Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

In Vivo Toxicity Profile of NN-32 and Nanogold Conjugated GNP-NN-32 from Indian Spectacled Cobra Venom

Author(s): Saurabh S. Attarde and Sangeeta V. Pandit*

Volume 21, Issue 14, 2020

Page: [1479 - 1488] Pages: 10

DOI: 10.2174/1389201021666200519101221

Price: $65

Abstract

Background: NN-32 toxin, which was obtained from Naja naja venom and showed cytotoxicity on cancer cell lines. As the toxicity of NN-32 is the main hurdle in the process of drug development; hence, we have conjugated NN-32 toxin with gold nanoparticles (GNP-NN-32) in order to decrease the toxicity of NN-32 without reducing its efficacy, GNP-NN-32 alleviated the toxicity of NN-32 in in vitro studies during the course of earlier studies. In continuation, we are evaluating in vivo toxicity profile of NN-32 and GNP-NN-32 in the present study.

Objective: To study in vivo toxicity profile of NN-32 and nanogold conjugated GNP-NN-32 from Naja naja venom.

Materials and Methods: We have carried out in vivo acute toxicity study to determine LD50 dose of GNP-NN-32, in vivo sub-chronic toxicity for 30 days, haematology, serum biochemical parameters and histopathology study on various mice tissues and in vitro cellular and tissue toxicity studies.

Results: The LD50 dose of GNP-NN-32 was found to be 2.58 mg/kg (i.p.) in Swiss male albino mice. In vivo sub-chronic toxicity showed significantly reduced toxicity of GNP-NN-32 as compared to NN-32 alone.

Discussion: In vitro cellular toxicity studies on human lymphocyte and mouse peritoneal macrophage showed significant inhibition of cells by NN-32 alone.

Conclusion: Conjugated GNP-NN-32 toxin showed less in vivo toxicity as compared to pure NN-32.

Keywords: GNP-NN-32, LD50, Naja naja, Gold nanoparticles, sub-chronic toxicity, serum biochemical parameters, histopathology.

Graphical Abstract

[1]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[2]
Calmette, A.; Saenz, A.; Costil, L. Effects du venin de cobra sur les greffescancereuses et sur le cancer spontane (adeno-carcinome) de la souris. CR. Acad. Sci., 1933, 197, 205-210.
[3]
Gomes, A.; Bhattacharya, S.; Chakraborty, M.; Bhattacharjee, P.; Mishra, R.; Gomes, A. Anti-arthritic activity of Indian monocellate cobra (Naja kaouthia) venom on adjuvant induced arthritis. Toxicon, 2010, 55(2-3), 670-673.
[http://dx.doi.org/10.1016/j.toxicon.2009.10.007] [PMID: 19825384]
[4]
Das Gupta, S.; Halder, B.; Gomes, A.; Gomes, A. Bengalin initiates autophagic cell death through ERK-MAPK pathway following suppression of apoptosis in human leukemic U937 cells. Life Sci., 2013, 93(7), 271-276.
[http://dx.doi.org/10.1016/j.lfs.2013.06.022] [PMID: 23850515]
[5]
Costal-Oliveira, F.; Stransky, S.; Guerra-Duarte, C.; Naves de Souza, D.L.; Vivas-Ruiz, D.E.; Yarlequé, A.; Sanchez, E.F.; Chávez-Olórtegui, C.; Braga, V.M.M. L-amino acid oxidase from Bothrops atrox snake venom triggers autophagy, apoptosis and necrosis in normal human keratinocytes. Sci. Rep., 2019, 9(1), 781.
[http://dx.doi.org/10.1038/s41598-018-37435-4] [PMID: 30692577]
[6]
Kessentini-Zouari, R.; Jebali, J.; Taboubi, S.; Srairi-Abid, N.; Morjen, M.; Kallech-Ziri, O.; Bezzine, S.; Marvaldi, J.; Ayeb, M.E.; Marrakchi, N.; Luis, J. CC-PLA2-1 and CC-PLA2-2, two Cerastes cerastes venom-derived phospholipases A2, inhibit angiogenesis both in vitro and in vivo. Lab. Invest., 2010, 90(4), 510-519.
[http://dx.doi.org/10.1038/labinvest.2009.137] [PMID: 20142800]
[7]
Cura, J.E.; Blanzaco, D.P.; Brisson, C.; Cura, M.A.; Cabrol, R.; Larrateguy, L.; Mendez, C.; Sechi, J.C.; Silveira, J.S.; Theiller, E.; de Roodt, A.R.; Vidal, J.C. Phase I and pharmacokinetics study of crotoxin (cytotoxic PLA(2), NSC-624244) in patients with advanced cancer. Clin. Cancer Res., 2002, 8(4), 1033-1041.
[PMID: 11948110]
[8]
Das, T.; Bhattacharya, S.; Halder, B.; Biswas, A.; Das Gupta, S.; Gomes, A.; Gomes, A. Cytotoxic and antioxidant property of a purified fraction (NN-32) of Indian Naja naja venom on Ehrlich ascites carcinoma in BALB/c mice. Toxicon, 2011, 57(7-8), 1065-1072.
[http://dx.doi.org/10.1016/j.toxicon.2011.04.012] [PMID: 21530568]
[9]
Das, T.; Bhattacharya, S.; Biswas, A.; Gupta, S.D.; Gomes, A.; Gomes, A. Inhibition of leukemic U937 cell growth by induction of apoptosis, cell cycle arrest and suppression of VEGF, MMP-2 and MMP-9 activities by cytotoxin protein NN-32 purified from Indian spectacled cobra (Naja naja) venom. Toxicon, 2013, 65, 1-4.
[http://dx.doi.org/10.1016/j.toxicon.2013.01.004] [PMID: 23337397]
[10]
Mahon, E.; Salvati, A.; Baldelli Bombelli, F.; Lynch, I.; Dawson, K.A. Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J. Control. Release, 2012, 161(2), 164-174.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.009] [PMID: 22516097]
[11]
Chen, Z.; Meng, H.; Xing, G.; Chen, C.; Zhao, Y.; Jia, G.; Wang, T.; Yuan, H.; Ye, C.; Zhao, F.; Chai, Z.; Zhu, C.; Fang, X.; Ma, B.; Wan, L. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett., 2006, 163(2), 109-120.
[http://dx.doi.org/10.1016/j.toxlet.2005.10.003] [PMID: 16289865]
[12]
Leroux, J.C.; Gravel, P.; Balant, L.; Volet, B.; Anner, B.M.; Allémann, E.; Doelker, E.; Gurny, R. Internalization of poly(D,L-lactic acid) nanoparticles by isolated human leukocytes and analysis of plasma proteins adsorbed onto the particles. J. Biomed. Mater. Res., 1994, 28(4), 471-481.
[http://dx.doi.org/10.1002/jbm.820280410] [PMID: 8006052]
[13]
Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect., 2005, 113(7), 823-839.
[http://dx.doi.org/10.1289/ehp.7339] [PMID: 16002369]
[14]
Kim, J.S.; Yoon, T.J.; Yu, K.N.; Kim, B.G.; Park, S.J.; Kim, H.W.; Lee, K.H.; Park, S.B.; Lee, J.K.; Cho, M.H. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci., 2006, 89(1), 338-347.
[http://dx.doi.org/10.1093/toxsci/kfj027] [PMID: 16237191]
[15]
Teeguarden, J.G.; Hinderliter, P.M.; Orr, G.; Thrall, B.D.; Pounds, J.G. Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci., 2007, 95(2), 300-312.
[http://dx.doi.org/10.1093/toxsci/kfl165] [PMID: 17098817]
[16]
Yu, L.E.; Lanry Yung, L.Y.; Ong, C.N.; Tan, Y.L.; Suresh Balasubramaniam, K.; Hartono, D.; Shui, G.; Wenk, M.R.; Ong, W.Y. Translocation and effects of gold nanoparticles after inhalation exposure in rats. Nanotoxicology, 2007, 1(3), 235-242.
[http://dx.doi.org/10.1080/17435390701763108]
[17]
Balasubramanian, S.K.; Jittiwat, J.; Manikandan, J.; Ong, C.N.; Yu, L.E.; Ong, W.Y. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials, 2010, 31(8), 2034-2042.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.079] [PMID: 20044133]
[18]
Lasagna-Reeves, C.; Gonzalez-Romero, D.; Barria, M.A.; Olmedo, I.; Clos, A.; Sadagopa Ramanujam, V.M.; Urayama, A.; Vergara, L.; Kogan, M.J.; Soto, C. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem. Biophys. Res. Commun., 2010, 393(4), 649-655.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.046] [PMID: 20153731]
[19]
Chen, Y.S.; Hung, Y.C.; Lin, L.W.; Liau, I.; Hong, M.Y.; Huang, G.S. Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles. Nanotechnology, 2010, 21(48)485102
[http://dx.doi.org/10.1088/0957-4484/21/48/485102] [PMID: 21051801]
[20]
Cho, W.S.; Cho, M.; Jeong, J.; Choi, M.; Cho, H.Y.; Han, B.S.; Kim, S.H.; Kim, H.O.; Lim, Y.T.; Chung, B.H.; Jeong, J. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol., 2009, 236(1), 16-24.
[http://dx.doi.org/10.1016/j.taap.2008.12.023] [PMID: 19162059]
[21]
Wiwanitkit, V.; Sereemaspun, A.; Rojanathanes, R. Effect of gold nanoparticles on spermatozoa: The first world report. Fertil. Steril., 2009, 91(1), e7-e8.
[http://dx.doi.org/10.1016/j.fertnstert.2007.08.021] [PMID: 18054925]
[22]
Wiwanitkit, V.; Sereemaspun, A.; Rojanathanes, R. Visualization of gold nanoparticle on the microscopic picture of red blood cell: Implication for possible risk of nanoparticle exposure. Stochastic Environ. Res. Risk Assess., 2008, 22, 583-585.
[http://dx.doi.org/10.1007/s00477-007-0177-3]
[23]
Li, J.J.; Zou, L.I.; Hartono, D.; Ong, C.N.; Bay, B.H.; Lanry Yung, L.Y. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv. Mater., 2008, 20, 138-142.
[http://dx.doi.org/10.1002/adma.200701853]
[24]
Zhang, X.D.; Wu, H.Y.; Wu, D.; Wang, Y.Y.; Chang, J.H.; Zhai, Z.B.; Meng, A.M.; Liu, P.X.; Zhang, L.A.; Fan, F.Y. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int. J. Nanomedicine, 2010, 5, 771-781.
[http://dx.doi.org/10.2147/IJN.S8428] [PMID: 21042423]
[25]
Attarde, S.S.; Pandit, S.V. Cytotoxic activity of NN-32 toxin from Indian spectacled cobra venom on human breast cancer cell lines. BMC Complement. Altern. Med., 2017, 17(1), 503.
[http://dx.doi.org/10.1186/s12906-017-2018-3] [PMID: 29183371]
[26]
Attarde, S.S.; Pandit, S.V. Anticancer potential of nanogold conjugated toxin GNP-NN-32 from Naja naja venom. J. Venom. Anim. Toxins Incl. Trop. Dis., 2020, 26e20190047
[http://dx.doi.org/10.1590/1678-9199-jvatitd-2019-0047] [PMID: 32180805]
[27]
Aliu, Y.O.; Nwude, N. Veterinary Pharmacology and Toxicology Experiments; A.B.U. Press: Zaria, 1982, pp. 104-110.
[28]
Saha, P.P.; Bhowmik, T.; Dasgupta, A.K.; Gomes, A. in vivo and in vitro toxicity of nanogold conjugated snake venom protein toxin GNP-NKCT1. Toxicol. Rep., 2014, 1, 74-84.
[http://dx.doi.org/10.1016/j.toxrep.2014.04.007] [PMID: 28962228]
[29]
Hamilton, M.A.; Russo, R.C.; Thurston, R.V. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol., 1977, 11, 714-719.
[http://dx.doi.org/10.1021/es60130a004]
[30]
Boehm, T.; Folkman, J.; Browder, T.; O’Reilly, M.S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature, 1997, 390(6658), 404-407.
[http://dx.doi.org/10.1038/37126] [PMID: 9389480]
[31]
Venkatesan, C.; Sarathi, M.; Balasubramanaiyan, G.; Vimal, S.; Madan, N.; Sundar Raj, N.; Mohammed Yusuf Bilal, S.; Nazeer Basha, A.; Farook, M.A.; Sahul Hameed, A.S.; Sridevi, G. Neutralization of cobra venom by cocktail antiserum against venom proteins of cobra (Naja naja naja). Biologicals, 2014, 42(1), 8-21.
[http://dx.doi.org/10.1016/j.biologicals.2013.09.002] [PMID: 24176716]
[32]
Aznaurian, A.V.; Amiryan, S.V. Histopathological changes induced by the venom of the snake Vipera raddei (Armenian adder). Toxicon, 2006, 47(2), 141-143.
[http://dx.doi.org/10.1016/j.toxicon.2004.11.012] [PMID: 16373073]
[33]
Guzy, P.M. Creatine phosphokinase-MB (CPK-MB) and the diagnosis of myocardial infarction. West. J. Med., 1977, 127(6), 455-460.
[PMID: 339548]
[34]
Sobel, B.E.; Shell, W.E. Serum enzyme determinations in the diagnosis and assessment of myocardial infarction. Circulation, 1972, 45(2), 471-482.
[http://dx.doi.org/10.1161/01.CIR.45.2.471] [PMID: 5009490]
[35]
Jorgensen, C.R.; Zimmerman, T.S.; Wang, Y. Serum lactate dehydrogenase elevation in ambulatory cardiac patients. Evidence for chronic hemolysis. Circulation, 1967, 35(1), 79-89.
[http://dx.doi.org/10.1161/01.CIR.35.1.79] [PMID: 6015859]
[36]
de Souza, C.A.; Kayano, A.M.; Setúbal, S.S.; Pontes, A.S.; Furtado, J.L.; Kwasniewski, F.H.; Zaqueo, K.D.; Soares, A.M.; Stábeli, R.G.; Zuliani, J.P. Local and systemic biochemical alterations induced by Bothrops atrox snake venom in mice. J. Venom Res., 2012, 3, 28-34.
[PMID: 23487552]
[37]
Topyildiz, H.; Hayretdağ, S. Histopathological effects of Montivipera xanthina venom on rats. Turk. J. Zool., 2012, 36, 517-525.
[38]
Xu, T.R.; Wang, W.Y.; Huang, Y.H.; Meng, Q.X.; Li, D.S.; Lu, Q.M.; Xiong, Y.L. A nerve growth factor from the venom of Chinese cobra (Naja naja atra) and its effects on male reproductive system in rats. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 1999, 124(2), 149-156.
[http://dx.doi.org/10.1016/S0742-8413(99)00047-X] [PMID: 10622430]
[39]
Willinger, C.C.; Thamaree, S.; Schramek, H.; Gstraunthaler, G.; Pfaller, W. in vitro nephrotoxicity of Russell’s viper venom. Kidney Int., 1995, 47(2), 518-528.
[http://dx.doi.org/10.1038/ki.1995.65] [PMID: 7723237]
[40]
Cutrín, J.C.; Zingaro, B.; Camandola, S.; Boveris, A.; Pompella, A.; Poli, G. Contribution of γ glutamyl transpeptidase to oxidative damage of ischemic rat kidney. Kidney Int., 2000, 57(2), 526-533.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00871.x] [PMID: 10652029]
[41]
Safer, A.M. Ultrastructural localization of alkaline phosphatase activity in the proximal convoluted tubule cells of the gerbil Meriones crassus using a cerium-based method. Eur. J. Histochem., 1995, 39(2), 149-156.
[PMID: 7549018]
[42]
Al-Sadoon, M.K.; Fahim, A.; Salama, S.F.; Badr, G. The effects of LD50 of Walterinnesia aegyptia crude venom on blood parameters of male rats. Afr. J. Microbiol. Res., 2012, 6, 653-659.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy