Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Immunosuppression in Kidney Transplantation: State of the Art and Current Protocols

Author(s): Andrea C. Bauer*, Rodrigo F. Franco and Roberto C. Manfro

Volume 26, Issue 28, 2020

Page: [3440 - 3450] Pages: 11

DOI: 10.2174/1381612826666200521142448

Price: $65

Abstract

Currently, kidney transplantation is the best treatment option for kidney failure for a majority of eligible patients. It is associated with a better quality of life and reduced mortality as compared to staying on dialysis. Many of the improvements in kidney transplant outcomes, observed in recent decades, are due to more efficient immunosuppression strategies. Therefore, developing expertise in the management of immunosuppressive drugs is key to the success of kidney transplantation. In this review, the historical aspects of organ transplant immunosuppression are briefly addressed and the basis of the allograft immune response to contextualize the main topic is provided, which is a deeper view of the immunosuppressive agents, including their known mechanisms of action, pharmacokinetics, interactions, toxicities, and clinical use. The most commonly used immunosuppressive protocols employed based on patients' and donors' characteristics are also presented here.

Keywords: Immunosuppressive therapy, kidney transplantation, immunosuppressive protocols, calcineurin inhibitors, anti-proliferative agents, mammalian target of rapamycin inhibitors, corticosteroids, induction therapy.

[1]
Tilney NL. Transplant from myth to reality. Yale University Press 2003.
[2]
Kidney Transplantation DH. A History. Kidney transplantation principles and practice In: 2014.
[3]
Nankivell BJ, Alexander SI. Rejection of the kidney allograft. N Engl J Med 2010; 363(15): 1451-62.
[http://dx.doi.org/10.1056/NEJMra0902927] [PMID: 20925547]
[4]
Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med 2004; 351(26): 2715-29.
[http://dx.doi.org/10.1056/NEJMra033540] [PMID: 15616206]
[5]
Traeger J, Perrin J, Fries D, et al. [Use in man of an anti lymphocyte globulin: clincial results in renal transplantation] Lyon Med 1968; 219(5): 307-69.
[PMID: 4874704]
[6]
Hart A, Smith JM, Skeans MA, et al. OPTN/SRTR 2016 annual data report: kidney. Am J Transplant 2018; 18(Suppl. 1): 18-113.
[http://dx.doi.org/10.1111/ajt.14557] [PMID: 29292608]
[7]
Thiyagarajan UM, Ponnuswamy A, Bagul A. Thymoglobulin and its use in renal transplantation: a review. Am J Nephrol 2013; 37(6): 586-601.
[http://dx.doi.org/10.1159/000351643] [PMID: 23774740]
[8]
Sampaio MS, Chopra B, Sureshkumar KK. Depleting antibody induction and kidney transplant outcomes: a paired kidney analysis. Transplantation 2017; 101(10): 2527-35.
[http://dx.doi.org/10.1097/TP.0000000000001530] [PMID: 28475563]
[9]
Nashan B, Moore R, Amlot P, Schmidt AG, Abeywickrama K, Soulillou JP. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet 1997; 350(9086): 1193-8.
[http://dx.doi.org/10.1016/S0140-6736(97)09278-7] [PMID: 9652559]
[10]
Vincenti F, Rostaing L, Grinyo J, et al. Belatacept and long-term outcomes in kidney transplantation. N Engl J Med 2016; 374(4): 333-43.
[http://dx.doi.org/10.1056/NEJMoa1506027] [PMID: 26816011]
[11]
Lefaucheur C, Nochy D, Andrade J, et al. Comparison of combination Plasmapheresis/IVIg/anti-CD20 versus high-dose IVIg in the treatment of antibody-mediated rejection. Am J Transplant 2009; 9(5): 1099-107.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02591.x] [PMID: 19422335]
[12]
Cornell LD, Schinstock CA, Gandhi MJ, Kremers WK, Stegall MD. Positive crossmatch kidney transplant recipients treated with eculizumab: outcomes beyond 1 year. Am J Transplant 2015; 15(5): 1293-302.
[http://dx.doi.org/10.1111/ajt.13168] [PMID: 25731800]
[13]
Jordan SC, Lorant T, Choi J. IgG endopeptidase in highly sensitized patients undergoing transplantation. N Engl J Med 2017; 377(17): 1693-4.
[http://dx.doi.org/10.1056/NEJMoa1612567] [PMID: 29083132]
[14]
Hill P, Cross NB, Barnett AN, Palmer SC, Webster AC. Polyclonal and monoclonal antibodies for induction therapy in kidney transplant recipients. Cochrane Database Syst Rev 2017; 2017(7) CD004759
[http://dx.doi.org/10.1002/14651858.CD004759.pub2] [PMID: 28073178]
[15]
Peddi VR, Bryant M, Roy-Chaudhury P, Woodle ES, First MR. Safety, efficacy, and cost analysis of thymoglobulin induction therapy with intermittent dosing based on CD3+ lymphocyte counts in kidney and kidney-pancreas transplant recipients. Transplantation 2002; 73(9): 1514-8.
[http://dx.doi.org/10.1097/00007890-200205150-00025] [PMID: 12023634]
[16]
Hertig A, Zuckermann A. Rabbit antithymocyte globulin induction and risk of post-transplant lymphoproliferative disease in adult and pediatric solid organ transplantation: An update. Transpl Immunol 2015; 32(3): 179-87.
[http://dx.doi.org/10.1016/j.trim.2015.04.003] [PMID: 25936966]
[17]
Kasiske BL, Kukla A, Thomas D, et al. Lymphoproliferative disorders after adult kidney transplant: epidemiology and comparison of registry report with claims-based diagnoses. Am J Kidney Dis 2011; 58(6): 971-80.
[http://dx.doi.org/10.1053/j.ajkd.2011.07.015] [PMID: 21930332]
[18]
Calne R, Friend P, Moffatt S, et al. Prope tolerance, perioperative campath 1H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet 1998; 351(9117): 1701-2.
[http://dx.doi.org/10.1016/S0140-6736(05)77739-4] [PMID: 9734890]
[19]
Morgan RD, O’Callaghan JM, Knight SR, Morris PJ. Alemtuzumab induction therapy in kidney transplantation: a systematic review and meta-analysis. Transplantation 2012; 93(12): 1179-88.
[http://dx.doi.org/10.1097/TP.0b013e318257ad41] [PMID: 22660659]
[20]
van den Hoogen MW, Hesselink DA, van Son WJ, Weimar W, Hilbrands LB. Treatment of steroid-resistant acute renal allograft rejection with alemtuzumab. Am J Transplant 2013; 13(1): 192-6.
[http://dx.doi.org/10.1111/j.1600-6143.2012.04328.x] [PMID: 23167538]
[21]
Bouvy AP, Klepper M, Betjes MG, Weimar W, Hesselink DA, Baan CC. Alemtuzumab as antirejection therapy: t cell repopulation and cytokine responsiveness. Transplant Direct 2016; 2(6) e83
[http://dx.doi.org/10.1097/TXD.0000000000000595] [PMID: 27500273]
[22]
Kirk AD, Mannon RB, Kleiner DE, et al. Results from a human renal allograft tolerance trial evaluating T-cell depletion with alemtuzumab combined with deoxyspergualin. Transplantation 2005; 80(8): 1051-9.
[http://dx.doi.org/10.1097/01.tp.0000174341.49741.8f] [PMID: 16278585]
[23]
Kahan BD, Rajagopalan PR, Hall M. United States Simulect Renal Study Group. Reduction of the occurrence of acute cellular rejection among renal allograft recipients treated with basiliximab, a chimeric anti-interleukin-2-receptor monoclonal antibody. Transplantation 1999; 67(2): 276-84.
[http://dx.doi.org/10.1097/00007890-199901270-00016] [PMID: 10075594]
[24]
Hellemans R, Bosmans JL, Abramowicz D. Induction therapy for kidney transplant recipients: do we still need anti-IL2 receptor monoclonal antibodies? Am J Transplant 2017; 17(1): 22-7.
[http://dx.doi.org/10.1111/ajt.13884] [PMID: 27223882]
[25]
Ciancio G, Gaynor JJ, Guerra G, et al. Randomized trial of rATg/Daclizumab vs. rATg/Alemtuzumab as dual induction therapy in renal transplantation: Results at 8years of follow-up. Transpl Immunol 2017; 40: 42-50.
[http://dx.doi.org/10.1016/j.trim.2016.11.004] [PMID: 27888093]
[26]
Spagnoletti G, Salerno MP, Calia R, Romagnoli J, Citterio F. Thymoglobuline plus basiliximab a mixed cocktail to start? Transpl Immunol 2017; 43-44: 1-2.
[http://dx.doi.org/10.1016/j.trim.2017.06.005] [PMID: 28676335]
[27]
Vincenti F, Larsen C, Durrbach A, et al. Belatacept Study Group. Costimulation blockade with belatacept in renal transplantation. N Engl J Med 2005; 353(8): 770-81.
[http://dx.doi.org/10.1056/NEJMoa050085] [PMID: 16120857]
[28]
Grinyó JM, Del Carmen Rial M, Alberu J, et al. Safety and efficacy outcomes 3 years after switching to belatacept from a calcineurin inhibitor in kidney transplant recipients: results from a phase 2 randomized trial. Am J Kidney Dis 2017; 69(5): 587-94.
[http://dx.doi.org/10.1053/j.ajkd.2016.09.021] [PMID: 27889299]
[29]
Durrbach A, Pestana JM, Florman S, et al. Long-term outcomes in belatacept- versus cyclosporine-treated recipients of extended criteria donor kidneys: Final results from BENEFIT-EXT, a phase III randomized study. Am J Transplant 2016; 16(11): 3192-201.
[http://dx.doi.org/10.1111/ajt.13830] [PMID: 27130868]
[30]
Martin ST, Powell JT, Patel M, Tsapepas D. Risk of posttransplant lymphoproliferative disorder associated with use of belatacept. Am J Health Syst Pharm 2013; 70(22): 1977-83.
[http://dx.doi.org/10.2146/ajhp120770] [PMID: 24173007]
[31]
Pestana JO, Grinyo JM, Vanrenterghem Y, et al. Three-year outcomes from BENEFIT-EXT: a phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am J Transplant 2012; 12(3): 630-9.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03914.x] [PMID: 22300431]
[32]
Masson P, Henderson L, Chapman JR, Craig JC, Webster AC. Belatacept for kidney transplant recipients. Cochrane Database Syst Rev 2014; (11): CD010699
[PMID: 25416857]
[33]
Weiner GJ. Rituximab: mechanism of action. Semin Hematol 2010; 47(2): 115-23.
[http://dx.doi.org/10.1053/j.seminhematol.2010.01.011] [PMID: 20350658]
[34]
Vo AA, Petrozzino J, Yeung K, et al. Efficacy, outcomes, and cost-effectiveness of desensitization using IVIG and rituximab. Transplantation 2013; 95(6): 852-8.
[http://dx.doi.org/10.1097/TP.0b013e3182802f88] [PMID: 23511212]
[35]
Sautenet B, Blancho G, Büchler M, et al. One-year results of the effects of rituximab on acute antibody-mediated rejection in renal transplantation: RITUX ERAH, a multicenter double-blind randomized placebo-controlled trial. Transplantation 2016; 100(2): 391-9.
[http://dx.doi.org/10.1097/TP.0000000000000958] [PMID: 26555944]
[36]
Parajuli S, Mandelbrot DA, Muth B, et al. Rituximab and monitoring strategies for late antibody-mediated rejection after kidney transplantation. Transplant Direct 2017; 3(12) e227
[http://dx.doi.org/10.1097/TXD.0000000000000746] [PMID: 29536028]
[37]
Legendre CM, Licht C, Muus P, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 2013; 368(23): 2169-81.
[http://dx.doi.org/10.1056/NEJMoa1208981] [PMID: 23738544]
[38]
Stegall MD, Diwan T, Raghavaiah S, et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am J Transplant 2011; 11(11): 2405-13.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03757.x] [PMID: 21942930]
[39]
Jordan SC, Vo A, Bunnapradist S, et al. Intravenous immune globulin treatment inhibits crossmatch positivity and allows for successful transplantation of incompatible organs in living-donor and cadaver recipients. Transplantation 2003; 76(4): 631-6.
[http://dx.doi.org/10.1097/01.TP.0000080685.31697.FC] [PMID: 12973100]
[40]
Pi T, Ed TES. My thirty-five year view of organ transplantation.In: History of clinical transplantation.History of clinical transplantationUCLA Tissue Typing laboratory. 1990; pp. 145-72.
[41]
Wiseman AC. Immunosuppressive medications. Clin J Am Soc Nephrol 2016; 11(2): 332-43.
[http://dx.doi.org/10.2215/CJN.08570814] [PMID: 26170177]
[42]
Steiner RW, Awdishu L. Steroids in kidney transplant patients. Semin Immunopathol 2011; 33(2): 157-67.
[http://dx.doi.org/10.1007/s00281-011-0259-7] [PMID: 21331501]
[43]
Prednisone. National Center for Biotechnology Information Pub- Chem Compound Database. Pubchem 2018.
[44]
Morelon E, Kreis H. New immunosuppressive agents: a way to get rid of corticosteroids? Transplantation 2000; 70(9): 1271-2.
[http://dx.doi.org/10.1097/00007890-200011150-00001] [PMID: 11087138]
[45]
Augustine JJ, Hricik DE. Steroid sparing in kidney transplantation: changing paradigms, improving outcomes, and remaining questions. Clin J Am Soc Nephrol 2006; 1(5): 1080-9.
[http://dx.doi.org/10.2215/CJN.01800506] [PMID: 17699329]
[46]
Weisinger JR, Carlini RG, Rojas E, Bellorin-Font E. Bone disease after renal transplantation. Clin J Am Soc Nephrol 2006; 1(6): 1300-13.
[http://dx.doi.org/10.2215/CJN.01510506] [PMID: 17699362]
[47]
Haller MC, Royuela A, Nagler EV, Pascual J, Webster AC. Steroid avoidance or withdrawal for kidney transplant recipients. Cochrane Database Syst Rev 2016; (8): CD005632
[http://dx.doi.org/10.1002/14651858.CD005632.pub3] [PMID: 27546100]
[48]
Hardinger KL, Brennan DC. Novel immunosuppressive agents in kidney transplantation. World J Transplant 2013; 3(4): 68-77.
[http://dx.doi.org/10.5500/wjt.v3.i4.68] [PMID: 24392311]
[49]
Borel JF, Feurer C, Magnée C, Stähelin H. Effects of the new anti lymphocytic peptide cyclosporin A in animals. Immunology 1977; 32(6): 1017-25.
[PMID: 328380]
[50]
Calne RY, White DJ, Thiru S, et al. Cyclosporin A in patients receiving renal allografts from cadaver donors Lancet 1978; 2(8104-5): 1323-27.
[http://dx.doi.org/10.1016/S0140-6736(78)91970-0]
[51]
Calne RY. Pharmacological immunosuppression in clinical organ grafting. Observations on four agents: cyclosporin A, Asta 5122 (cytimun), lambda carrageenan and promethazine hydrochloride. Clin Exp Immunol 1979; 35(1): 1-9.
[PMID: 371877]
[52]
Calne RY, Rolles K, White DJ, et al. Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet 1979; 2(8151): 1033-6.
[http://dx.doi.org/10.1016/S0140-6736(79)92440-1] [PMID: 91781]
[53]
Dunn CJ, Wagstaff AJ, Perry CM, Plosker GL, Goa KL. Cyclosporin: an updated review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (neoral)1 in organ transplantation. Drugs 2001; 61(13): 1957-2016.
[http://dx.doi.org/10.2165/00003495-200161130-00006] [PMID: 11708766]
[54]
Diehl R, Ferrara F, Müller C, et al. Immunosuppression for in vivo research: state-of-the-art protocols and experimental approaches. Cell Mol Immunol 2017; 14(2): 146-79.
[http://dx.doi.org/10.1038/cmi.2016.39] [PMID: 27721455]
[55]
Winkler M. Cyclosporin as baseline immunosuppression in solid organ transplantation. BioDrugs 2000; 14(3): 185-93.
[http://dx.doi.org/10.2165/00063030-200014030-00004] [PMID: 18034569]
[56]
Kalluri HV, Hardinger KL. Current state of renal transplant immunosuppression: Present and future. World J Transplant 2012; 2(4): 51-68.
[http://dx.doi.org/10.5500/wjt.v2.i4.51] [PMID: 24175197]
[57]
Karpe KM, Talaulikar GS, Walters GD. Calcineurin inhibitor withdrawal or tapering for kidney transplant recipients. Cochrane Database Syst Rev 2017; 7, CD006750
[http://dx.doi.org/10.1002/14651858.CD006750.pub2] [PMID: 28730648]
[58]
Webster AC, Woodroffe RC, Taylor RS, Chapman JR, Craig JC. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. BMJ 2005; 331(7520): 810.
[http://dx.doi.org/10.1136/bmj.38569.471007.AE] [PMID: 16157605]
[59]
Krenzien F, ElKhal A, Quante M, et al. A rationale for age-adapted immunosuppression in organ transplantation. Transplantation 2015; 99(11): 2258-68.
[http://dx.doi.org/10.1097/TP.0000000000000842] [PMID: 26244716]
[60]
Scott LJ, McKeage K, Keam SJ, Plosker GL. Tacrolimus: a further update of its use in the management of organ transplantation. Drugs 2003; 63(12): 1247-97.
[http://dx.doi.org/10.2165/00003495-200363120-00006] [PMID: 12790696]
[61]
Albano L, Banas B, Klempnauer JL, Glyda M, Viklicky O, Kamar N. Optimising immunoSuppression After Kidney transplantation with ADVAGRAF Study Group. OSAKA trial: a randomized, controlled trial comparing tacrolimus QD and BD in kidney transplantation. Transplantation 2013; 96(10): 897-903.
[http://dx.doi.org/10.1097/TP.0b013e3182a203bd] [PMID: 23982340]
[62]
Garnock-Jones KP. Tacrolimus prolonged release (Envarsus®): a review of its use in kidney and liver transplant recipients. Drugs 2015; 75(3): 309-20.
[http://dx.doi.org/10.1007/s40265-015-0349-2] [PMID: 25613762]
[63]
Ericson JE, Zimmerman KO, Gonzalez D, et al. A systematic literature review approach to estimate the therapeutic index of selected immunosuppressant drugs after renal transplantation. Ther Drug Monit 2017; 39(1): 13-20.
[http://dx.doi.org/10.1097/FTD.0000000000000364] [PMID: 28081041]
[64]
Krämer BK, Montagnino G, Krüger B, et al. European Tacrolimus versus Ciclosporin Microemulsion Renal Transplantation Study Group. Efficacy and safety of tacrolimus compared with ciclosporin-A in renal transplantation: 7-year observational results. Transpl Int 2016; 29(3): 307-14.
[http://dx.doi.org/10.1111/tri.12716] [PMID: 26565071]
[65]
Shrestha BM. Two decades of tacrolimus in renal transplant: basic science and clinical evidences. Exp Clin Transplant 2017; 15(1): 1-9.
[PMID: 27938316]
[66]
Elion GB. The purine path to chemotherapy. Science 1989; 244(4900): 41-7.
[http://dx.doi.org/10.1126/science.2649979] [PMID: 2649979]
[67]
Van Os EC, Zins BJ, Sandborn WJ, et al. Azathioprine pharmacokinetics after intravenous, oral, delayed release oral and rectal foam administration. Gut 1996; 39(1): 63-8.
[http://dx.doi.org/10.1136/gut.39.1.63] [PMID: 8881811]
[68]
Sollinger HW, Deierhoi MH, Belzer FO, Diethelm AG, Kauffman RS. RS-61443--a phase I clinical trial and pilot rescue study. Transplantation 1992; 53(2): 428-32.
[http://dx.doi.org/10.1097/00007890-199202010-00031] [PMID: 1346731]
[69]
Sollinger HW. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995; 60(3): 225-32.
[http://dx.doi.org/10.1097/00007890-199508000-00003] [PMID: 7645033]
[70]
Allison AC, Eugui EM. Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation 2005; 80(2)(Suppl.): S181-90.
[http://dx.doi.org/10.1097/01.tp.0000186390.10150.66] [PMID: 16251851]
[71]
Maripuri S, Kasiske BL. The role of mycophenolate mofetil in kidney transplantation revisited. Transplant Rev (Orlando) 2014; 28(1): 26-31.
[http://dx.doi.org/10.1016/j.trre.2013.10.005] [PMID: 24321304]
[72]
Ransom JT. Mechanism of action of mycophenolate mofetil. Ther Drug Monit 1995; 17(6): 681-4.
[http://dx.doi.org/10.1097/00007691-199512000-00023] [PMID: 8588241]
[73]
Salvadori M, Holzer H, de Mattos A, et al. ERL B301 Study Groups. Enteric-coated mycophenolate sodium is therapeutically equivalent to mycophenolate mofetil in de novo renal transplant patients. Am J Transplant 2004; 4(2): 231-6.
[http://dx.doi.org/10.1046/j.1600-6143.2003.00337.x] [PMID: 14974944]
[74]
Budde K, Bauer S, Hambach P, et al. Pharmacokinetic and pharmacodynamic comparison of enteric-coated mycophenolate sodium and mycophenolate mofetil in maintenance renal transplant patients. Am J Transplant 2007; 7(4): 888-98.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01693.x] [PMID: 17391132]
[75]
CellCept. mycophenolate mofetil. . Product Monograph - Roche 2017.
[76]
Kajiwara M, Masuda S. Role of mTOR inhibitors in kidney disease. Int J Mol Sci 2016; 17(6) E975
[http://dx.doi.org/10.3390/ijms17060975] [PMID: 27338360]
[77]
Flechner SM. mTOR inhibition and clinical transplantation: Kidney. Transplantation 2018; 102(2S Suppl 1): S17-8.
[78]
Russ GR. Optimising the use of mTOR inhibitors in renal transplantation. Transplant Res 2013; 2(Suppl. 1): S4.
[http://dx.doi.org/10.1186/2047-1440-2-S1-S4] [PMID: 24565283]
[79]
Moes DJ, Guchelaar HJ, de Fijter JW. Sirolimus and everolimus in kidney transplantation. Drug Discov Today 2015; 20(10): 1243-9.
[http://dx.doi.org/10.1016/j.drudis.2015.05.006] [PMID: 26050578]
[80]
Kacar S, Gurkan A, Karaca C, Varılsuha C, Tilif S. Low-dose calcineurin inhibitor regimen combined with mammalian target of rapamycin inhibitors preserves kidney functions in renal transplant recipients without allograft nephropathy. Transplant Proc 2010; 42(9): 3513-6.
[http://dx.doi.org/10.1016/j.transproceed.2010.08.043] [PMID: 21094806]
[81]
Kahan BD, Podbielski J, Napoli KL, Katz SM, Meier-Kriesche HU, Van Buren CT. Immunosuppressive effects and safety of a sirolimus/cyclosporine combination regimen for renal transplantation. Transplantation 1998; 66(8): 1040-6.
[http://dx.doi.org/10.1097/00007890-199810270-00013] [PMID: 9808489]
[82]
Gascó B, Revuelta I, Sánchez-Escuredo A, et al. Long-term mycophenolate monotherapy in human leukocyte antigen (HLA)-identical living-donor kidney transplantation. Transplant Res 2014; 3(1): 4.
[http://dx.doi.org/10.1186/2047-1440-3-4] [PMID: 24491040]
[83]
Verghese PS, Dunn TB, Chinnakotla S, Gillingham KJ, Matas AJ, Mauer MS. Calcineurin inhibitors in HLA-identical living related donor kidney transplantation. Nephrol Dial Transplant 2014; 29(1): 209-18.
[http://dx.doi.org/10.1093/ndt/gft447] [PMID: 24414376]
[84]
Peeters LEJ, Andrews LM, Hesselink DA, de Winter BCM, van Gelder T. Personalized immunosuppression in elderly renal transplant recipients. Pharmacol Res 2018; 130: 303-7.
[http://dx.doi.org/10.1016/j.phrs.2018.02.031] [PMID: 29501679]
[85]
Knoll GA. Kidney transplantation in the older adult. Am J Kidney Dis 2013; 61(5): 790-7.
[http://dx.doi.org/10.1053/j.ajkd.2012.08.049] [PMID: 23261121]
[86]
Danovitch GM, Gill J, Bunnapradist S. Immunosuppression of the elderly kidney transplant recipient. Transplantation 2007; 84(3): 285-91.
[http://dx.doi.org/10.1097/01.tp.0000275423.69689.dc] [PMID: 17700150]
[87]
Danovitch GM. Immunosuppressive medications for renal transplantation: a multiple choice question. Kidney Int 2001; 59(1): 388-402.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00501.x] [PMID: 11135104]
[88]
First MR. Strategies to minimize immunological and nonimmunological risk factors in the renal transplant population. Transplantation 2001; 72(6)(Suppl.): S20-4.
[http://dx.doi.org/10.1097/00007890-200109271-00007] [PMID: 11585240]
[89]
Ekberg H, Tedesco-Silva H, Demirbas A, et al. ELITE-Symphony Study. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 2007; 357(25): 2562-75.
[http://dx.doi.org/10.1056/NEJMoa067411] [PMID: 18094377]
[90]
Keith D, Patrie JT. Short-term kidney transplant outcomes among African American recipients do not predict long-term outcomes: donor pair analysis. Clin Transplant 2011; 25(1): 69-76.
[http://dx.doi.org/10.1111/j.1399-0012.2010.01223.x] [PMID: 20201952]
[91]
Taber DJ, Su Z, Fleming JN, et al. Tacrolimus trough concentration variability and disparities in African American kidney transplantation. Transplantation 2017; 101(12): 2931-8.
[http://dx.doi.org/10.1097/TP.0000000000001840] [PMID: 28658199]
[92]
Grgic I, Chandraker A. Significance of biologics in renal transplantation: past, present, and future. Curr Opin Organ Transplant 2018; 23(1): 51-62.
[http://dx.doi.org/10.1097/MOT.0000000000000496] [PMID: 29176362]
[93]
Caillard S, Dharnidharka V, Agodoa L, Bohen E, Abbott K. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation 2005; 80(9): 1233-43.
[http://dx.doi.org/10.1097/01.tp.0000179639.98338.39] [PMID: 16314791]
[94]
Fernberg P, Edgren G, Adami J, et al. Time trends in risk and risk determinants of non-Hodgkin lymphoma in solid organ transplant recipients. Am J Transplant 2011; 11(11): 2472-82.
[http://dx.doi.org/10.1111/j.1600-6143.2011.03704.x] [PMID: 21883909]
[95]
Gharibi Z, Ayvaci MUS, Hahsler M, Giacoma T, Gaston RS, Tanriover B. Cost-effectiveness of antibody-based induction therapy in deceased donor kidney transplantation in the United States. Transplantation 2017; 101(6): 1234-41.
[http://dx.doi.org/10.1097/TP.0000000000001310] [PMID: 27379555]
[96]
Wongsaroj P, Kahwaji J, Vo A, Jordan SC. Modern approaches to incompatible kidney transplantation. World J Nephrol 2015; 4(3): 354-62.
[http://dx.doi.org/10.5527/wjn.v4.i3.354] [PMID: 26167458]
[97]
Sethi S, Choi J, Toyoda M, Vo A, Peng A, Jordan SC. Desensitization: Overcoming the immunologic barriers to transplantation. J Immunol Res 2017; 2017, 6804678
[http://dx.doi.org/10.1155/2017/6804678] [PMID: 28127571]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy