Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Study of Plasmid-Mediated Quinolone Resistance in Escherichia coli from Nosocomial Urinary Tract Infections

Author(s): Maysaa El Sayed Zaki*, Mostafa Abd El Salam and Osama Ahmed Faried

Volume 21, Issue 2, 2021

Published on: 20 May, 2020

Page: [243 - 247] Pages: 5

DOI: 10.2174/1871526520666200520112319

Price: $65

conference banner
Abstract

Objective: The aim of the present study was to study the prevalence of plasmid-mediated quinolone resistance (PMQR) genes (qnrA, qnrB, qnrC, qnrD, qnrS, qepA, oqxA, oqxB and aac) in Escherichia coli (E. coli) isolated from patients with nosocomial urinary tract infections (UTIs) and its relation to the extended-spectrum β-lactamase (ESBL) production.

Methods: A cross-sectional study was carried out on 200 non-duplicated isolates of E. coli isolated from patients with nosocomial UTIs. E.coli isolates were subjected to antibiotic susceptibility testing by disc diffusion method, determination of minimum inhibitory concentrations (MICs) of ciprofloxacin by Epsillometer (E) test strips, detection of ESBL production by double disc synergy method and detection of qnrA, qnrB, qnrC, qnrD, qnrS, qepA, oqxA, oqxB and aac genes by polymerase chain reaction (PCR).

Results: The antimicrobial susceptibility testing of the isolated E. coli revealed a high frequency of resistance to ampicillin (73.5%), ceftazidime (72%) and imipenem (71.5%). The less frequent resistance was for aztreonam (21.5%), amikacin (36.5%) and gentamicin (38.5%). ESBL production was found in 131 isolates (65.5%) and phenotypic quinolone resistance was detected by MIC in 65 isolates (32.5%), with 52.3% of them showed high resistance to ciprofloxacin with an MIC more than 32 μg/ml. PMQR genes were found in 40 isolates. The frequency of the detected genes was 40%, 37.5%, 35%, 20% and 5% for qnrA, qnrS, qepA, qnrB and oqxA, respectively. Significant association was found between the presence of PMQR genes and ESBL production (P=0.0001).

Conclusion: The study highlights the prevalence of PMQR genes in E. coli with high association with the ESBL phenotype. This finding is a sign of limited therapeutic options for E. coli.

Keywords: E. coli, quinolone resistance, ESBL, plasmid-mediated, nosocomial, urinary tract infections.

[1]
Dwyer, L.L.; Harris-Kojetin, L.D.; Valverde, R.H.; Frazier, J.M.; Simon, A.E.; Stone, N.D.; Thompson, N.D. Infections in long-term care populations in the United States. J. Am. Geriatr. Soc., 2013, 61(3), 342-349.
[http://dx.doi.org/10.1111/jgs.12153] [PMID: 23496650]
[2]
Kucheria, R.; Dasgupta, P.; Sacks, S.H.; Khan, M.S.; Sheerin, N.S. Urinary tract infections: new insights into a common problem. Postgrad. Med. J., 2005, 81(952), 83-86.
[http://dx.doi.org/10.1136/pgmj.2004.023036] [PMID: 15701738]
[3]
King, D.E.; Malone, R.; Lilley, S.H. New classification and update on the quinolone antibiotics. Am. Fam. Physician, 2000, 61(9), 2741-2748.
[PMID: 10821154]
[4]
Ruiz, J. Transferable Mechanisms of Quinolone Resistance from 1998 Onward. Clin Microbiol Rev, 2019, 32(4), e00007-19.
[5]
Jacoby, G.A. Mechanisms of resistance to quinolones. Clin. Infect. Dis., 2005, 41(Suppl. 2), S120-S126.
[http://dx.doi.org/10.1086/428052] [PMID: 15942878]
[6]
Rodríguez-Martínez, J.M.; Cano, M.E.; Velasco, C.; Martínez-Martínez, L.; Pascual, A. Plasmid-mediated quinolone resistance: an update. J. Infect. Chemother., 2011, 17(2), 149-182.
[http://dx.doi.org/10.1007/s10156-010-0120-2] [PMID: 20886256]
[7]
Strahilevitz, J.; Jacoby, G.A.; Hooper, D.C.; Robicsek, A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev., 2009, 22(4), 664-689.
[http://dx.doi.org/10.1128/CMR.00016-09] [PMID: 19822894]
[8]
Robicsek, A.; Strahilevitz, J.; Jacoby, G.A.; Macielag, M.; Abbanat, D.; Park, C.H.; Bush, K.; Hooper, D.C. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat. Med., 2006, 12(1), 83-88.
[http://dx.doi.org/10.1038/nm1347] [PMID: 16369542]
[9]
Hansen, L.H.; Johannesen, E.; Burmølle, M.; Sørensen, A.H.; Sørensen, S.J. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob. Agents Chemother., 2004, 48(9), 3332-3337.
[http://dx.doi.org/10.1128/AAC.48.9.3332-3337.2004] [PMID: 15328093]
[10]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2), 2.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[11]
Clinical Laboratory Standards Institute.CLSI Performance standards for antimicrobial susceptibility testing; 29th informational supplement. CLSI document M100. Clinical Laboratory Standards Institute, Wayne, PA., 2017.
[12]
Nobari, S.; Shahcheraghi, F.; Rahmati Ghezelgeh, F.; Valizadeh, B. Molecular characterization of carbapenem-resistant strains of Klebsiella pneumoniae isolated from Iranian patients: first identification of blaKPC gene in Iran. Microb. Drug Resist., 2014, 20(4), 285-293.
[http://dx.doi.org/10.1089/mdr.2013.0074] [PMID: 24428238]
[13]
Chen, X.; Zhang, W.; Pan, W.; Yin, J.; Pan, Z.; Gao, S.; Jiao, X. Prevalence of qnr, aac(6′)-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and the environment. Antimicrob. Agents Chemother., 2012, 56(6), 3423-3427.
[http://dx.doi.org/10.1128/AAC.06191-11] [PMID: 22391545]
[14]
Nordmann, P.; Poirel, L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J. Antimicrob. Chemother., 2005, 56(3), 463-469.
[http://dx.doi.org/10.1093/jac/dki245] [PMID: 16020539]
[15]
Malekzadegan, Y.; Rastegar, E.; Moradi, M.; Heidari, H.; Sedigh Ebrahim-Saraie, H. Prevalence of quinolone-resistant uropathogenic Escherichia coli in a tertiary care hospital in south Iran [Response to letter]. Infect. Drug Resist., 2019, 12, 2175-2176.
[http://dx.doi.org/10.2147/IDR.S222698] [PMID: 31413598]
[16]
Correia, S.; Poeta, P.; Hébraud, M.; Capelo, J.L.; Igrejas, G. Mechanisms of quinolone action and resistance: where do we stand? J. Med. Microbiol., 2017, 66(5), 551-559.
[http://dx.doi.org/10.1099/jmm.0.000475] [PMID: 28504927]
[17]
McQuiston Haslund, J.; Rosborg Dinesen, M.; Sternhagen Nielsen, A.B.; Llor, C.; Bjerrum, L. Different recommendations for empiric first-choice antibiotic treatment of uncomplicated urinary tract infections in Europe. Scand. J. Prim. Health Care, 2013, 31(4), 235-240.
[http://dx.doi.org/10.3109/02813432.2013.844410] [PMID: 24102498]
[18]
Bidell, M.R.; Palchak, M.; Mohr, J.; Lodise, T.P. Fluoroquinolone and third-generation-cephalosporin resistance among hospitalized patients with urinary tract infections due to Escherichia coli: do rates vary by hospital characteristics and geographic region? Antimicrob. Agents Chemother., 2016, 60(5), 3170-3173.
[http://dx.doi.org/10.1128/AAC.02505-15] [PMID: 26926640]
[19]
Kim, E.S.; Hooper, D.C. Clinical importance and epidemiology of quinolone resistance. Infect. Chemother., 2014, 46(4), 226-238.
[http://dx.doi.org/10.3947/ic.2014.46.4.226] [PMID: 25566402]
[20]
Shash, R.Y.; Elshimy, A.A.; Soliman, M.Y.; Mosharafa, A.A. Molecular characterization of extended-spectrum β-lactamase enterobacteriaceae isolated from egyptian patients with community- and hospital-acquired urinary tract infection. Am. J. Trop. Med. Hyg., 2019, 100(3), 522-528.
[http://dx.doi.org/10.4269/ajtmh.18-0396] [PMID: 30594263]
[21]
Ullah, F.; Malik, S.A.; Ahmed, J. Antibiotic susceptibility pattern and ESBL prevalence in nosocomial Escherichia coli from urinary tract infections in Pakistan. Afr. J. Biotechnol., 2009, 8, 3921-3926.
[22]
Sabir, S.; Ahmad Anjum, A.; Ijaz, T.; Asad Ali, M.; Ur Rehman Khan, M.; Nawaz, M. Isolation and antibiotic susceptibility of E. coli from urinary tract infections in a tertiary care hospital. Pak. J. Med. Sci., 2014, 30(2), 389-392.
[PMID: 24772149]
[23]
Eshwarappa, M.; Dosegowda, R.; Aprameya, I.V.; Khan, M.W.; Kumar, P.S.; Kempegowda, P. Clinico-microbiological profile of urinary tract infection in south India. Indian J. Nephrol., 2011, 21(1), 30-36.
[http://dx.doi.org/10.4103/0971-4065.75226] [PMID: 21655167]
[24]
Hamed, S.M.; Aboshanab, K.M.A.; El-Mahallawy, H.A.; Helmy, M.M.; Ashour, M.S.; Elkhatib, W.F. Plasmid-Mediated Quinolone Resistance in Gram-Negative Pathogens Isolated from Cancer Patients in Egypt. Microb. Drug Resist., 2018, 24(9), 1316-1325.
[http://dx.doi.org/10.1089/mdr.2017.0354] [PMID: 29653475]
[25]
Yang, H.Y.; Nam, Y.S.; Lee, H.J. Prevalence of plasmid-mediated quinolone resistance genes among ciprofloxacin-nonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from blood cultures in Korea. Can. J. Infect. Dis. Med. Microbiol., 2014, 25(3), 163-169.
[http://dx.doi.org/10.1155/2014/329541] [PMID: 25285114]
[26]
Shetty, S.S.; Deekshit, V.K.; Jazeela, K.; Vittal, R.; Rohit, A.; Chakraborty, A.; Karunasagar, I. Plasmid-mediated fluoroquinolone resistance associated with extra-intestinal Escherichia coli isolates from hospital samples. Indian J. Med. Res., 2019, 149(2), 192-198.
[http://dx.doi.org/10.4103/ijmr.IJMR_2092_17] [PMID: 31219083]
[27]
Jacoby, G.A.; Strahilevitz, J.; Hooper, D.C. Plasmid-mediated quinolone resistance. Microbiol. Spectr., 2014, 2(5), 10.
[http://dx.doi.org/10.1128/microbiolspec.PLAS-0006-2013] [PMID: 25584197]
[28]
Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J.V. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol., 2014, 22(8), 438-445.
[http://dx.doi.org/10.1016/j.tim.2014.04.007] [PMID: 24842194]
[29]
Xia, L.N.; Li, L.; Wu, C.M.; Liu, Y.Q.; Tao, X.Q.; Dai, L.; Qi, Y.H.; Lu, L.M.; Shen, J.Z. A survey of plasmid-mediated fluoroquinolone resistance genes from Escherichia coli isolates and their dissemination in Shandong, China. Foodborne Pathog. Dis., 2010, 7(2), 207-215.
[http://dx.doi.org/10.1089/fpd.2009.0378] [PMID: 19911944]
[30]
Bouchakour, M.; Zerouali, K.; Gros Claude, J.D.; Amarouch, H.; El Mdaghri, N.; Courvalin, P.; Timinouni, M. Plasmid-mediated quinolone resistance in expanded spectrum beta lactamase producing enterobacteriaceae in Morocco. J. Infect. Dev. Ctries., 2010, 4(12), 779-803.
[http://dx.doi.org/10.3855/jidc.796] [PMID: 21252459]
[31]
Azargun, R.; Sadeghi, M.R.; Soroush Barhaghi, M.H.; Samadi Kafil, H.; Yeganeh, F.; Ahangar Oskouee, M.; Ghotaslou, R. The prevalence of plasmid-mediated quinolone resistance and ESBL-production in Enterobacteriaceae isolated from urinary tract infections. Infect. Drug Resist., 2018, 11, 1007-1014.
[http://dx.doi.org/10.2147/IDR.S160720] [PMID: 30087570]
[32]
Sedighi, I.; Arabestani, M.R.; Rahimbakhsh, A.; Karimitabar, Z.; Alikhani, M.Y. Dissemination of extended-spectrum β-lactamases and quinolone resistance genes among clinical isolates of uropathogenic Escherichia coli in children. Jundishapur J. Microbiol., 2015, 8(7), e19184.
[http://dx.doi.org/10.5812/jjm.19184v2] [PMID: 26421128]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy