Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Marine-derived Polyaromatic Butenolides - Isolation, Synthesis and Biological Evaluations

Author(s): Joe Bracegirdle and Robert A. Keyzers*

Volume 26, Issue 35, 2020

Page: [4351 - 4361] Pages: 11

DOI: 10.2174/1381612826666200518110617

Price: $65

Abstract

Marine invertebrates, especially tunicates, are a lucrative resource for the discovery of new lead compounds for the development of clinically utilized drugs. This review describes the isolation, synthesis and biological activities of several classes of marine-derived butenolide natural products, namely rubrolides and related cadiolides and prunolides. All relevant studies pertaining to these compounds up to the end of 2019 are included.

Keywords: Marine natural products, rubrolides, cadiolides, prunolides, antibiotics, synthesis.

[1]
Carte BK. Biomedical Potential of Marine Natural Products: Marine organisms are yielding novel molecules for use in basic research and medical applications. Bioscience 1996; 46: 271-86.
[http://dx.doi.org/10.2307/1312834]
[2]
Delsuc F, Brinkmann H, Chourrout D, Philippe H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 2006; 439(7079): 965-8.
[http://dx.doi.org/10.1038/nature04336] [PMID: 16495997]
[3]
Davis AR. Alkaloids and ascidian chemical defense: Evidence for the ecological role of natural products from Eudistoma olivaceum. Mar Biol 1991; 111(3): 375-9.
[http://dx.doi.org/10.1007/BF01319409]
[4]
Galmarini CM, D’Incalci M, Allavena P. Trabectedin and plitidepsin: drugs from the sea that strike the tumor microenvironment. Mar Drugs 2014; 12(2): 719-33.
[http://dx.doi.org/10.3390/md12020719] [PMID: 24473171]
[5]
Palanisamy SK, Rajendran NM, Marino A. Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development. Nat Prod Bioprospect 2017; 7(1): 1-111.
[http://dx.doi.org/10.1007/s13659-016-0115-5] [PMID: 28097641]
[6]
Kobayashi J, Harbour GC, Gilmore J, Rinehart KL, Eudistomins A. D, G, H, I, J, M, N, O, P, and Q, bromo, hydroxy, pyrrolyl and iminoazepino. beta.-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum. J Am Chem Soc 1984; 106(5): 1526-8.
[http://dx.doi.org/10.1021/ja00317a080]
[7]
Rinehart KL, Kobayashi J, Harbour GC, et al. E, K, and L, potent antiviral compounds containing a novel oxathiazepine ring from the Caribbean tunicate Eudistoma olivaceum. J Am Chem Soc 1984; 106(5): 1524-6.
[http://dx.doi.org/10.1021/ja00317a079]
[8]
Bracegirdle J, Robertson LP, Hume PA, et al. Lamellarin Sulfates from the Pacific Tunicate Didemnum ternerratum. J Nat Prod 2019; 82(7): 2000-8.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00493] [PMID: 31306000]
[9]
Andersen RJ, Faulkner DJ, He CH, Van Duyne GD, Clardy J. Metabolites of the marine prosobranch mollusk Lamellaria sp. J Am Chem Soc 1985; 107(19): 5492-5.
[http://dx.doi.org/10.1021/ja00305a027]
[10]
Carroll AR, Scheuer PJ, Kuanoniamines AB. C, and D: pentacyclic alkaloids from a tunicate and its prosobranch mollusk predator Chelynotus semperi. J Org Chem 1990; 55(14): 4426-31.
[http://dx.doi.org/10.1021/jo00301a040]
[11]
Shen GQ, Baker BJ. Biosynthetic studies of eudistomin H in the tunicate Eudistoma olivaceum. Tetrahedron Lett 1994; 35(28): 4923-6.
[http://dx.doi.org/10.1016/S0040-4039(00)73283-7]
[12]
Zhu T, Chen Z, Liu P, Wang Y, Xin Z, Zhu W. New rubrolides from the marine-derived fungus Aspergillus terreus OUCMDZ-1925. J Antibiot (Tokyo) 2014; 67(4): 315-8.
[http://dx.doi.org/10.1038/ja.2013.135] [PMID: 24326339]
[13]
Miao S, Andersen RJ. Rubrolides A-H, metabolites of the colonial tunicate Ritterella rubra. J Org Chem 1991; 56(22): 6275-80.
[http://dx.doi.org/10.1021/jo00022a012]
[14]
Lindquist N, Fenical W, Van Duyne GD, Clardy J. Isolation and structure determination of diazonamides A and B, unusual cytotoxic metabolites from the marine ascidian Diazona chinensis. J Am Chem Soc 1991; 113(6): 2303-4.
[http://dx.doi.org/10.1021/ja00006a060]
[15]
MarinLit Database. A database of the marine natural products literature. Available at: http://pubs.rsc.org/marinlit/
[16]
Smith CJ, Hettich RL, Jompa J, Tahir A, Buchanan MV, Ireland CM. Cadiolides A and B, New Metabolites from an Ascidian of the Genus Botryllus. J Org Chem 1998; 63(12): 4147-50.
[http://dx.doi.org/10.1021/jo980171a]
[17]
Wang W, Kim H, Nam S-J, Rho BJ, Kang H. Antibacterial butenolides from the Korean tunicate Pseudodistoma antinboja. J Nat Prod 2012; 75(12): 2049-54.
[http://dx.doi.org/10.1021/np300544a] [PMID: 23145884]
[18]
Carroll AR, Healy PC, Quinn RJ, Tranter CJ, Prunolides A, Prunolides A. B, and C: Novel Tetraphenolic Bis-Spiroketals from the Australian Ascidian Synoicum prunum. J Org Chem 1999; 64(8): 2680-2.
[http://dx.doi.org/10.1021/jo981881j] [PMID: 11674336]
[19]
Ortega MaJ. Zubía E, Ocaña JM, Naranjo S, Salvá J. New Rubrolides from the Ascidian Synoicum blochmanni. Tetrahedron 2000; 56(24): 3963-7.
[http://dx.doi.org/10.1016/S0040-4020(00)00328-8]
[20]
Bellina F, Anselmi C, Viel S, Mannina L, Rossi R. Selective synthesis of (Z)-4-aryl-5-[1-(aryl)methylidene]-3-bromo-2(5H)-furanones. Tetrahedron 2001; 57(50): 9997-10007.
[http://dx.doi.org/10.1016/S0040-4020(01)01017-1]
[21]
Pearce AN, Chia EW, Berridge MV, et al. E/Z-rubrolide O, an anti-inflammatory halogenated furanone from the New Zealand ascidian Synoicum n. sp. J Nat Prod 2007; 70(1): 111-3.
[http://dx.doi.org/10.1021/np060188l] [PMID: 17253860]
[22]
Sikorska J, Parker-Nance S, Davies-Coleman MT, Vining OB, Sikora AE, McPhail KL. Antimicrobial rubrolides from a South African species of Synoicum tunicate. J Nat Prod 2012; 75(10): 1824-7.
[http://dx.doi.org/10.1021/np300580z] [PMID: 23030848]
[23]
Smitha D, Kumar MMK, Ramana H, Rao DV. Rubrolide R: a new furanone metabolite from the ascidian Synoicum of the Indian Ocean. Nat Prod Res 2014; 28(1): 12-7.
[http://dx.doi.org/10.1080/14786419.2013.827194] [PMID: 23962161]
[24]
Zhou K, Zhu L, Wang X, Zhang T, Wang Y, Dong W, et al. Butyrolactones from the Fermentation Products of the Endophytic Fungus Aspergillus versicolor. Chem Nat Compd 2016; 52(4): 591-4.
[http://dx.doi.org/10.1007/s10600-016-1719-z]
[25]
Sun K, Zhu G, Hao J, Wang Y, Zhu W. Chemical-epigenetic method to enhance the chemodiversity of the marine algicolous fungus, Aspergillus terreus OUCMDZ-2739. Tetrahedron 2018; 74(1): 83-7.
[http://dx.doi.org/10.1016/j.tet.2017.11.039]
[26]
Won TH, Jeon JE, Kim S-H, et al. Brominated aromatic furanones and related esters from the ascidian Synoicum sp. J Nat Prod 2012; 75(12): 2055-61.
[http://dx.doi.org/10.1021/np3005562] [PMID: 23145909]
[27]
Ahn C-H, Won TH, Kim H, Shin J, Oh K-B. Inhibition of Candida albicans isocitrate lyase activity by cadiolides and synoilides from the ascidian Synoicum sp. Bioorg Med Chem Lett 2013; 23(14): 4099-101.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.051] [PMID: 23747224]
[28]
Wang W, Kim H, Patil RS, et al. Cadiolides J-M, antibacterial polyphenyl butenolides from the Korean tunicate Pseudodistoma antinboja. Bioorg Med Chem Lett 2017; 27(3): 574-7.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.016] [PMID: 28043797]
[29]
Jennings LK, Robertson LP, Rudolph KE, Munn AL, Carroll AR. Anti-prion Butenolides and Diphenylpropanones from the Australian Ascidian Polycarpa procera. J Nat Prod 2019; 82(9): 2620-6.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00551] [PMID: 31436981]
[30]
Kiriyama N, Nitta K, Sakaguchi Y, Taguchi Y, Yamamoto Y. Studies on the Metabolic Products of Aspergillus terreus. III. Metabolites of the Strain IFO 8835. (1). Chem Pharm Bull (Tokyo) 1977; 25(10): 2593-601.
[http://dx.doi.org/10.1248/cpb.25.2593]
[31]
Renzo R, Marco L, Chiara M, Giulia M, Fabio B. Synthesis and Biological Properties of 2(5H)-Furanones Featuring Bromine Atoms on the Heterocyclic Ring and/or Brominated Substituents. Curr Org Chem 2017; 21(11): 964-1018.
[http://dx.doi.org/10.2174/1385272821666170111151917]
[32]
Cunha S, Oliveira CC. Aplicações sintéticas do ácido mucobrômico e da 3,4-dibromofuran-2(5H)-ona. Quim Nova 2011; 34: 1425-38.
[http://dx.doi.org/10.1590/S0100-40422011000800023]
[33]
Fabio B, Renzo R. Mucochloric and Mucobromic Acids: Inexpensive, Highly Functionalised Starting Materials for the Selective Synthesis of Variously Substituted 2(5H)-Furanone Derivatives, Sulfur- or Nitrogen-Containing Heterocycles and Stereodefined Acyclic Unsaturated Dihalogenated Compounds. Curr Org Chem 2004; 8(12): 1089-103.
[http://dx.doi.org/10.2174/1385272043370195]
[34]
Kotora M, Negishi E. Highly Efficient and Selective Procedures for the Synthesis of γ-Alkylidenebutenolides via Palladium-Catalyzed Ene-Yne Coupling and Palladium- or Silver Catalyzed Lactonization of (Z)-2-En-4-ynoic Acids. Synthesis of Rubrolides A, C, D, and E. Synthesis 1997; 01: 121-8.
[http://dx.doi.org/10.1055/s-1997-1513]
[35]
Prim D, Fuss A, Kirsch GMS, Silva A. Synthesis and stereochemistry of β-aryl-β-haloacroleins: useful intermediates for the preparation of (Z) and (E) -2-en-4-ynecarbaldehydes and for the synthesis of rubrolides. J Chem Soc, Perkin Trans 2 1999; (6): 1175-80.
[http://dx.doi.org/10.1039/a900286c]
[36]
Boukouvalas J, Lachance N, Ouellet M, Trudeau M. Facile access to 4-aryl-2(5H)-furanones by Suzuki cross coupling: Efficient synthesis of rubrolides C and E. Tetrahedron Lett 1998; 39(42): 7665-8.
[http://dx.doi.org/10.1016/S0040-4039(98)01715-8]
[37]
Bellina F, Anselmi C, Rossi R. Total synthesis of rubrolide M and some of its unnatural congeners. Tetrahedron Lett 2002; 43(11): 2023-7.
[http://dx.doi.org/10.1016/S0040-4039(02)00202-2]
[38]
Bellina F, Anselmi C, Martina F, Rossi R. Mucochloric Acid: A Useful Synthon for the Selective Synthesis of 4-Aryl-3-chloro-2(5H)-furanones, (Z)-4-Aryl-5-[1-(aryl)methylidene]-3-chloro-2(5H)-furanones and 3,4-Diaryl-2(5H)-furanones. Eur J Org Chem 2003; 2003(12): 2290-302.
[http://dx.doi.org/10.1002/ejoc.200300097]
[39]
Karak M, Acosta JAM, Barbosa LCA, Boukouvalas J. Late-Stage Bromination Enables the Synthesis of Rubrolides B, I, K, and O. Eur J Org Chem 2016; 2016(22): 3780-7.
[http://dx.doi.org/10.1002/ejoc.201600473]
[40]
Boukouvalas J, McCann LC. Synthesis of the human aldose reductase inhibitor rubrolide L. Tetrahedron Lett 2010; 51(35): 4636-9.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.129]
[41]
Manzanaro S, Salvá J, de la Fuente JÁ. Phenolic marine natural products as aldose reductase inhibitors. J Nat Prod 2006; 69(10): 1485-7.
[http://dx.doi.org/10.1021/np0503698] [PMID: 17067167]
[42]
Barbosa LCA, Maltha CRA, Lage MR, et al. Synthesis of rubrolide analogues as new inhibitors of the photosynthetic electron transport chain. J Agric Food Chem 2012; 60(42): 10555-63.
[http://dx.doi.org/10.1021/jf302921n] [PMID: 23025464]
[43]
Varejão JOS, Barbosa LCA, Ramos GÁ, Varejão EVV, King-Díaz B, Lotina-Hennsen B. New rubrolide analogues as inhibitors of photosynthesis light reactions. J Photochem Photobiol B 2015; 145: 11-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.02.016] [PMID: 25748644]
[44]
Varejao JOS, Barbosa LCA, Maltha CRA, Lage MR, Lanznaster M, Carneiro JWM, et al. Voltammetric and Theoretical Study of the Redox Properties of Rubrolide Analogues. Electrochim Acta 2014; 120: 334-43.
[http://dx.doi.org/10.1016/j.electacta.2013.12.053]
[45]
Pereira UA, Barbosa LCA, Demuner AJ, Silva AA, Bertazzini M, Forlani G. Rubrolides as model for the development of new lactones and their aza analogs as potential photosynthesis inhibitors. Chem Biodivers 2015; 12(7): 987-1006.
[http://dx.doi.org/10.1002/cbdv.201400416] [PMID: 26172321]
[46]
Pereira UA, Barbosa LCA, Maltha CRA, Demuner AJ, Masood MA, Pimenta AL. γ-Alkylidene-γ-lactones and isobutylpyrrol-2(5H)-ones analogues to rubrolides as inhibitors of biofilm formation by gram-positive and gram-negative bacteria. Bioorg Med Chem Lett 2014; 24(4): 1052-6.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.023] [PMID: 24484899]
[47]
Pereira UA, Barbosa LCA, Maltha CRA, Demuner AJ, Masood MA, Pimenta AL. Inhibition of Enterococcus faecalis biofilm formation by highly active lactones and lactams analogues of rubrolides. Eur J Med Chem 2014; 82: 127-38.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.035] [PMID: 24880232]
[48]
Miranda ACM, Barbosa LCA, Masood MA, Varejão JOS, Sordi M, Benfatti CAM, et al. Inhibitory Effect on Biofilm Formation of Pathogenic Bacteria Induced by Rubrolide Lactam Analogues. ACS Omega 2018; 3(12): 18475-80.
[http://dx.doi.org/10.1021/acsomega.8b02334]
[49]
Pereira UA, Moreira TA, Barbosa LCA, Maltha CRA, Bomfim IS, Maranhão SS, et al. Rubrolide analogues and their derived lactams as potential anticancer agents. MedChemComm 2016; 7(2): 345-52.
[http://dx.doi.org/10.1039/C5MD00459D]
[50]
de Nys R, Wright AD, König GM, Sticher O. New halogenated furanones from the marine alga delisea pulchra (cf. fimbriata). Tetrahedron 1993; 49(48): 11213-20.
[http://dx.doi.org/10.1016/S0040-4020(01)81808-1]
[51]
Yin Q, Liang J, Zhang W, et al. Butenolide, a Marine-Derived Broad-Spectrum Antibiofilm Agent Against Both Gram-Positive and Gram-Negative Pathogenic Bacteria. Mar Biotechnol (NY) 2019; 21(1): 88-98.
[http://dx.doi.org/10.1007/s10126-018-9861-1] [PMID: 30612218]
[52]
Karak M, Barbosa LCA, Maltha CRA, Silva TM, Boukouvalas J. Palladium-catalyzed hydrodehalogenation of butenolides: An efficient and sustainable access to β-arylbutenolides. Tetrahedron Lett 2017; 58(29): 2830-4.
[http://dx.doi.org/10.1016/j.tetlet.2017.06.016]
[53]
Kar A, Argade NP. A Facile Synthesis of Rubrolide E. Synthesis 2005; 14: 2284-6.
[54]
Chavan SP, Pathak AB, Pandey A, Kalkote UR. Short and Efficient Synthesis of Rubrolide E. Synth Commun 2007; 37(23): 4253-63.
[http://dx.doi.org/10.1080/00397910701575665]
[55]
Cacchi S, Fabrizi G, Goggiamani A, Sferrazza A. Palladium-Catalyzed Reaction of Arenediazonium Tetrafluoroborates with Methyl 4-Hydroxy-2-butenoate: An Approach to 4-Aryl Butenolides and an Expeditious Synthesis of Rubrolide E. Synlett 2009; 8: 1277-80.
[http://dx.doi.org/10.1055/s-0028-1088132]
[56]
Tale NP, Shelke AV, Tiwari GB, Thorat PB, Karade NN. New Concise and Efficient Synthesis of Rubrolides C and E via Intramolecular Wittig Reaction. Helv Chim Acta 2012; 95(5): 852-7.
[http://dx.doi.org/10.1002/hlca.201100351]
[57]
Damodar K, Kim J-K, Jun J-G. Efficient, collective synthesis and nitric oxide inhibitory activity of rubrolides E, F, R, S and their derivatives. Tetrahedron Lett 2017; 58(1): 50-3.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.096]
[58]
Schmidt B, Riemer M, Schilde U. Tandem Claisen Rearrangement/6-endo Cyclization Approach to Allylated and Prenylated Chromones. Eur J Org Chem 2015; 2015(34): 7602-11.
[http://dx.doi.org/10.1002/ejoc.201501151]
[59]
Schacht M, Boehlich GJ, de Vries J, Bertram S, Gabriel G, Zimmermann P, et al. Protecting-Group-Free Total Syntheses of Rubrolide R and S. Eur J Org Chem 2017; 2017(13): 1745-8.
[http://dx.doi.org/10.1002/ejoc.201700158]
[60]
Moreira TA, Lafleur-Lambert R, Barbosa LCA, Boukouvalas J. Concise, stereocontrolled and modular syntheses of the anti-influenza rubrolides R and S. Tetrahedron Lett 2019; 60(50)151307
[http://dx.doi.org/10.1016/j.tetlet.2019.151307]
[61]
Margaros I, Montagnon T, Tofi M, Pavlakos E, Vassilikogiannakis G. The power of singlet oxygen chemistry in biomimetic syntheses. Tetrahedron 2006; 62(22): 5308-17.
[http://dx.doi.org/10.1016/j.tet.2006.01.110]
[62]
Montagnon T, Tofi M, Vassilikogiannakis G. Using singlet oxygen to synthesize polyoxygenated natural products from furans. Acc Chem Res 2008; 41(8): 1001-11.
[http://dx.doi.org/10.1021/ar800023v] [PMID: 18605738]
[63]
Sofikiti N, Tofi M, Montagnon T, Vassilikogiannakis G, Stratakis M. Synthesis of the spirocyclic core of the prunolides using a singlet oxygen-mediated cascade sequence. Org Lett 2005; 7(12): 2357-9.
[http://dx.doi.org/10.1021/ol050619b] [PMID: 15932197]
[64]
Mairink SZ, Barbosa LCA, Boukouvalas J, Pedroso SHSP, Santos SG, Magalhães PP, et al. Synthesis and evaluation of cadiolide analogues as inhibitors of bacterial biofilm formation. Med Chem Res 2018; 27(11): 2426-36.
[http://dx.doi.org/10.1007/s00044-018-2246-1]
[65]
Boukouvalas J, Pouliot M. Short and Efficient Synthesis of Cadiolide B. Synlett 2005; 2: 343-5.
[http://dx.doi.org/10.1055/s-2004-837220]
[66]
Boukouvalas J, Thibault C. Step-economical synthesis of the marine ascidian antibiotics cadiolide A, B, and D. J Org Chem 2015; 80(1): 681-4.
[http://dx.doi.org/10.1021/jo502503w] [PMID: 25423410]
[67]
Mairink SZ, Barbosa LCA, Maltha CRA, Varejão JOS, Oliveira GP, Takahashi JA, et al. Inibição do crescimento de microrganismos patogênicos induzida por butenolídeos análogos aos cadiolídeos. Quim Nova 2019; 42: 595-606.
[http://dx.doi.org/10.21577/0100-4042.20170368]
[68]
Peixoto PA, Boulangé A, Leleu S, Franck X. Versatile Synthesis of Acylfuranones by Reaction of Acylketenes with α-Hydroxy Ketones: Application to the One-Step Multicomponent Synthesis of Cadiolide B and Its Analogues. Eur J Org Chem 2013; 2013(16): 3316-27.
[http://dx.doi.org/10.1002/ejoc.201300166]
[69]
Boulangé A, Parraga J, Galán A, et al. Synthesis and antibacterial activities of cadiolides A, B and C and analogues. Bioorg Med Chem 2015; 23(13): 3618-28.
[http://dx.doi.org/10.1016/j.bmc.2015.04.010] [PMID: 25913865]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy