General Review Article

作为克服抗菌素耐药性的潜在替代品的抗菌萜类化合物

卷 21, 期 14, 2020

页: [1476 - 1494] 页: 19

弟呕挨: 10.2174/1389450121666200520103427

价格: $65

摘要

曾经有一个黄金时代,每个人都认为微生物不再对人类构成威胁,但现在微生物对大多数抗生素产生强大耐药性的时代已经到来。多年来,抗生素的不适当使用和容易获得已使抗生素耐药性成为世界第三大死亡原因。随着时间的推移,微生物通过各种机制获得耐药性,如外排泵、通过质粒转移引起突变、改变抗菌作用位点或修改抗菌药物等,到2030年将成为世界范围内抗生素耐药性的主要死因。为了克服对大多数抗生素出现的耐药性,有必要发现来自植物的药物,因为由于萜类化合物等次生代谢物的存在,这些药物已被证明是有效的抗生素。自然界中大量的萜类化合物是为了应对微生物的攻击而产生的,它们通过细胞膜破坏、反聚量感应、抑制蛋白质合成和ATP等多种机制对各种微生物具有巨大的抵抗潜力。萜类化合物和抗菌剂的联合治疗等新方法通过显示彼此间的协同作用,提高了对多种耐多药微生物的治疗效力。

关键词: 抗生素,抗生素耐药性,萜类化合物抗菌机理,协同作用,微生物,萜类化合物

图形摘要

[1]
Saga, T.; Yamaguchi, K. History of antimicrobial agents and resistant bacteria. Asian Med. J., 2009, 52(2), 103-108.
[2]
Abreu, A.C.; McBain, A.J.; Simões, M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep., 2012, 29(9), 1007-1021.
[http://dx.doi.org/10.1039/c2np20035j ] [PMID: 22786554]
[3]
Mittal, R.P.; Rana, A.; Jaitak, V. Essential oils: an impending substitute of synthetic antimicrobial agents to overcome antimicrobial resistance. Curr. Drug Targets, 2019, 20(6), 605-624.
[http://dx.doi.org/10.2174/1389450119666181031122917 ] [PMID: 30378496]
[4]
Mittal, R.P.; Jaitak, V. Plant-derived natural alkaloids as new antimicrobial and adjuvant agents in existing antimicrobial therapy. Curr. Drug Targets, 2019, 20(14), 1409-1433.
[http://dx.doi.org/10.2174/1389450120666190618124224 ] [PMID: 31215387]
[5]
Aminov, R. History of antimicrobial drug discovery: Major classes and health impact. Biochem. Pharmacol., 2017, 133, 4-19.
[http://dx.doi.org/10.1016/j.bcp.2016.10.001 ] [PMID: 27720719]
[6]
Ligon, B.L., Ed.; Penicillin: its discovery and early development Seminars in pediatric infectious diseases; Elsevier, 2004.
[7]
Zowawi HM, Sartor AL, Sidjabat HE, et al. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates in the Gulf Cooperation Council States: dominance of OXA-23-type producers. J Clin Microbiol 2015; 53(3): 896-903.
[http://dx.doi.org/10.1128/JCM.02784-14 ] [PMID: 25568439]
[8]
Asokan GV, Ramadhan T, Ahmed E, Sanad H. WHO global priority pathogens list: a bibliometric analysis of medline-pubmed for knowledge mobilization to infection prevention and control practices in bahrain. Oman Med J 2019; 34(3): 184-93.
[http://dx.doi.org/10.5001/omj.2019.37 ] [PMID: 31110624]
[9]
Shahid, M; Al-Mahmeed, A; Murtadha, MM Characterization of cephalosporin-resistant clinical Enterobacteriaceae for CTX-M ESBLs in Bahrain. Asian Pac J Trop Med 2014; 7S1: S212-6.,
[http://dx.doi.org//10.1016/S1995-7645(14)60234-0] [PMID: 25312123]
[10]
Sharaf, E.J.; Senok, A.C.; Udo, E.E.; Botta, G.A. Trafficking of methicillin-resistant staphylococci and co-colonization with vancomycin-resistant enterococci. Med. Princ. Pract., 2011, 20(3), 253-258.
[http://dx.doi.org/10.1159/000323598 ] [PMID: 21454996]
[11]
Al-Said, J.; Pagaduan, A.; Murdeshwar, S. Successful elimination of hemodialysis-related bacteremia and vascular access infection. Saudi J. Kidney Dis. Transpl., 2013, 24(6), 1228-1232.
[http://dx.doi.org/10.4103/1319-2442.121313 ] [PMID: 24231491]
[12]
Bindayna, K.M. Antibiotic susceptibilities of Helicobacter pylori. Saudi Med. J., 2001, 22(1), 53-57.
[PMID: 11255612]
[13]
Senok, A.; Yousif, A.; Mazi, W. Pattern of antibiotic susceptibility in Campylobacter jejuni isolates of human and poultry origin. Jpn. J. Infect. Dis., 2007, 60(1), 1-4.
[PMID: 17314416]
[14]
Bindayna KM, Easmon CS, Ison CA. Chromosomal resistance to antibiotics in gonococci from Bahrain. Sex Transm Dis 1991; 18(3): 153-8.
[http://dx.doi.org/10.1097/00007435-199107000-00006 ] [PMID: 1948513]
[15]
Jamsheer A, Rafay A, Daoud Z, Morrissey I, Torumkuney D. Results from the survey of antibiotic resistance (SOAR) 2011–13 in the Gulf states. J Antimicrob Chemother 2016; 71(suppl_1): i45- i61.
[16]
Brown, K. Penicillin man: Alexander Fleming and the antibiotic revolution; UK Sutton Publishing, 2004.
[17]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10 ] [PMID: 20805405]
[18]
Barber, M. Staphylococcal infection due to penicillin-resistant strains. BMJ, 1947, 2(4534), 863-865.
[http://dx.doi.org/10.1136/bmj.2.4534.863 ] [PMID: 20272443]
[19]
Centers for Disease Control and Prevention (CDC). Vancomycin-resistant Staphylococcus aureus--Pennsylvania, 2002. MMWR Morb. Mortal. Wkly. Rep., 2002, 51(40), 902-903.
[http://dx.doi.org/12418544]
[20]
Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev., 2008, 21(3), 538-582.
[http://dx.doi.org/10.1128/CMR.00058-07 ] [PMID: 18625687]
[21]
Geisinger, E.; Huo, W.; Hernandez-Bird, J.; Isberg, R.R. Acinetobacter baumannii: envelope determinants that control drug resistance, virulence, and surface variability. Annu. Rev. Microbiol., 2019, 73, 481-506.
[http://dx.doi.org/10.1146/annurev-micro-020518-115714 ] [PMID: 31206345]
[22]
Knight, G.M.; McQuaid, C.F.; Dodd, P.J.; Houben, R.M.G.J. Global burden of latent multidrug-resistant tuberculosis: trends and estimates based on mathematical modelling. Lancet Infect. Dis., 2019, 19(8), 903-912.
[http://dx.doi.org/10.1016/S1473-3099(19)30307-X ] [PMID: 31281059]
[23]
Shah, I.; Poojari, V.; Meshram, H. Multi-drug resistant and extensively-drug resistant tuberculosis. Indian J. Pediatr., 2020, 1-7.
[http://dx.doi.org/32103425]
[24]
Strateva, T.; Yordanov, D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J. Med. Microbiol., 2009, 58(Pt 9), 1133-1148.
[http://dx.doi.org/10.1099/jmm.0.009142-0 ] [PMID: 19528173]
[25]
Poole, K. Multidrug resistance in Gram-negative bacteria. Curr. Opin. Microbiol., 2001, 4(5), 500-508.
[http://dx.doi.org/10.1016/S1369-5274(00)00242-3 ] [PMID: 11587924]
[26]
Roberts, M.C. Acquired tetracycline and/or macrolide-lincosamides-streptogramin resistance in anaerobes. Anaerobe, 2003, 9(2), 63-69.
[http://dx.doi.org/10.1016/S1075-9964(03)00058-1 ] [PMID: 16887689]
[27]
Walsh, T.R.; Weeks, J.; Livermore, D.M.; Toleman, M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis., 2011, 11(5), 355-362.
[http://dx.doi.org/10.1016/S1473-3099(11)70059-7 ] [PMID: 21478057]
[28]
Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med., 2006, 119(6)(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1016/j.amjmed.2006.03.011 ] [PMID: 16735149]
[29]
Wright, G.D. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug Deliv. Rev., 2005, 57(10), 1451-1470.
[http://dx.doi.org/10.1016/j.addr.2005.04.002 ] [PMID: 15950313]
[30]
Paterson, D.L. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Infect. Control, 2006, 34(5)(Suppl. 1), S20-S28.
[http://dx.doi.org/10.1016/j.ajic.2006.05.238 ] [PMID: 16813978]
[31]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2), 1-37.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015 ] [PMID: 27227291]
[32]
Walsh C. Antibiotics: actions, origins, resistance American Society for Microbiology. ASM 2003.
[http://dx.doi.org/10.1128/9781555817886]
[33]
Macheboeuf, P.; Di Guilmi, A.M.; Job, V.; Vernet, T.; Dideberg, O.; Dessen, A. Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. Proc. Natl. Acad. Sci. USA, 2005, 102(3), 577-582.
[http://dx.doi.org/10.1073/pnas.0407186102 ] [PMID: 15637155]
[34]
Lai, C-J.; Dahlberg, J.E.; Weisblum, B. Structure of an inducibly methylatable nucleotide sequence in 23S ribosomal ribonucleic acid from erythromycin-resistant Staphylococcus aureus. Biochemistry, 1973, 12(3), 457-460.
[http://dx.doi.org/10.1021/bi00727a015 ] [PMID: 4683489]
[35]
Ambrus, J.I.; Kelso, M.J.; Bremner, J.B.; Ball, A.R.; Casadei, G.; Lewis, K. Structure-activity relationships of 2-aryl-1H-indole inhibitors of the NorA efflux pump in Staphylococcus aureus. Bioorg. Med. Chem. Lett., 2008, 18(15), 4294-4297.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.093 ] [PMID: 18632270]
[36]
Gootz, T.D. The global problem of antibiotic resistance. Crit. Rev. Immunol., 2010, 30(1), 79-93.
[http://dx.doi.org/10.1615/CritRevImmunol.v30.i1.60 ] [PMID: 20370622]
[37]
Pagès, J-M.; James, C.E.; Winterhalter, M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol., 2008, 6(12), 893-903.
[http://dx.doi.org/10.1038/nrmicro1994 ] [PMID: 18997824]
[38]
Nazir, A.; Malik, K.; Qamar, H. A review: Use of plant extracts and their phytochemical constituents to control antibiotic resistance in S. aureus. Pure Appl. Biol., 2020, 9(1), 720-727.
[http://dx.doi.org/10.19045/bspab.2020.90078]
[39]
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev., 2003, 67(4), 593-656.
[http://dx.doi.org/10.1128/MMBR.67.4.593-656.2003 ] [PMID: 14665678]
[40]
Webber, M.A.; Piddock, L.J. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother., 2003, 51(1), 9-11.
[http://dx.doi.org/10.1093/jac/dkg050 ] [PMID: 12493781]
[41]
Blanco, P.; Hernando-Amado, S.; Reales-Calderon, J.A. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms, 2016, 4(1), 1-19.
[http://dx.doi.org/10.3390/microorganisms4010014 ] [PMID: 27681908]
[42]
Soto, S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 2013, 4(3), 223-229.
[http://dx.doi.org/10.4161/viru.23724 ] [PMID: 23380871]
[43]
de Sousa Oliveira, K.; de Lima, L.; Cobacho, N.; Dias, S.; Franco, O. Mechanisms of antibacterial resistance: Shedding some light on these obscure processes?; Antibiot Resist, 2016, pp. 19-35.
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00002-2]
[44]
Sun, J.; Deng, Z.; Yan, A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun., 2014, 453(2), 254-267.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.090 ] [PMID: 24878531]
[45]
2015.
[46]
Borris, R.P. Natural products research: perspectives from a major pharmaceutical company. J. Ethnopharmacol., 1996, 51(1-3), 29-38.
[http://dx.doi.org/10.1016/0378-8741(95)01347-4 ] [PMID: 9213624]
[47]
Rojas, A.; Hernandez, L.; Pereda-Miranda, R.; Mata, R. Screening for antimicrobial activity of crude drug extracts and pure natural products from Mexican medicinal plants. J. Ethnopharmacol., 1992, 35(3), 275-283.
[http://dx.doi.org/10.1016/0378-8741(92)90025-M ] [PMID: 1548900]
[48]
Savoia, D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol., 2012, 7(8), 979-990.
[http://dx.doi.org/10.2217/fmb.12.68 ] [PMID: 22913356]
[49]
Pandey, A.; Kumar, S. Perspective on plant products as antimicrobial agents: A review. Pharmacologia, 2013, 4(7), 469-480.
[http://dx.doi.org/10.5567/pharmacologia.2013.469.480]
[50]
Mishra, A.; Kumar, S.; Bhargava, A.; Sharma, B.; Pandey, A.K. Studies on in vitro antioxidant and antistaphylococcal activities of some important medicinal plants. Cell. Mol. Biol., 2011, 57(1), 16-25.
[51]
Das, K.; Tiwari, R.; Shrivastava, D. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J. Med. Plants Res., 2010, 4(2), 104-111.
[52]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564 ] [PMID: 10515903]
[53]
Zwenger, S.; Basu, C. Plant terpenoids: applications and future potentials. Biotechnol. Mol. Biol. Rev., 2008, 3(1), 1-7.
[54]
Tholl, D. Biosynthesis and biological functions of terpenoids in plants Biotechnology of isoprenoids; Springer, 2015, pp. 63-106.
[55]
Wang, G.; Tang, W.; Bidigare, R.R. Terpenoids as therapeutic drugs and pharmaceutical agents Nat Prod; Springer, 2005, pp. 197-227.
[56]
Abbas, F.; Ke, Y.; Yu, R. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta, 2017, 246(5), 803-816.
[http://dx.doi.org/10.1007/s00425-017-2749-x ] [PMID: 28803364]
[57]
Yang, W.; Chen, X.; Li, Y. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun., 2020, 15(3), 1-13.
[http://dx.doi.org/10.1177/1934578X20903555]
[58]
Mukherjee, P.K.; Saha, K.; Das, J.; Pal, M.; Saha, B.P. Studies on the anti-inflammatory activity of rhizomes of Nelumbo nucifera. Planta Med., 1997, 63(4), 367-369.
[http://dx.doi.org/10.1055/s-2006-957705 ] [PMID: 9270384]
[59]
Roussis, V.; Wu, Z.; Fenical, W. New anti-inflammatory pseudopterosins from the marine octocoral Pseudopterogorgia elisabethae. J. Org. Chem., 1990, 55(16), 4916-4922.
[http://dx.doi.org/10.1021/jo00303a030]
[60]
de Carvalho, C.C.; da Fonseca, M.M.R. Biotransformation of terpenes. Biotechnol. Adv., 2006, 24(2), 134-142.
[http://dx.doi.org/10.1016/j.biotechadv.2005.08.004 ] [PMID: 16169182]
[61]
Stappen, I.; Tabanca, N.; Ali, A. Antifungal and repellent activities of the essential oils from three aromatic herbs from western Himalaya. Open Chem., 2018, 16(1), 306-316.
[http://dx.doi.org/10.1515/chem-2018-0028]
[62]
Junker, R.R.; Parachnowitsch, A.L. Working towards a holistic view on flower traits—how floral scents mediate plant–animal interactions in concert with other floral characters. J. Indian Inst. Sci., 2015, 95(1), 43-68.
[63]
Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem., 2009, 17(12), 4022-4034.
[http://dx.doi.org/10.1016/j.bmc.2009.01.046 ] [PMID: 19216080]
[64]
Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel), 2013, 6(12), 1451-1474.
[http://dx.doi.org/10.3390/ph6121451 ] [PMID: 24287491]
[65]
Burt, S.A.; Reinders, R.D. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol., 2003, 36(3), 162-167.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01285.x ] [PMID: 12581376]
[66]
Andrews, R.E.; Parks, L.W.; Spence, K.D. Some effects of douglas fir terpenes on certain microorganisms. Appl. Environ. Microbiol., 1980, 40(2), 301-304.
[http://dx.doi.org/10.1128/AEM.40.2.301-304.1980 ] [PMID: 16345609]
[67]
Hammer, K.A.; Heel, K.A. Use of multiparameter flow cytometry to determine the effects of monoterpenoids and phenylpropanoids on membrane polarity and permeability in staphylococci and enterococci. Int. J. Antimicrob. Agents, 2012, 40(3), 239-245.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.05.015 ] [PMID: 22795655]
[68]
Trombetta, D.; Castelli, F.; Sarpietro, M.G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother., 2005, 49(6), 2474-2478.
[http://dx.doi.org/10.1128/AAC.49.6.2474-2478.2005 ] [PMID: 15917549]
[69]
Abu-Lafi, S.; Odeh, I.; Dewik, H. Diverse terpenoids and phenolic compounds extracted from leaves of Majorana syriaca growing wild in Palestine. J. Herbs Spices Med. Plants, 2009, 15(3), 272-280.
[http://dx.doi.org/10.1080/10496470903378987]
[70]
Mulyaningsih, S.; Sporer, F.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine, 2010, 17(13), 1061-1066.
[http://dx.doi.org/10.1016/j.phymed.2010.06.018 ] [PMID: 20727725]
[71]
Di Pasqua, R.; Betts, G.; Hoskins, N.; Edwards, M.; Ercolini, D.; Mauriello, G. Membrane toxicity of antimicrobial compounds from essential oils. J. Agric. Food Chem., 2007, 55(12), 4863-4870.
[http://dx.doi.org/10.1021/jf0636465 ] [PMID: 17497876]
[72]
Zhang, Y.; Feng, R.; Li, L. The antibacterial mechanism of terpinen-4-ol against Streptococcus agalactiae. Curr. Microbiol., 2018, 75(9), 1214-1220.
[http://dx.doi.org/10.1007/s00284-018-1512-2 ] [PMID: 29804206]
[73]
Lesjak, M.; Simin, N.; Orcic, D. Binary and tertiary mixtures of Satureja hortensis and Origanum vulgare essential oils as potent antimicrobial agents against Helicobacter pylori. Phytother. Res., 2016, 30(3), 476-484.
[http://dx.doi.org/10.1002/ptr.5552 ] [PMID: 26686190]
[74]
Gonçalves, J.; Figueira, J.; Rodrigues, F.; Câmara, J.S. Headspace solid-phase microextraction combined with mass spectrometry as a powerful analytical tool for profiling the terpenoid metabolomic pattern of hop-essential oil derived from Saaz variety. J. Sep. Sci., 2012, 35(17), 2282-2296.
[http://dx.doi.org/10.1002/jssc.201200244 ] [PMID: 22807416]
[75]
Regnier, T.; du Plooy, W.; Combrinck, S.; Botha, B. Fungitoxicity of Lippia scaberrima essential oil and selected terpenoid components on two mango postharvest spoilage pathogens. Postharvest Biol. Technol., 2008, 48(2), 254-258.
[http://dx.doi.org/10.1016/j.postharvbio.2007.10.011]
[76]
Indumathi, C.; Durgadevi, G.; Nithyavani, S.; Gayathri, P. Estimation of terpenoid content and its antimicrobial property in Enicostemma litorrale. Int. J. Chemtech Res., 2014, 6(9), 4264-4267.
[77]
Zhu, J.; Lower-Nedza, A.D.; Hong, M. Chemical composition and antimicrobial activity of three essential oils from Curcuma wenyujin. Nat. Prod. Commun., 2013, 8(4), 523-526.
[http://dx.doi.org/10.1177/1934578X1300800430 ] [PMID: 23738470]
[78]
Kamazeri, T.S.A.T.; Samah, O.A.; Taher, M.; Susanti, D.; Qaralleh, H. Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. Asian Pac. J. Trop. Med., 2012, 5(3), 202-209.
[http://dx.doi.org/10.1016/S1995-7645(12)60025-X ] [PMID: 22305785]
[79]
Abdelrahim, S.I.; Almagboul, A.Z.; Omer, M.E.; Elegami, A. Antimicrobial activity of Psidium guajava L. Fitoterapia, 2002, 73(7-8), 713-715.
[http://dx.doi.org/10.1016/S0367-326X(02)00243-5 ] [PMID: 12490238]
[80]
Sati, S.C.; Sati, N.; Sati, O.P.; Biswas, D.; Chauhan, B.S. Analysis and antimicrobial activity of volatile constituents from Quercus leucotrichophora (Fagaceae) bark. Nat. Prod. Res., 2012, 26(9), 869-872.
[http://dx.doi.org/10.1080/14786419.2011.564584 ] [PMID: 21929280]
[81]
Runyoro, D.; Ngassapa, O.; Vagionas, K. Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chem., 2010, 119(1), 311-316.
[http://dx.doi.org/10.1016/j.foodchem.2009.06.028]
[82]
Marchese, A.; Barbieri, R.; Coppo, E. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol., 2017, 43(6), 668-689.
[http://dx.doi.org/10.1080/1040841X.2017.1295225 ] [PMID: 28346030]
[83]
Cotoras, M.; Folch, C.; Mendoza, L. Characterization of the antifungal activity on Botrytis cinerea of the natural diterpenoids kaurenoic acid and 3β-hydroxy-kaurenoic acid. J. Agric. Food Chem., 2004, 52(10), 2821-2826.
[http://dx.doi.org/10.1021/jf030672j ] [PMID: 15137820]
[84]
Souza, A.B.; de Souza, M.G.; Moreira, M.A. Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria. Molecules, 2011, 16(11), 9611-9619.
[http://dx.doi.org/10.3390/molecules16119611 ] [PMID: 22101836]
[85]
Souza, A.B.; Martins, C.H.; Souza, M.G. Antimicrobial activity of terpenoids from Copaifera langsdorffii Desf. against cariogenic bacteria. Phytother. Res., 2011, 25(2), 215-220.
[http://dx.doi.org/ 20632306]
[86]
Reuk-ngam, N.; Chimnoi, N.; Khunnawutmanotham, N.; Techasakul, S. Antimicrobial activity of coronarin D and its synergistic potential with antibiotics. BioMed Res. Int., 2014.2014581985
[http://dx.doi.org/10.1155/2014/581985 ] [PMID: 24949458]
[87]
Carvalho, T.C.; Simão, M.R.; Ambrósio, S.R. Antimicrobial activity of diterpenes from Viguiera arenaria against endodontic bacteria. Molecules, 2011, 16(1), 543-551.
[http://dx.doi.org/10.3390/molecules160100543 ] [PMID: 21233793]
[88]
Batista, O.; Duarte, A.; Nascimento, J.; Simões, M.F.; de la Torre, M.C.; Rodríguez, B. Structure and antimicrobial activity of diterpenes from the roots of Plectranthus hereroensis. J. Nat. Prod., 1994, 57(6), 858-861.
[http://dx.doi.org/10.1021/np50108a031 ] [PMID: 7931371]
[89]
Li, S-F.; Ding, J-Y.; Li, Y-T.; Hao, X-J.; Li, S-L. Antimicrobial diterpenoids of Wedelia trilobata (L.) Hitchc. Molecules, 2016, 21(4), 457.
[http://dx.doi.org/10.3390/molecules21040457 ] [PMID: 27070557]
[90]
Tamokou, J.D.; Kuiate, J.R.; Tene, M.; Tane, P. Antimicrobial clerodane diterpenoids from Microglossa angolensis Oliv. et Hiern. Indian J. Pharmacol., 2009, 41(2), 60-63.
[http://dx.doi.org/10.4103/0253-7613.51340 ] [PMID: 20336218]
[91]
de León, L.; López, M.R.; Moujir, L. Antibacterial properties of zeylasterone, a triterpenoid isolated from Maytenus blepharodes, against Staphylococcus aureus. Microbiol. Res., 2010, 165(8), 617-626.
[http://dx.doi.org/10.1016/j.micres.2009.12.004 ] [PMID: 20116223]
[92]
Tene, M.; Ndontsa, B.L.; Tane, P.; de Dieu Tamokou, J.; Kuiate, J-R. Antimicrobial diterpenoids and triterpenoids from the stem bark of Croton macrostachys. Int. J. Biol. Chem. Sci., 2009, 3(3), 538-544.
[http://dx.doi.org/10.4314/ijbcs.v3i3.45331]
[93]
Tamokou Jde, D.; Kuiate, J.R.; Tene, M.; Kenla Nwemeguela, T.J.; Tane, P. The antimicrobial activities of extract and compounds isolated from Brillantaisia lamium. Iran. J. Med. Sci., 2011, 36(1), 24-31.
[http://dx.doi.org/23365474]
[94]
Singh, B.; Singh, S. Antimicrobial activity of terpenoids from Trichodesma amplexicaule Roth. Phytother. Res., 2003, 17(7), 814-816.
[http://dx.doi.org/10.1002/ptr.1202 ] [PMID: 12916085]
[95]
Picman, A.; Schneider, E.; Gershenzon, J. Antifungal activities of sunflower terpenoids. Biochem. Syst. Ecol., 1990, 18(5), 325-328.
[http://dx.doi.org/10.1016/0305-1978(90)90005-Z]
[96]
Fukuyama, N.; Ino, C.; Suzuki, Y. Antimicrobial sesquiterpenoids from Laurus nobilis L. Nat. Prod. Res., 2011, 25(14), 1295-1303.
[http://dx.doi.org/10.1080/14786419.2010.502532 ] [PMID: 21678158]
[97]
Awanchiri, S.S.; Trinh-Van-Dufat, H.; Shirri, J.C. Triterpenoids with antimicrobial activity from Drypetes inaequalis. Phytochemistry, 2009, 70(3), 419-423.
[http://dx.doi.org/10.1016/j.phytochem.2008.12.017 ] [PMID: 19217633]
[98]
Nzogong, R.T.; Ndjateu, F.S.T.; Ekom, S.E. Antimicrobial and antioxidant activities of triterpenoid and phenolic derivatives from two Cameroonian Melastomataceae plants: Dissotis senegambiensis and Amphiblemma monticola. BMC Complement. Altern. Med., 2018, 18(1), 159.
[http://dx.doi.org/10.1186/s12906-018-2229-2 ] [PMID: 29769064]
[99]
Bouyahya, A.; Dakka, N.; Et-Touys, A.; Abrini, J.; Bakri, Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac. J. Trop. Med., 2017, 10(8), 729-743.
[http://dx.doi.org/10.1016/j.apjtm.2017.07.021 ] [PMID: 28942821]
[100]
Zhao, X.; Yu, Z.; Ding, T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms, 2020, 8(3), 1-21.
[http://dx.doi.org/10.3390/microorganisms8030425 ] [PMID: 32192182]
[101]
Sun, J.; Daniel, R.; Wagner-Döbler, I.; Zeng, A-P. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol. Biol., 2004, 4(1), 36.
[http://dx.doi.org/10.1186/1471-2148-4-36 ] [PMID: 15456522]
[102]
Lowery, C.A.; Dickerson, T.J.; Janda, K.D. Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem. Soc. Rev., 2008, 37(7), 1337-1346.
[http://dx.doi.org/10.1039/b702781h ] [PMID: 18568160]
[103]
Paluch, E.; Rewak-Soroczyńska, J.; Jędrusik, I.; Mazurkiewicz, E.; Jermakow, K. Prevention of biofilm formation by quorum quenching. Appl. Microbiol. Biotechnol., 2020, 104(5), 1871-1881.
[http://dx.doi.org/10.1007/s00253-020-10349-w ] [PMID: 31927762]
[104]
Asfour, H.Z. Anti-quorum sensing natural compounds. J Microsc Ultrastruct, 2018, 6(1), 1-10.
[http://dx.doi.org/10.4103/JMAU.JMAU_10_18 ] [PMID: 30023261]
[105]
Niu, C.; Afre, S.; Gilbert, E.S. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett. Appl. Microbiol., 2006, 43(5), 489-494.
[http://dx.doi.org/10.1111/j.1472-765X.2006.02001.x ] [PMID: 17032221]
[106]
Myszka, K.; Schmidt, M.T.; Majcher, M. etal Inhibition of quorum sensing-related biofilm of Pseudomonas fluorescens KM121 by Thymus vulgare essential oil and its major bioactive compounds. Int. Biodeterior. Biodegradation, 2016, 114, 252-259.
[http://dx.doi.org/10.1016/j.ibiod.2016.07.006]
[107]
Rajput, J.D.; Bagul, S.D.; Pete, U.D.; Zade, C.M.; Padhye, S.B.; Bendre, R.S. Perspectives on medicinal properties of natural phenolic monoterpenoids and their hybrids. Mol. Divers., 2018, 22(1), 225-245.
[http://dx.doi.org/10.1007/s11030-017-9787-y ] [PMID: 28988386]
[108]
Firmino, N.C.; Alexandre, F.S.; de Vasconcelos, M.A. etal Antimicrobial Activity of 3, 4-seco-Diterpenes isolated from Croton blanchetianus against Streptococcus mutans and Streptococcus parasanguinis. J. Braz. Chem. Soc., 2018, 29(4), 814-822.
[109]
Abrão, F.; Alves, J.A.; Andrade, G. etal Antibacterial effect of Copaifera duckei Dwyer Oleoresin and its main diterpenes against oral pathogens and their cytotoxic effect. Front. Microbiol., 2018, 9, 201.
[http://dx.doi.org/10.3389/fmicb.2018.00201 ] [PMID: 29515530]
[110]
Gilabert, M.; Ramos, A.N.; Schiavone, M.M.; Arena, M.E.; Bardón, A. Bioactive sesqui- and diterpenoids from the Argentine liverwort Porella chilensis. J. Nat. Prod., 2011, 74(4), 574-579.
[http://dx.doi.org/10.1021/np100472d ] [PMID: 21384863]
[111]
Mon, H.H.; Christo, S.N.; Ndi, C.P. etal Serrulatane Diterpenoid from Eremophila neglecta exhibits bacterial biofilm dispersion and inhibits release of pro-inflammatory cytokines from activated macrophages. J. Nat. Prod., 2015, 78(12), 3031-3040.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00833 ] [PMID: 26636180]
[112]
Carneiro, V.A.; Santos, H.S.; Arruda, F.V. etal Casbane diterpene as a promising natural antimicrobial agent against biofilm-associated infections. Molecules, 2010, 16(1), 190-201.
[http://dx.doi.org/10.3390/molecules16010190 ] [PMID: 21193844]
[113]
Cardoso Sá, N.; Cavalcante, T.T.A.; Araújo, A.X. etal Antimicrobial and antibiofilm action of Casbane Diterpene from Croton nepetaefolius against oral bacteria. Arch. Oral Biol., 2012, 57(5), 550-555.
[http://dx.doi.org/10.1016/j.archoralbio.2011.10.016 ] [PMID: 22119044]
[114]
Kuźma, Ł.; Rózalski, M.; Walencka, E.; Rózalska, B.; Wysokińska, H. Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine, 2007, 14(1), 31-35.
[http://dx.doi.org/10.1016/j.phymed.2005.10.008 ] [PMID: 17190643]
[115]
Gilabert, M.; Marcinkevicius, K.; Andujar, S.; Schiavone, M.; Arena, M.E.; Bardón, A. Sesqui- and triterpenoids from the liverwort Lepidozia chordulifera inhibitors of bacterial biofilm and elastase activity of human pathogenic bacteria. Phytomedicine, 2015, 22(1), 77-85.
[http://dx.doi.org/10.1016/j.phymed.2014.10.006 ] [PMID: 25636875]
[116]
Rasamiravaka, T.; Ngezahayo, J.; Pottier, L. etal Terpenoids from Platostoma rotundifolium (Briq.) AJ Paton alter the expression of quorum sensing-related virulence factors and the formation of biofilm in Pseudomonas aeruginosa PAO1. Int. J. Mol. Sci., 2017, 18(6), 1-22.
[http://dx.doi.org/10.3390/ijms18061270 ] [PMID: 28613253]
[117]
Peng, M.; Zhao, X.; Biswas, D. Polyphenols and tri-terpenoids from Olea europaea L. in alleviation of enteric pathogen infections through limiting bacterial virulence and attenuating inflammation. J. Funct. Foods, 2017, 36, 132-143.
[http://dx.doi.org/10.1016/j.jff.2017.06.059]
[118]
Chen, H-Y.; Liu, T-K.; Shi, Q.; Yang, X-L. Sesquiterpenoids and diterpenes with antimicrobial activity from Leptosphaeria sp. XL026, an endophytic fungus in Panax notoginseng. Fitoterapia, 2019.137104243
[http://dx.doi.org/10.1016/j.fitote.2019.104243 ] [PMID: 31226283]
[119]
Evaristo, F.F.V.; Albuquerque, M.R.J.R.; dos Santos, H.S. etal Antimicrobial effect of the triterpene 3β,6β,16β-trihydroxylup-20(29)-ene on planktonic cells and biofilms from Gram positive and Gram negative bacteria. BioMed Res. Int., 2014.2014729358
[http://dx.doi.org/10.1155/2014/729358 ] [PMID: 25093179]
[120]
Catteau, L.; Zhu, L.; Van Bambeke, F.; Quetin-Leclercq, J. Natural and hemi-synthetic pentacyclic triterpenes as antimicrobials and resistance modifying agents against Staphylococcus aureus: a review. Phytochem. Rev., 2018, 17(5), 1129-1163.
[http://dx.doi.org/10.1007/s11101-018-9564-2]
[121]
Jasmine, R.; Selvakumar, B.; Aishwarya, S. Role of a novel terpenoid as efflux inhibitor in targeting the efflux protein (mexa) of multidrug resistant, Pseudomonas aeruginosa. Int. J. Pharm. Sci. Res., 2012, 3, 1647-1651.
[122]
Di Pasqua, R.; Mamone, G.; Ferranti, P.; Ercolini, D.; Mauriello, G. Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics, 2010, 10(5), 1040-1049.
[http://dx.doi.org/20049861]
[123]
Serek, J.; Bauer-Manz, G.; Struhalla, G. etal Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J., 2004, 23(2), 294-301.
[http://dx.doi.org/10.1038/sj.emboj.7600063 ] [PMID: 14739936]
[124]
McCullough, J.E.; Muller, M.T.; Howells, A.J. etal Clerocidin, a terpenoid antibiotic, inhibits bacterial DNA gyrase. J. Antibiot. (Tokyo), 1993, 46(3), 526-530.
[http://dx.doi.org/10.7164/antibiotics.46.526 ] [PMID: 8386713]
[125]
Urgaonkar, S.; La Pierre, H.S.; Meir, I.; Lund, H. RayChaudhuri D, Shaw JT. Synthesis of antimicrobial natural products targeting FtsZ: (+/-)-dichamanetin and (+/-)-2′ “-hydroxy-5′ '-benzylisouvarinol-B. Org. Lett., 2005, 7(25), 5609-5612.
[http://dx.doi.org/10.1021/ol052269z ] [PMID: 16321003]
[126]
Micol, V.; Mateo, C.R.; Shapiro, S.; Aranda, F.J.; Villalaín, J. Effects of (+)-totarol, a diterpenoid antibacterial agent, on phospholipid model membranes. Biochim. Biophys. Acta, 2001, 1511(2), 281-290.
[http://dx.doi.org/10.1016/S0005-2736(01)00284-X ] [PMID: 11286971]
[127]
Gordien, A.Y.; Gray, A.I.; Franzblau, S.G.; Seidel, V. Antimycobacterial terpenoids from Juniperus communis L. (Cuppressaceae). J. Ethnopharmacol., 2009, 126(3), 500-505.
[http://dx.doi.org/10.1016/j.jep.2009.09.007 ] [PMID: 19755141]
[128]
Vasas, A.; Rédei, D.; Csupor, D.; Molnár, J.; Hohmann, J. Diterpenes from European Euphorbia species serving as prototypes for natural‐product‐based drug discovery. Eur. J. Org. Chem., 2012, 2012(27), 5115-5130.
[http://dx.doi.org/10.1002/ejoc.201200733]
[129]
Kim, H.K.; Park, Y.; Kim, H.N. etal Antimicrobial mechanism of β-glycyrrhetinic acid isolated from licorice, Glycyrrhiza glabra. Biotechnol. Lett., 2002, 24(22), 1899-1902.
[http://dx.doi.org/10.1023/A:1020900124997]
[130]
Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev., 1995, 59(2), 201-222.
[http://dx.doi.org/10.1128/MMBR.59.2.201-222.1995 ] [PMID: 7603409]
[131]
Hufford, C.D.; Jia, Y.; Croom, E., M Jr, et al. Antimicrobial compounds from Petalostemum purpureum. J. Nat. Prod., 1993, 56(11), 1878-1889.
[http://dx.doi.org/10.1021/np50101a003 ] [PMID: 8289060]
[132]
Guo, T.; Tan, S-B.; Wang, Y.; Chang, J. Two new monoterpenoid glycosides from the fresh rhizome of Tongling White Ginger (Zingiber officinale). Nat. Prod. Res., 2018, 32(1), 71-76.
[http://dx.doi.org/10.1080/14786419.2017.1333994 ] [PMID: 28554232]
[133]
Yayli, N.; Yaşar, A.; Güleç, C. etal Composition and antimicrobial activity of essential oils from Centaurea sessilis and Centaurea armena. Phytochemistry, 2005, 66(14), 1741-1745.
[http://dx.doi.org/10.1016/j.phytochem.2005.04.006 ] [PMID: 16050993]
[134]
Kayser, O.; Kiderlen, A.F.; Croft, S.L. Natural products as antiparasitic drugs. Parasitol. Res., 2003, 90(2)(Suppl. 2), S55-S62.
[http://dx.doi.org/10.1007/s00436-002-0768-3 ] [PMID: 12937967]
[135]
Chukwujekwu, J.C.; Smith, P.; Coombes, P.H.; Mulholland, D.A.; van Staden, J. Antiplasmodial diterpenoid from the leaves of Hyptis suaveolens. J. Ethnopharmacol., 2005, 102(2), 295-297.
[http://dx.doi.org/10.1016/j.jep.2005.08.018 ] [PMID: 16213121]
[136]
Guoruoluo, Y.; Zhou, H.; Zhou, J.; Zhao, H.; Aisa, H.A.; Yao, G. Isolation and characterization of sesquiterpenoids from cassia buds and their antimicrobial activities. J. Agric. Food Chem., 2017, 65(28), 5614-5619.
[http://dx.doi.org/10.1021/acs.jafc.7b01294 ] [PMID: 28665598]
[137]
Liu, F.; Liu, C.; Liu, W. etal New sesquiterpenoids from Eugenia jambolana seeds and their anti-microbial activities. J. Agric. Food Chem., 2017, 65(47), 10214-10222.
[http://dx.doi.org/10.1021/acs.jafc.7b04066 ] [PMID: 29140690]
[138]
Ulubelen, A. Cardioactive and antibacterial terpenoids from some Salvia species. Phytochemistry, 2003, 64(2), 395-399.
[http://dx.doi.org/10.1016/S0031-9422(03)00225-5 ] [PMID: 12943755]
[139]
Niedermeyer, T.H.; Lindequist, U.; Mentel, R. etal Antiviral Terpenoid Constituents of Ganoderma pfeifferi. J. Nat. Prod., 2005, 68(12), 1728-1731.
[http://dx.doi.org/10.1021/np0501886 ] [PMID: 16378363]
[140]
Sairafianpour, M.; Bahreininejad, B.; Witt, M.; Ziegler, H.L.; Jaroszewski, J.W.; Staerk, D. Terpenoids of Salvia hydrangea: two new, rearranged 20-norabietanes and the effect of oleanolic acid on erythrocyte membranes. Planta Med., 2003, 69(9), 846-850.
[http://dx.doi.org/10.1055/s-2003-43212 ] [PMID: 14598212]
[141]
Yoshikawa, K.; Kokudo, N.; Tanaka, M. etal Novel abietane diterpenoids and aromatic compounds from Cladonia rangiferina and their antimicrobial activity against antibiotics resistant bacteria. Chem. Pharm. Bull. (Tokyo), 2008, 56(1), 89-92.
[http://dx.doi.org/10.1248/cpb.56.89 ] [PMID: 18175983]
[142]
McChesney, J.D.; Clark, A.M.; Silveira, E.R. Antimicrobial diterpenes of Croton sonderianus. II. ent-Beyer-15-en-18-oic acid. Pharm. Res., 1991, 8(10), 1243-1247.
[http://dx.doi.org/10.1023/A:1015891410300 ] [PMID: 1796041]
[143]
Tang, G-H.; Zhang, Y.; Gu, Y-C. etal Trigoflavidols A-C, degraded diterpenoids with antimicrobial activity, from Trigonostemon flavidus. J. Nat. Prod., 2012, 75(5), 996-1000.
[http://dx.doi.org/10.1021/np3001128 ] [PMID: 22548480]
[144]
Xu, L.L.; Pang, X.J.; Shi, Q.; Xian, P.J.; Tao, Y.D.; Yang, X.L. Two new prenylated indole diterpenoids from tolypocladium sp. and their antimicrobial activities. Chem. Biodivers., 2019, 16(6)e1900116
[http://dx.doi.org/10.1002/cbdv.201900116 ] [PMID: 30957928]
[145]
Freeman, B.C.; Beattie, G.A. An overview of plant defenses against pathogens and herbivores; Plant Health Instr, 2008.
[http://dx.doi.org/10.1094/PHI-I-2008-0226-01]
[146]
Shahid-Ud-Daula, A.; Basher, M.A. Phytochemical screening, plant growth inhibition, and antimicrobial activity studies of Xylocarpus granatum. Malays. J. Pharm. Sci., 2009, 7(1), 9-21.
[147]
Islam, A; Ali, MA; Sayeed, A et al. An antimicrobial terpenoid from Caesalpinia pulcherrima Swartz.: Its characterization, antimicrobial and cytotoxic activities. Asian J Plant Sci 2003; 2(17-24): 1162- 1165.
[148]
Ara, K.; Rahman, M.S.; Rahman, A.; Hasan, C.M.; Rashid, M.A. Terpenoids and Coumarin from Bursera serrata Wall. Dhaka Univ J Pharm Sci, 2009, 8(2), 107-110.
[http://dx.doi.org/10.3329/dujps.v8i2.6023]
[149]
Ibrahim, A.K. New terpenoids from Mentha pulegium L. and their antimicrobial activity. Nat. Prod. Res., 2013, 27(8), 691-696.
[http://dx.doi.org/10.1080/14786419.2012.691488 ] [PMID: 22621322]
[150]
Chen, J-J.; Fei, D-Q.; Chen, S-G.; Gao, K. Antimicrobial triterpenoids from Vladimiria muliensis. J. Nat. Prod., 2008, 71(4), 547-550.
[http://dx.doi.org/10.1021/np070483l ] [PMID: 18293903]
[151]
Zhao, W.; Gong, X-W.; Duan, Y-X. etal Two new triterpenoids with antimicrobial activity from the leaves and twigs of Orophea yunnanensis. Nat. Prod. Res., 2019, 33(24), 3472-3477.
[http://dx.doi.org/10.1080/14786419.2018.1481843 ] [PMID: 29882434]
[152]
Langeveld, W.T.; Veldhuizen, E.J.; Burt, S.A. Synergy between essential oil components and antibiotics: a review. Crit. Rev. Microbiol., 2014, 40(1), 76-94.
[http://dx.doi.org/10.3109/1040841X.2013.763219 ] [PMID: 23445470]
[153]
Nikaido, H. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol., 1996, 178(20), 5853-5859.
[http://dx.doi.org/10.1128/JB.178.20.5853-5859.1996 ] [PMID: 8830678]
[154]
Ahmad, A.; Khan, A.; Manzoor, N. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur. J. Pharm. Sci., 2013, 48(1-2), 80-86.
[http://dx.doi.org/10.1016/j.ejps.2012.09.016 ] [PMID: 23111348]
[155]
Gonçalves, O.; Pereira, R.; Gonçalves, F.; Mendo, S.; Coimbra, M.A.; Rocha, S.M. Evaluation of the mutagenicity of sesquiterpenic compounds and their influence on the susceptibility towards antibiotics of two clinically relevant bacterial strains. Mutat. Res., 2011, 723(1), 18-25.
[http://dx.doi.org/10.1016/j.mrgentox.2011.03.010 ] [PMID: 21453784]
[156]
Misra, P.; Sashidhara, K.V.; Singh, S.P. et al 16α-Hydroxycleroda-3,13 (14)Z-dien-15,16-olide from Polyalthia longifolia: a safe and orally active antileishmanial agent. Br. J. Pharmacol., 2010, 159(5), 1143-1150.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00609.x ] [PMID: 20136832]
[157]
Rodriguez, M.V.; Sortino, M.A.; Ivancovich, J.J. et al Detection of synergistic combinations of Baccharis extracts with terbinafine against Trichophyton rubrum with high throughput screening synergy assay (HTSS) followed by 3D graphs. Behavior of some of their components. Phytomedicine, 2013, 20(13), 1230-1239.
[http://dx.doi.org/10.1016/j.phymed.2013.06.015 ] [PMID: 23906773]
[158]
Kozai, K.; Suzuki, J.; Okada, M.; Nagasaka, N. Effect of oleanolic acid-cyclodextrin inclusion compounds on dental caries by in vitro experiment and rat-caries model. Microbios, 1999, 97(388), 179-188.
[PMID: 10413873]
[159]
Kurek, A.; Nadkowska, P.; Pliszka, S.; Wolska, K.I. Modulation of antibiotic resistance in bacterial pathogens by oleanolic acid and ursolic acid. Phytomedicine, 2012, 19(6), 515-519.
[http://dx.doi.org/10.1016/j.phymed.2011.12.009 ] [PMID: 22341643]
[160]
Sun, L.; Sun, S.; Cheng, A.; Wu, X.; Zhang, Y.; Lou, H. In vitro activities of retigeric acid B alone and in combination with azole antifungal agents against Candida albicans. Antimicrob. Agents Chemother., 2009, 53(4), 1586-1591.
[http://dx.doi.org/10.1128/AAC.00940-08 ] [PMID: 19171796]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy