] [PMID: 18306273]
[94]
Aaltonen J, Gordon KC, Strachan CJ, Rades T. Perspectives in the use of spectroscopy to characterise pharmaceutical solids. Int J Pharm 2008; 364(2): 159-69.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.043 ] [PMID: 18555625]
[95]
Du Y, Xue J. Investigation of polymorphism and cocrystallization of active pharmaceutical ingredients using vibrational spectroscopic techniques. Curr Pharm Des 2016; 22(32): 4917-28.
[http://dx.doi.org/10.2174/1381612822666160726104604 ] [PMID: 27464725]
[96]
Parrott EP, Zeitler JA. Terahertz time-domain and low-frequency Raman spectroscopy of organic materials. Appl Spectrosc 2015; 69(1): 1-25.
[http://dx.doi.org/10.1366/14-07707 ] [PMID: 25506684]
[97]
Schrader Bernhard. Infrared and Raman spectroscopy: methods and applications. VCH Verlagsgescllschaft mbH 1995.
[98]
Pickwell E, Wallace VP. Biomedical applications of terahertz technology. J Phys D Appl Phys 2006; 39: R301-10.
[http://dx.doi.org/10.1088/0022-3727/39/17/R01]
[99]
Mantsch HH, Naumann D. Terahertz spectroscopy: The renaissance of far infrared spectroscopy. J Mol Struct 2010; 964: 1-4.
[http://dx.doi.org/10.1016/j.molstruc.2009.12.022]
[100]
El Haddad J, Bousquet B, Canioni L, Mounaix P. Review in terahertz spectral analysis. Trends Analyt Chem 2013; 44: 98-105.
[http://dx.doi.org/10.1016/j.trac.2012.11.009]
[101]
McIntosh AI, Yang B, Goldup SM, Watkinson M, Donnan RS. Terahertz spectroscopy: a powerful new tool for the chemical sciences? Chem Soc Rev 2012; 41(6): 2072-82.
[http://dx.doi.org/10.1039/C1CS15277G ] [PMID: 22143259]
[102]
Smith RM, Arnold MA. Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges. Appl Spectrosc Rev 2011; 46: 636-79.
[http://dx.doi.org/10.1080/05704928.2011.614305]
[103]
Baxter JB, Guglietta GW. Terahertz spectroscopy. Anal Chem 2011; 83(12): 4342-68.
[http://dx.doi.org/10.1021/ac200907z ] [PMID: 21534575]
[104]
Theuer M, Harsha SS, Molter D, Torosyan G, Beigang R. Terahertz time-domain spectroscopy of gases, liquids, and solids. ChemPhysChem 2011; 12(15): 2695-705.
[http://dx.doi.org/10.1002/cphc.201100158 ] [PMID: 21735510]
[105]
Tong Y, Zhang P, Dang L, Wei H. Monitoring of cocrystallization of ethenzamide-saccharin: Insight into kinetic process by in situ Raman spectroscopy. Chem Eng Res Des 2016; 109: 249-57.
[http://dx.doi.org/10.1016/j.cherd.2016.01.032]
[106]
Otaki T, Tanabe Y, Kojima T, et al. In situ monitoring of cocrystals in formulation development using low-frequency Raman spectroscopy. Int J Pharm 2018; 542(1-2): 56-65.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.008 ] [PMID: 29524619]
[107]
Lee K-S, Kim K-J, Ulrich J. In Situ Monitoring of cocrystallization of salicylic acid-4,4′-dipyridyl in solution using raman spectroscopy. Cryst Growth Des 2014; 14: 2893-9.
[http://dx.doi.org/10.1021/cg5001864]
[108]
Wu X, Wang Y, Xue J, et al. Solid phase drug-drug pharmaceutical co-crystal formed between pyrazinamide and diflunisal: Structural characterization based on terahertz/Raman spectroscopy combining with DFT calculation. Spectrochim Acta A Mol Biomol Spectrosc 2020; 234: 118265.
[http://dx.doi.org/10.1016/j.saa.2020.118265 ] [PMID: 32203686]
[109]
Srivastava K, Tandon P, Sinha K, Srivastava A, Wang J. Study of molecular structure and hydrogen bond interactions in dipfluzine-benzoic acid (DIP-BEN) cocrystal using spectroscopic and quantum chemical method. Spectrochim Acta A Mol Biomol Spectrosc 2019; 216: 7-14.
[http://dx.doi.org/10.1016/j.saa.2019.01.092 ] [PMID: 30865873]
[110]
Ma X, Yuan W, Bell SE, James SL. Better understanding of mechanochemical reactions: Raman monitoring reveals surprisingly simple ‘pseudo-fluid’ model for a ball milling reaction. Chem Commun (Camb) 2014; 50(13): 1585-7.
[http://dx.doi.org/10.1039/c3cc47898j ] [PMID: 24382417]
[111]
Fischer F, Wenzel KJ, Rademann K, Emmerling F. Quantitative determination of activation energies in mechanochemical reactions. Phys Chem Chem Phys 2016; 18(33): 23320-5.
[http://dx.doi.org/10.1039/C6CP04280E ] [PMID: 27498986]
[112]
Du Y, Cai Q, Xue J, Zhang Q. Raman and terahertz spectroscopic investigation of cocrystal formation involving antibiotic nitrofurantoin drug and coformer 4-aminobenzoic acid. Crystals (Basel) 2016; 6: 164.
[http://dx.doi.org/10.3390/cryst6120164]
[113]
Zhang Z, Cai Q, Xue J, Qin J, Liu J, Du Y. Co-crystal formation of antibiotic nitrofurantoin drug and melamine co-former based on a vibrational spectroscopic study. Pharmaceutics 2019; 11(2): 11.
[http://dx.doi.org/10.3390/pharmaceutics11020056 ] [PMID: 30704026]
[114]
Wang Q, Xue J, Hong Z, Du Y. Pharmaceutical cocrystal formation of pyrazinamide with 3-hydroxybenzoic acid: a terahertz and raman vibrational spectroscopies study. Molecules 2019; 24(3): 24.
[http://dx.doi.org/10.3390/molecules24030488 ] [PMID: 30704029]
[115]
Delaney SP, Korter TM. Terahertz spectroscopy and computational investigation of the flufenamic acid/nicotinamide cocrystal. J Phys Chem A 2015; 119(13): 3269-76.
[http://dx.doi.org/10.1021/jp5125519 ] [PMID: 25787318]
[116]
Yang J, Li S, Zhao H, et al. Molecular recognition and interaction between uracil and urea in solid-state studied by terahertz time domain spectroscopy. J Phys Chem A 2014; 118(46): 10927-33.
[http://dx.doi.org/10.1021/jp506045q ] [PMID: 25386785 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy