Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Targeting Different Pathways Using Novel Combination Therapy in Triple Negative Breast Cancer

Author(s): Manzoor A. Mir*, Hina Qayoom, Umar Mehraj, Safura Nisar, Basharat Bhat and Nissar A. Wani*

Volume 20, Issue 8, 2020

Page: [586 - 602] Pages: 17

DOI: 10.2174/1570163817666200518081955

Price: $65

Abstract

Triple negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer accounting for 15-20% of cases and is defined by the lack of hormonal receptors viz., estrogen receptor (ER), progesterone receptor (PR) and expression of human epidermal growth receptor 2 (HER2). Treatment of TNBC is more challenging than other subtypes of breast cancer due to the lack of markers for the molecularly targeted therapies (ER, PR, and HER-2/ Neu), the conventional chemotherapeutic agents are still the mainstay of the therapeutic protocols of its patients. Despite, TNBC being more chemo-responsive than other subtypes, unfortunately, the initial good response to the chemotherapy eventually turns into a refractory drug-resistance. Using a monotherapy for the treatment of cancer, especially high-grade tumors like TNBC, is mostly worthless due to the inherent genetic instability of tumor cells to develop intrinsic and acquired resistance. Thus, a cocktail of two or more drugs with different mechanisms of action is more effective and could successfully control the disease. Furthermore, combination therapy reveals more, or at least the same, effectiveness with lower doses of every single agent and decreases the likelihood of chemoresistance. Herein, we shed light on the novel combinatorial approaches targeting PARP, EGFR, PI3K pathway, AR, and wnt signaling, HDAC, MEK pathway for efficient treatment of high-grade tumors like TNBC and decreasing the onset of resistance.

Keywords: Breast cancer, TNBC, drug resistance, combination therapies, PARPi’s, Wnt/β-catenin, Hsp90.

Graphical Abstract

[1]
Rebecca, L.S.; Kimberly, D.M.; Ahmedin, J. Cancer Statistics, 2019. CA Cancer J. Clin., 2019, 69, 7-34.
[2]
Zheng, W.; Cao, L.; Ouyang, L.; Zhang, Q.; Duan, B.; Zhou, W.; Chen, S.; Peng, W.; Xie, Y.; Fan, Q.; Gong, D. Anticancer activity of 1,25-(OH)2D3 against human breast cancer cell lines by targeting Ras/MEK/ERK pathway. OncoTargets Ther., 2019, 12, 721-732.
[http://dx.doi.org/10.2147/OTT.S190432] [PMID: 30774359]
[3]
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[4]
DeSantis, C.; Ma, J.; Bryan, L.; Jemal, A. Breast cancer statistics, 2013. CA Cancer J. Clin., 2014, 64(1), 52-62.
[http://dx.doi.org/10.3322/caac.21203] [PMID: 24114568]
[5]
Perou, C.M.S.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; Fluge, O.; Pergamenschikov, A.; Williams, C.; Zhu, S.X.; Lønning, P.E.; Børresen-Dale, A.L.; Brown, P.O.; Botstein, D. Molecular portraits of human breast tumours. Nature, 2000, 406(6797), 747-752.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[6]
Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Thorsen, T.; Quist, H.; Matese, J.C.; Brown, P.O.; Botstein, D.; Lønning, P.E.; Børresen-Dale, A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10869-10874.
[http://dx.doi.org/10.1073/pnas.191367098] [PMID: 11553815]
[7]
Nguyen, P.L.; Taghian, A.G.; Katz, M.S.; Niemierko, A.; Abi Raad, R.F.; Boon, W.L.; Bellon, J.R.; Wong, J.S.; Smith, B.L.; Harris, J.R. Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. J. Clin. Oncol., 2008, 26(14), 2373-2378.
[http://dx.doi.org/10.1200/JCO.2007.14.4287] [PMID: 18413639]
[8]
Siddharth, SS; Racial Disparity, D. Cancers (Basel), 2018, 10, 514.
[http://dx.doi.org/10.3390/cancers10120514]
[9]
Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res., 2007, 13(15 Pt 1), 4429-4434.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3045] [PMID: 17671126]
[10]
Kennecke, H.; Yerushalmi, R.; Woods, R.; Cheang, M.C.; Voduc, D.; Speers, C.H.; Nielsen, T.O.; Gelmon, K. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol., 2010, 28(20), 3271-3277.
[http://dx.doi.org/10.1200/JCO.2009.25.9820] [PMID: 20498394]
[11]
Prat, A.; Adamo, B.; Cheang, M.C.; Anders, C.K.; Carey, L.A.; Perou, C.M. Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist, 2013, 18(2), 123-133.
[http://dx.doi.org/10.1634/theoncologist.2012-0397] [PMID: 23404817]
[12]
Prat, A.; Parker, J.S.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.; Perou, C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res., 2010, 12(5), R68.
[http://dx.doi.org/10.1186/bcr2635] [PMID: 20813035]
[13]
Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res., 2007, 13(8), 2329-2334.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1109] [PMID: 17438091]
[14]
R.D. C, M.V. Costanzo. Triple-negative breast cancer Breast Cancer Res.,, 2010. 12(Suppl. 2)
[15]
von Minckwitz, G.; Schneeweiss, A.; Loibl, S.; Salat, C.; Denkert, C.; Rezai, M.; Blohmer, J.U.; Jackisch, C.; Paepke, S.; Gerber, B.; Zahm, D.M.; Kümmel, S.; Eidtmann, H.; Klare, P.; Huober, J.; Costa, S.; Tesch, H.; Hanusch, C.; Hilfrich, J.; Khandan, F.; Fasching, P.A.; Sinn, B.V.; Engels, K.; Mehta, K.; Nekljudova, V.; Untch, M. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol., 2014, 15(7), 747-756.
[http://dx.doi.org/10.1016/S1470-2045(14)70160-3] [PMID: 24794243]
[16]
Isakoff, S.J.; Mayer, E.L.; He, L.; Traina, T.A.; Carey, L.A.; Krag, K.J.; Rugo, H.S.; Liu, M.C.; Stearns, V.; Come, S.E.; Timms, K.M.; Hartman, A.R.; Borger, D.R.; Finkelstein, D.M.; Garber, J.E.; Ryan, P.D.; Winer, E.P.; Goss, P.E.; Ellisen, L.W. TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J. Clin. Oncol., 2015, 33(17), 1902-1909.
[http://dx.doi.org/10.1200/JCO.2014.57.6660] [PMID: 25847936]
[17]
Van Poznak, C.; Somerfield, M.R.; Bast, R.C.; Cristofanilli, M.; Goetz, M.P.; Gonzalez-Angulo, A.M.; Hicks, D.G.; Hill, E.G.; Liu, M.C.; Lucas, W.; Mayer, I.A.; Mennel, R.G.; Symmans, W.F.; Hayes, D.F.; Harris, L.N. Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American society of clinical oncology clinical practice guideline. J. Clin. Oncol., 2015, 33(24), 2695-2704.
[http://dx.doi.org/10.1200/JCO.2015.61.1459] [PMID: 26195705]
[18]
Brett, F; charlotte, clarke; sihem, ait-oudhia. current advances in biomarkers for targeted therapy in triple-negative breast cancer. breast cancer - targets and therapy., 2016, 8, 183-197.
[19]
Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.; Savage, M.I.; Osborne, C.K.; Hilsenbeck, S.G.; Chang, J.C.; Mills, G.B.; Lau, C.C.; Brown, P.H. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res., 2015, 21(7), 1688-1698.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0432] [PMID: 25208879]
[20]
Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest., 2011, 121(7), 2750-2767.
[http://dx.doi.org/10.1172/JCI45014] [PMID: 21633166]
[21]
Roberti, M.P.; Arriaga, J.M.; Bianchini, M.; Quintá, H.R.; Bravo, A.I.; Levy, E.M.; Mordoh, J.; Barrio, M.M. Protein expression changes during human triple negative breast cancer cell line progression to lymph node metastasis in a xenografted model in nude mice. Cancer Biol. Ther., 2012, 13(11), 1123-1140.
[http://dx.doi.org/10.4161/cbt.21187] [PMID: 22825326]
[22]
Chen, D.R.; Lu, D.Y.; Lin, H.Y.; Yeh, W.L. Mesenchymal stem cell-induced doxorubicin resistance in triple negative breast cancer. BioMed Res. Int., 2014. 2014532161
[http://dx.doi.org/10.1155/2014/532161] [PMID: 25140317]
[23]
Cheang, M.C.; Voduc, D.; Bajdik, C.; Leung, S.; McKinney, S.; Chia, S.K.; Perou, C.M.; Nielsen, T.O. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin. Cancer Res., 2008, 14(5), 1368-1376.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1658] [PMID: 18316557]
[24]
Sohn, J.; Do, K.A.; Liu, S.; Chen, H.; Mills, G.B.; Hortobagyi, G.N.; Meric-Bernstam, F.; Gonzalez-Angulo, A.M. Functional proteomics characterization of residual triple-negative breast cancer after standard neoadjuvant chemotherapy. Ann. Oncol., 2013, 24(10), 2522-2526.
[http://dx.doi.org/10.1093/annonc/mdt248] [PMID: 23925999]
[25]
Zhu, Y.; Wang, Y.; Guan, B.; Rao, Q.; Wang, J.; Ma, H.; Zhang, Z.; Zhou, X. C-kit and PDGFRA gene mutations in triple negative breast cancer. Int. J. Clin. Exp. Pathol., 2014, 7(7), 4280-4285.
[PMID: 25120810]
[26]
Johansson, I.; Aaltonen, K.E.; Ebbesson, A.; Grabau, D.; Wigerup, C.; Hedenfalk, I.; Rydén, L. Increased gene copy number of KIT and VEGFR2 at 4q12 in primary breast cancer is related to an aggressive phenotype and impaired prognosis. Genes Chromosomes Cancer, 2012, 51(4), 375-383.
[http://dx.doi.org/10.1002/gcc.21922] [PMID: 22170730]
[27]
Yi, Y.W.; You, K.; Bae, E.J.; Kwak, S.J.; Seong, Y.S.; Bae, I. Dual inhibition of EGFR and MET induces synthetic lethality in triple-negative breast cancer cells through downregulation of ribosomal protein S6. Int. J. Oncol., 2015, 47(1), 122-132.
[http://dx.doi.org/10.3892/ijo.2015.2982] [PMID: 25955731]
[28]
Soliman, H.; Khalil, F.; Antonia, S. PD-L1 expression is increased in a subset of basal type breast cancer cells. PLoS One, 2014, 9(2), e88557.
[http://dx.doi.org/10.1371/journal.pone.0088557] [PMID: 24551119]
[29]
Shah, S.P.; Roth, A.; Goya, R.; Oloumi, A.; Ha, G.; Zhao, Y.; Turashvili, G.; Ding, J.; Tse, K.; Haffari, G.; Bashashati, A.; Prentice, L.M.; Khattra, J.; Burleigh, A.; Yap, D.; Bernard, V.; McPherson, A.; Shumansky, K.; Crisan, A.; Giuliany, R.; Heravi-Moussavi, A.; Rosner, J.; Lai, D.; Birol, I.; Varhol, R.; Tam, A.; Dhalla, N.; Zeng, T.; Ma, K.; Chan, S.K.; Griffith, M.; Moradian, A.; Cheng, S.W.; Morin, G.B.; Watson, P.; Gelmon, K.; Chia, S.; Chin, S.F.; Curtis, C.; Rueda, O.M.; Pharoah, P.D.; Damaraju, S.; Mackey, J.; Hoon, K.; Harkins, T.; Tadigotla, V.; Sigaroudinia, M.; Gascard, P.; Tlsty, T.; Costello, J.F.; Meyer, I.M.; Eaves, C.J.; Wasserman, W.W.; Jones, S.; Huntsman, D.; Hirst, M.; Caldas, C.; Marra, M.A.; Aparicio, S. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 2012, 486(7403), 395-399.
[http://dx.doi.org/10.1038/nature10933] [PMID: 22495314]
[30]
Baxi, S.M.; Tan, W.; Murphy, S.T.; Smeal, T.; Yin, M.J. Targeting 3-phosphoinoside-dependent kinase-1 to inhibit insulin-like growth factor-I induced AKT and p70 S6 kinase activation in breast cancer cells. PLoS One, 2012, 7(10), e48402.
[http://dx.doi.org/10.1371/journal.pone.0048402] [PMID: 23119004]
[31]
Dean, S.J.; Perks, C.M.; Holly, J.M.; Bhoo-Pathy, N.; Looi, L.M.; Mohammed, N.A.; Mun, K.S.; Teo, S.H.; Koobotse, M.O.; Yip, C.H.; Rhodes, A. Loss of PTEN expression is associated with IGFBP2 expression, younger age, and late stage in triple-negative breast cancer. Am. J. Clin. Pathol., 2014, 141(3), 323-333.
[http://dx.doi.org/10.1309/AJCPR11DEAYPTUSL] [PMID: 24515759]
[32]
Ohi, Y.; Umekita, Y.; Yoshioka, T.; Souda, M.; Rai, Y.; Sagara, Y.; Sagara, Y.; Sagara, Y.; Tanimoto, A. Aldehyde dehydrogenase 1 expression predicts poor prognosis in triple-negative breast cancer. Histopathology, 2011, 59(4), 776-780.
[http://dx.doi.org/10.1111/j.1365-2559.2011.03884.x] [PMID: 22014057]
[33]
Xu, Y.; Diao, L.; Chen, Y.; Liu, Y.; Wang, C.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Fan, T.; Lin, B.; Deng, D.; Narod, S.A.; Xie, Y. Promoter methylation of BRCA1 in triple-negative breast cancer predicts sensitivity to adjuvant chemotherapy. Ann. Oncol., 2013, 24(6), 1498-1505.
[http://dx.doi.org/10.1093/annonc/mdt011] [PMID: 23406733]
[34]
Foedermayr, M.; Sebesta, M.; Rudas, M.; Berghoff, A.S.; Promberger, R.; Preusser, M.; Dubsky, P.; Fitzal, F.; Gnant, M.; Steger, G.G.; Weltermann, A.; Zielinski, C.C.; Zach, O.; Bartsch, R. BRCA-1 methylation and TP53 mutation in triple-negative breast cancer patients without pathological complete response to taxane-based neoadjuvant chemotherapy. Cancer Chemother. Pharmacol., 2014, 73(4), 771-778.
[http://dx.doi.org/10.1007/s00280-014-2404-1] [PMID: 24526178]
[35]
Urruticoechea, A.; Smith, I.E.; Dowsett, M. Proliferation marker Ki-67 in early breast cancer. J. Clin. Oncol., 2005, 23(28), 7212-7220.
[http://dx.doi.org/10.1200/JCO.2005.07.501] [PMID: 16192605]
[36]
Gao, R.; Davis, A.; McDonald, T.O.; Sei, E.; Shi, X.; Wang, Y.; Tsai, P.C.; Casasent, A.; Waters, J.; Zhang, H.; Meric-Bernstam, F.; Michor, F.; Navin, N.E. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet., 2016, 48(10), 1119-1130.
[http://dx.doi.org/10.1038/ng.3641] [PMID: 27526321]
[37]
Collignon, J.; Lousberg, L.; Schroeder, H.; Jerusalem, G. Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer (Dove Med. Press), 2016, 8, 93-107.
[PMID: 27284266]
[38]
Sharma, P. Biology and management of patients with triple-negative breast cancer. Oncologist, 2016, 21(9), 1050-1062.
[http://dx.doi.org/10.1634/theoncologist.2016-0067] [PMID: 27401886]
[39]
Kalimutho, M.; Parsons, K.; Mittal, D.; López, J.A.; Srihari, S.; Khanna, K.K. Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol. Sci., 2015, 36(12), 822-846.
[http://dx.doi.org/10.1016/j.tips.2015.08.009] [PMID: 26538316]
[40]
Costa, R.; Shah, A.N.; Santa-Maria, C.A.; Cruz, M.R.; Mahalingam, D.; Carneiro, B.A.; Chae, Y.K.; Cristofanilli, M.; Gradishar, W.J.; Giles, F.J. targeting epidermal growth factor receptor in triple negative breast cancer: New discoveries and practical insights for drug development. Cancer Treat. Rev., 2017, 53, 111-119.
[http://dx.doi.org/10.1016/j.ctrv.2016.12.010] [PMID: 28104566]
[41]
Walsh, C.S. Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol. Oncol., 2015, 137(2), 343-350.
[http://dx.doi.org/10.1016/j.ygyno.2015.02.017] [PMID: 25725131]
[42]
Anna, D. Elisena Franzese, Sara Centonze, Francesca Carlino, Carminia Maria Della Corte, Jole Ventriglia1 & Angelica Petrillo, Ferdinando De Vita, Roberto Alfano, Fortunato Ciardiello, Michele Orditura. Triple-negative breast cancers: Systematic review of the literature on molecular and clinical features with a focus on Treatment with innovative drugs. Curr. Oncol. Rep., 2018, 20, 76.
[43]
Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; Wu, W.; Goessl, C.; Runswick, S.; Conte, P. Olaparib for metastatic breast cancer in patients with a Germline BRCA mutation. N. Engl. J. Med., 2017, 377(6), 523-533.
[http://dx.doi.org/10.1056/NEJMoa1706450] [PMID: 28578601]
[44]
Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; Martin, N.M.; Jackson, S.P.; Smith, G.C.; Ashworth, A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005, 434(7035), 917-921.
[http://dx.doi.org/10.1038/nature03445] [PMID: 15829967]
[45]
O’Shaughnessy, J.; Schwartzberg, L.; Danso, M.A.; Miller, K.D.; Rugo, H.S.; Neubauer, M.; Robert, N.; Hellerstedt, B.; Saleh, M.; Richards, P.; Specht, J.M.; Yardley, D.A.; Carlson, R.W.; Finn, R.S.; Charpentier, E.; Garcia-Ribas, I.; Winer, E.P. Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J. Clin. Oncol., 2014, 32(34), 3840-3847.
[http://dx.doi.org/10.1200/JCO.2014.55.2984] [PMID: 25349301]
[46]
Balmaña, J.; Tung, N.M.; Isakoff, S.J.; Graña, B.; Ryan, P.D.; Saura, C.; Lowe, E.S.; Frewer, P.; Winer, E.; Baselga, J.; Garber, J.E. Phase I trial of olaparib in combination with cisplatin for the treatment of patients with advanced breast, ovarian and other solid tumors. Ann. Oncol., 2014, 25(8), 1656-1663.
[http://dx.doi.org/10.1093/annonc/mdu187] [PMID: 24827126]
[47]
Aogi, K; Yonemori, K; Takahashi, M efficacy and safety of olaparib combined with eribulin in patients with advanced or metastatic triple negative breast cancer (tnbc) previously treated with anthracyclines and taxanes: the final analysis of a japanese phase i/ii trial. ann oncol., 2017, 28(suppl_5), v74-v108. 1.
[48]
Lee, A.; Djamgoz, M.B.A. Triple negative breast cancer: Emerging therapeutic modalities and novel combination therapies. Cancer Treat. Rev., 2018, 62, 110-122.
[http://dx.doi.org/10.1016/j.ctrv.2017.11.003] [PMID: 29202431]
[49]
Rodler, E.T.; Kurland, B.F.; Griffin, M.; Gralow, J.R.; Porter, P.; Yeh, R.F.; Gadi, V.K.; Guenthoer, J.; Beumer, J.H.; Korde, L.; Strychor, S.; Kiesel, B.F.; Linden, H.M.; Thompson, J.A.; Swisher, E.; Chai, X.; Shepherd, S.; Giranda, V.; Specht, J.M. Phase I study of veliparib (ABT-888) combined with cisplatin and vinorelbine in advanced triple-negative breast cancer and/or BRCA mutation-associated breast cancer. Clin. Cancer Res., 2016, 22(12), 2855-2864.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2137] [PMID: 26801247]
[50]
Rodler, E.; Gralow, J.; Kurland, B.; Griffin, M.; Yeh, R.; Thompson, J. Phase I: veliparib with cisplatin (CP) and vinorelbine (VNR) in advanced triple negative breast cancer (TNBC) and/or BRCA mutation-associated breast cancer. J. Clin. Oncol., 2014, 32, 2569.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.2569]
[51]
Xia, Q.; Cai, Y.; Peng, R.; Wu, G.; Shi, Y.; Jiang, W. The CDK1 inhibitor RO3306 improves the response of BRCA-proficient breast cancer cells to PARP inhibition. Int. J. Oncol., 2014, 44(3), 735-744.
[http://dx.doi.org/10.3892/ijo.2013.2240] [PMID: 24378347]
[52]
Jiao, S.; Xia, W.; Yamaguchi, H.; Wei, Y.; Chen, M.K.; Hsu, J.M.; Hsu, J.L.; Yu, W.H.; Du, Y.; Lee, H.H.; Li, C.W.; Chou, C.K.; Lim, S.O.; Chang, S.S.; Litton, J.; Arun, B.; Hortobagyi, G.N.; Hung, M.C. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin. Cancer Res., 2017, 23(14), 3711-3720.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3215] [PMID: 28167507]
[53]
Higuchi, T.; Flies, D.B.; Marjon, N.A.; Mantia-Smaldone, G.; Ronner, L.; Gimotty, P.A.; Adams, S.F. CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol. Res., 2015, 3(11), 1257-1268.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0044] [PMID: 26138335]
[54]
Wang, X.; Shi, Y.; Huang, D.; Guan, X. Emerging therapeutic modalities of PARP inhibitors in breast cancer. Cancer Treat. Rev., 2018, 68, 62-68.
[http://dx.doi.org/10.1016/j.ctrv.2018.05.014] [PMID: 29870916]
[55]
Graus-Porta, D.; Beerli, R.R.; Daly, J.M.; Hynes, N.E. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J., 1997, 16(7), 1647-1655.
[http://dx.doi.org/10.1093/emboj/16.7.1647] [PMID: 9130710]
[56]
Changavi, A.A.; Shashikala, A.; Ramji, A.S. Epidermal growth factor receptor expression in triple negative and non-triple negative breast carcinomas. J. Lab. Physicians, 2015, 7(2), 79-83.
[http://dx.doi.org/10.4103/0974-2727.163129] [PMID: 26417156]
[57]
Davis, N.M.; Sokolosky, M.; Stadelman, K.; Abrams, S.L.; Libra, M.; Candido, S.; Nicoletti, F.; Polesel, J.; Maestro, R.; D’Assoro, A.; Drobot, L.; Rakus, D.; Gizak, A.; Laidler, P.; Dulińska-Litewka, J.; Basecke, J.; Mijatovic, S.; Maksimovic-Ivanic, D.; Montalto, G.; Cervello, M.; Fitzgerald, T.L.; Demidenko, Z.; Martelli, A.M.; Cocco, L.; Steelman, L.S.; McCubrey, J.A. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget, 2014, 5(13), 4603-4650.
[http://dx.doi.org/10.18632/oncotarget.2209] [PMID: 25051360]
[58]
Eccles, S.A. The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology. Int. J. Dev. Biol., 2011, 55(7-9), 685-696.
[http://dx.doi.org/10.1387/ijdb.113396se] [PMID: 22161825]
[59]
Ueno, N.T.; Zhang, D. Targeting EGFR in triple negative breast cancer. J. Cancer, 2011, 2, 324-328.
[http://dx.doi.org/10.7150/jca.2.324] [PMID: 21716849]
[60]
Lo, H.W.; Hsu, S.C.; Ali-Seyed, M.; Gunduz, M.; Xia, W.; Wei, Y.; Bartholomeusz, G.; Shih, J.Y.; Hung, M.C. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell, 2005, 7(6), 575-589.
[http://dx.doi.org/10.1016/j.ccr.2005.05.007] [PMID: 15950906]
[61]
Brand, T.M.; Iida, M.; Luthar, N.; Starr, M.M.; Huppert, E.J.; Wheeler, D.L. Nuclear EGFR as a molecular target in cancer. Radiother. Oncol., 2013, 108(3), 370-377.
[http://dx.doi.org/10.1016/j.radonc.2013.06.010] [PMID: 23830194]
[62]
Huang, W.C.; Chen, Y.J.; Li, L.Y.; Wei, Y.L.; Hsu, S.C.; Tsai, S.L.; Chiu, P.C.; Huang, W.P.; Wang, Y.N.; Chen, C.H.; Chang, W.C.; Chang, W.C.; Chen, A.J.; Tsai, C.H.; Hung, M.C. Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. J. Biol. Chem., 2011, 286(23), 20558-20568.
[http://dx.doi.org/10.1074/jbc.M111.240796] [PMID: 21487020]
[63]
Layman, R.M.; Ruppert, A.S.; Lynn, M.; Mrozek, E.; Ramaswamy, B.; Lustberg, M.B.; Wesolowski, R.; Ottman, S.; Carothers, S.; Bingman, A.; Reinbolt, R.; Kraut, E.H.; Shapiro, C.L. Severe and prolonged lymphopenia observed in patients treated with bendamustine and erlotinib for metastatic triple negative breast cancer. Cancer Chemother. Pharmacol., 2013, 71(5), 1183-1190.
[http://dx.doi.org/10.1007/s00280-013-2112-2] [PMID: 23430121]
[64]
Finn, R.S.; Press, M.F.; Dering, J.; Arbushites, M.; Koehler, M.; Oliva, C.; Williams, L.S.; Di Leo, A. Estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor expression and benefit from lapatinib in a randomized trial of paclitaxel with lapatinib or placebo as first-line treatment in HER2-negative or unknown metastatic breast cancer. J. Clin. Oncol., 2009, 27(24), 3908-3915.
[http://dx.doi.org/10.1200/JCO.2008.18.1925] [PMID: 19620495]
[65]
Schuler, M.; Uttenreuther-Fischer, M.; Piccart-Gebhart, M.; Harbeck, N. BIBW 2992, a novel irreversible EGFR/HER1 and HER2 tyrosine kinase inhibitor, for the treatment of patients with HER2-negative metastatic breast cancer after failure of no more than two prior chemotherapies. J. Clin. Oncol., 2010, 28, 1065.
[http://dx.doi.org/10.1200/jco.2010.28.15_suppl.1065]
[66]
Baselga, J.; Gómez, P.; Greil, R.; Braga, S.; Climent, M.A.; Wardley, A.M.; Kaufman, B.; Stemmer, S.M.; Pêgo, A.; Chan, A.; Goeminne, J.C.; Graas, M.P.; Kennedy, M.J.; Ciruelos Gil, E.M.; Schneeweiss, A.; Zubel, A.; Groos, J.; Melezínková, H.; Awada, A. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J. Clin. Oncol., 2013, 31(20), 2586-2592.
[http://dx.doi.org/10.1200/JCO.2012.46.2408] [PMID: 23733761]
[67]
Carey, L.A.; Rugo, H.S.; Marcom, P.K.; Mayer, E.L.; Esteva, F.J.; Ma, C.X.; Liu, M.C.; Storniolo, A.M.; Rimawi, M.F.; Forero-Torres, A.; Wolff, A.C.; Hobday, T.J.; Ivanova, A.; Chiu, W.K.; Ferraro, M.; Burrows, E.; Bernard, P.S.; Hoadley, K.A.; Perou, C.M.; Winer, E.P. TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J. Clin. Oncol., 2012, 30(21), 2615-2623.
[http://dx.doi.org/10.1200/JCO.2010.34.5579] [PMID: 22665533]
[68]
Nabholtz, J.M.; Abrial, C.; Mouret-Reynier, M.A.; Dauplat, M.M.; Weber, B.; Gligorov, J.; Forest, A.M.; Tredan, O.; Vanlemmens, L.; Petit, T.; Guiu, S.; Van Praagh, I.; Jouannaud, C.; Dubray-Longeras, P.; Tubiana-Mathieu, N.; Benmammar, K.E.; Kullab, S.; Bahadoor, M.R.; Radosevic-Robin, N.; Kwiatkowski, F.; Desrichard, A.; Cayre, A.; Uhrhammer, N.; Chalabi, N.; Chollet, P.; Penault-Llorca, F. Multicentric neoadjuvant phase II study of panitumumab combined with an anthracycline/taxane-based chemotherapy in operable triple-negative breast cancer: identification of biologically defined signatures predicting treatment impact. Ann. Oncol., 2014, 25(8), 1570-1577.
[http://dx.doi.org/10.1093/annonc/mdu183] [PMID: 24827135]
[69]
Friedman, L.M.; Rinon, A.; Schechter, B.; Lyass, L.; Lavi, S.; Bacus, S.S.; Sela, M.; Yarden, Y. Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: Implications for cancer immunotherapy. Proc. Natl. Acad. Sci. USA, 2005, 102(6), 1915-1920.
[http://dx.doi.org/10.1073/pnas.0409610102] [PMID: 15684082]
[70]
Ricardo, C.; Ami, N. Shah, Cesar A. Santa-Maria, Marcelo R. Cruz, Devalingam Mahalingam, Benedito A. Carneiro, Young Kwang Chae, Massimo Cristofanilli, William J. Gradishar, Francis J. Giles Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: New discoveries and practical insights for drug development. Cancer Treat. Rev., 2017, 53, 111-119.
[71]
Ferraro, D.A.; Gaborit, N.; Maron, R.; Cohen-Dvashi, H.; Porat, Z.; Pareja, F.; Lavi, S.; Lindzen, M.; Ben-Chetrit, N.; Sela, M.; Yarden, Y. Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR. Proc. Natl. Acad. Sci. USA, 2013, 110(5), 1815-1820.
[http://dx.doi.org/10.1073/pnas.1220763110] [PMID: 23319610]
[72]
Biaoxue, R.; Hui, P.; Wenlong, G.; Shuanying, Y. Evaluation of efficacy and safety for recombinant human adenovirus-p53 in the control of the malignant pleural effusions via thoracic perfusion. Sci. Rep., 2016, 6, 39355.
[http://dx.doi.org/10.1038/srep39355] [PMID: 27976709]
[73]
Wang, X.; Song, H.; Yu, Q.; Liu, Q.; Wang, L.; Liu, Z.; Yu, Z. Ad-p53 enhances the sensitivity of triple-negative breast cancer MDA-MB-468 cells to the EGFR inhibitor gefitinib. Oncol. Rep., 2015, 33(2), 526-532.
[http://dx.doi.org/10.3892/or.2014.3665] [PMID: 25501339]
[74]
Yi, Y.W.; Hong, W.; Kang, H.J.; Kim, H.J.; Zhao, W.; Wang, A.; Seong, Y.S.; Bae, I. Inhibition of the PI3K/AKT pathway potentiates cytotoxicity of EGFR kinase inhibitors in triple-negative breast cancer cells. J. Cell. Mol. Med., 2013, 17(5), 648-656.
[http://dx.doi.org/10.1111/jcmm.12046] [PMID: 23601074]
[75]
Leal, M.; Sapra, P.; Hurvitz, S.A.; Senter, P.; Wahl, A.; Schutten, M.; Shah, D.K.; Haddish-Berhane, N.; Kabbarah, O. Antibody-drug conjugates: an emerging modality for the treatment of cancer. Ann. N. Y. Acad. Sci., 2014, 1321, 41-54.
[http://dx.doi.org/10.1111/nyas.12499] [PMID: 25123209]
[76]
Doronina, S.O.; Bovee, T.D.; Meyer, D.W.; Miyamoto, J.B.; Anderson, M.E.; Morris-Tilden, C.A.; Senter, P.D. Novel peptide linkers for highly potent antibody-auristatin conjugate. Bioconjug. Chem., 2008, 19(10), 1960-1963.
[http://dx.doi.org/10.1021/bc800289a] [PMID: 18803412]
[77]
Phillips, A.C.; Boghaert, E.R.; Vaidya, K.S.; Mitten, M.J.; Norvell, S.; Falls, H.D.; DeVries, P.J.; Cheng, D.; Meulbroek, J.A.; Buchanan, F.G.; McKay, L.M.; Goodwin, N.C.; Reilly, E.B. ABT-414, an antibody drug conjugate targeting a tumor-selective EGFR epitope. Mol. Cancer Ther., 2016, 15(4), 661-669.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0901] [PMID: 26846818]
[78]
Bardia, A.; Mayer, I.A.; Diamond, J.R.; Moroose, R.L.; Isakoff, S.J.; Starodub, A.N.; Shah, N.C.; O’Shaughnessy, J.; Kalinsky, K.; Guarino, M.; Abramson, V.; Juric, D.; Tolaney, S.M.; Berlin, J.; Messersmith, W.A.; Ocean, A.J.; Wegener, W.A.; Maliakal, P.; Sharkey, R.M.; Govindan, S.V.; Goldenberg, D.M.; Vahdat, L.T. Efficacy and safety of anti-Trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J. Clin. Oncol., 2017, 35(19), 2141-2148.
[http://dx.doi.org/10.1200/JCO.2016.70.8297] [PMID: 28291390]
[79]
Leighl, N.B.; Dent, S.; Clemons, M.; Vandenberg, T.A.; Tozer, R.; Warr, D.G.; Crump, R.M.; Hedley, D.; Pond, G.R.; Dancey, J.E.; Moore, M.J. A Phase 2 study of perifosine in advanced or metastatic breast cancer. Breast Cancer Res. Treat., 2008, 108(1), 87-92.
[http://dx.doi.org/10.1007/s10549-007-9584-x] [PMID: 17458693]
[80]
Cardillo, T.M.; Sharkey, R.M.; Rossi, D.L.; Arrojo, R.; Mostafa, A.A.; Goldenberg, D.M. Synthetic lethality exploitation by an anti-trop-2-SN-38 antibody-drug conjugate, IMMU-132, plus PARP inhibitors in BRCA1/2-wild-type triple negative breast cancer. Clin. Cancer Res., 2017, 23(13), 3405-3415.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2401] [PMID: 28069724]
[81]
Gonzalez-Angulo, A.M.; Stemke-Hale, K.; Palla, S.L.; Carey, M.; Agarwal, R.; Meric-Berstam, F.; Traina, T.A.; Hudis, C.; Hortobagyi, G.N.; Gerald, W.L.; Mills, G.B.; Hennessy, B.T. Androgen receptor levels and association with PIK3CA mutations and prognosis in breast cancer. Clin. Cancer Res., 2009, 15(7), 2472-2478.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1763] [PMID: 19276248]
[82]
LoRusso, P.M. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J. Clin. Oncol., 2016, 34(31), 3803-3815.
[http://dx.doi.org/10.1200/JCO.2014.59.0018] [PMID: 27621407]
[83]
Fouque, A.; Jean, M.; van de Weghe, P.; Legembre, P. Review of PI3K/mTOR inhibitors entering clinical trials to treat triple negative breast cancers; Recent Pat. Anticancer Drug Discov, 2016.
[http://dx.doi.org/10.2174/1574892811666160519113731]
[84]
Cossu-Rocca, P.; Orrù, S.; Muroni, M.R.; Sanges, F.; Sotgiu, G.; Ena, S.; Pira, G.; Murgia, L.; Manca, A.; Uras, M.G.; Sarobba, M.G.; Urru, S.; De Miglio, M.R. Analysis of PIK3CA mutations and activation pathways in triple negative breast cancer. PLoS One, 2015, 10(11), e0141763.
[http://dx.doi.org/10.1371/journal.pone.0141763] [PMID: 26540293]
[85]
Cantley, L.C. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573), 1655-1657.
[http://dx.doi.org/10.1126/science.296.5573.1655] [PMID: 12040186]
[86]
Mondesire, W.H.; Jian, W.; Zhang, H.; Ensor, J.; Hung, M.C.; Mills, G.B.; Meric-Bernstam, F. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin. Cancer Res., 2004, 10(20), 7031-7042.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0361] [PMID: 15501983]
[87]
Wong, S.W.; Tiong, K.H.; Kong, W.Y.; Yue, Y.C.; Chua, C.H.; Lim, J.Y.; Lee, C.Y.; Quah, S.I.; Fow, C.; Chung, C.; So, I.; Tan, B.S.; Choo, H.L.; Rosli, R.; Cheong, S.K.; Leong, C.O. Rapamycin synergizes cisplatin sensitivity in basal-like breast cancer cells through up-regulation of p73. Breast Cancer Res. Treat., 2011, 128(2), 301-313.
[http://dx.doi.org/10.1007/s10549-010-1055-0] [PMID: 20686837]
[88]
Gonzalez-Angulo, A.M.; Akcakanat, A.; Liu, S.; Green, M.C.; Murray, J.L.; Chen, H.; Palla, S.L.; Koenig, K.B.; Brewster, A.M.; Valero, V.; Ibrahim, N.K.; Moulder-Thompson, S.; Litton, J.K.; Tarco, E.; Moore, J.; Flores, P.; Crawford, D.; Dryden, M.J.; Symmans, W.F.; Sahin, A.; Giordano, S.H.; Pusztai, L.; Do, K.A.; Mills, G.B.; Hortobagyi, G.N.; Meric-Bernstam, F. Open-label randomized clinical trial of standard neoadjuvant chemotherapy with paclitaxel followed by FEC versus the combination of paclitaxel and everolimus followed by FEC in women with triple receptor-negative breast cancer. Ann. Oncol., 2014, 25(6), 1122-1127.
[http://dx.doi.org/10.1093/annonc/mdu124] [PMID: 24669015]
[89]
Hatem, R.; El Botty, R.; Chateau-Joubert, S.; Servely, J.L.; Labiod, D.; de Plater, L.; Assayag, F.; Coussy, F.; Callens, C.; Vacher, S.; Reyal, F.; Cosulich, S.; Diéras, V.; Bièche, I.; Marangoni, E. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget, 2016, 7(30), 48206-48219.
[http://dx.doi.org/10.18632/oncotarget.10195] [PMID: 27374081]
[90]
Yu, F.; Zhao, J.; Hu, Y.; Zhou, Y.; Guo, R.; Bai, J.; Zhang, S.; Zhang, H.; Zhang, J. The combination of NVP-BKM120 with trastuzumab or RAD001 synergistically inhibits the growth of breast cancer stem cells in vivo. Oncol. Rep., 2016, 36(1), 356-364.
[http://dx.doi.org/10.3892/or.2016.4799] [PMID: 27175939]
[91]
Liu, T.; Yacoub, R.; Taliaferro-Smith, L.D.; Sun, S-Y.; Graham, T.R.; Dolan, R.; Lobo, C.; Tighiouart, M.; Yang, L.; Adams, A.; O’Regan, R.M. Combinatorial effects of lapatinib and rapamycin in triple-negative breast cancer cells. Mol. Cancer Ther., 2011, 10(8), 1460-1469.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0925] [PMID: 21690228]
[92]
Klarenbeek, S.; van Miltenburg, M.H.; Jonkers, J. Genetically engineered mouse models of PI3K signaling in breast cancer. Mol. Oncol., 2013, 7(2), 146-164.
[http://dx.doi.org/10.1016/j.molonc.2013.02.003] [PMID: 23478237]
[93]
Rodón, J.; Dienstmann, R.; Serra, V.; Tabernero, J. Development of PI3K inhibitors: Lessons learned from early clinical trials. Nat. Rev. Clin. Oncol., 2013, 10(3), 143-153.
[http://dx.doi.org/10.1038/nrclinonc.2013.10] [PMID: 23400000]
[94]
Sensitizing triple-negative breast cancer to PI3K inhibition by co-targeting IGF1R. Mol. Cancer Ther., 2016, 1545-1556.
[95]
Ibrahim, Y.H.; García-García, C.; Serra, V.; He, L.; Torres-Lockhart, K.; Prat, A.; Anton, P.; Cozar, P.; Guzmán, M.; Grueso, J.; Rodríguez, O.; Calvo, M.T.; Aura, C.; Díez, O.; Rubio, I.T.; Pérez, J.; Rodón, J.; Cortés, J.; Ellisen, L.W.; Scaltriti, M.; Baselga, J. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov., 2012, 2(11), 1036-1047.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0348] [PMID: 22915752]
[96]
Matulonis, U.; Wulf, G.; Barry, W.; Birrer, M.; Westin, S.; Spagnoletti, T. Phase I study of the oral PI3kinase inhibitor BKM120 or BYL719 and the oral PARP inhibitor olaparib in patients with recurrent triple negative breast cancer or high grade serous ovarian cancer. J. Clin. Oncol., 2014, 32, 5s.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.2510]
[97]
Schmid, P.; Wheatley, D.; Baird, R. A phase II, double blind, randomised, placebo-controlled study of the AKT inhibitor AZD5363 in combination with paclitaxel in triple-negative advanced or metastatic breast cancer (TNBC)(NCT02423603). Proceedings of the thirty-eighth annual CTRC-AACR San Antonio breast cancer symposium, 2016, pp. 8-12.
[http://dx.doi.org/10.1158/1538-7445.sabcs15-ot1-03-13]
[98]
O’Reilly, K.E.; Rojo, F.; She, Q.B.; Solit, D.; Mills, G.B.; Smith, D.; Lane, H.; Hofmann, F.; Hicklin, D.J.; Ludwig, D.L.; Baselga, J.; Rosen, N. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res., 2006, 66(3), 1500-1508.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2925] [PMID: 16452206]
[99]
Mallon, R.; Feldberg, L.R.; Lucas, J.; Chaudhary, I.; Dehnhardt, C.; Santos, E.D.; Chen, Z.; dos Santos, O.; Ayral-Kaloustian, S.; Venkatesan, A.; Hollander, I. Antitumor efficacy of PKI-587, a highly potent dual PI3K/mTOR kinase inhibitor. Clin. Cancer Res., 2011, 17(10), 3193-3203.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1694] [PMID: 21325073]
[100]
Barton, V.N.; D’Amato, N.C.; Gordon, M.A.; Lind, H.T.; Spoelstra, N.S.; Babbs, B.L.; Heinz, R.E.; Elias, A.; Jedlicka, P.; Jacobsen, B.M.; Richer, J.K. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol. Cancer Ther., 2015, 14(3), 769-778.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0926] [PMID: 25713333]
[101]
Mina, A.; Yoder, R.; Sharma, P. Targeting the androgen receptor in triple-negative breast cancer: Current perspectives. OncoTargets Ther., 2017, 10, 4675-4685.
[http://dx.doi.org/10.2147/OTT.S126051] [PMID: 29033586]
[102]
McGhan, L.J.; McCullough, A.E.; Protheroe, C.A.; Dueck, A.C.; Lee, J.J.; Nunez-Nateras, R.; Castle, E.P.; Gray, R.J.; Wasif, N.; Goetz, M.P.; Hawse, J.R.; Henry, T.J.; Barrett, M.T.; Cunliffe, H.E.; Pockaj, B.A. Androgen receptor-positive triple negative breast cancer: A unique breast cancer subtype. Ann. Surg. Oncol., 2014, 21(2), 361-367.
[http://dx.doi.org/10.1245/s10434-013-3260-7] [PMID: 24046116]
[103]
Barton, V.N.; D’Amato, N.C.; Gordon, M.A.; Christenson, J.L.; Elias, A.; Richer, J.K. Androgen receptor biology in triple negative breast cancer: a case for classification as AR+ or quadruple negative disease. Horm. Cancer, 2015, 6(5-6), 206-213.
[http://dx.doi.org/10.1007/s12672-015-0232-3] [PMID: 26201402]
[104]
Masuda, H.; Baggerly, K.A.; Wang, Y.; Zhang, Y.; Gonzalez-Angulo, A.M.; Meric-Bernstam, F.; Valero, V.; Lehmann, B.D.; Pietenpol, J.A.; Hortobagyi, G.N.; Symmans, W.F.; Ueno, N.T. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin. Cancer Res., 2013, 19(19), 5533-5540.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0799] [PMID: 23948975]
[105]
Zhu, A.; Li, Y.; Song, W.; Xu, Y.; Yang, F.; Zhang, W.; Yin, Y.; Guan, X. Anti-proliferative effect of androgen receptor inhibition in mesenchymal stem-like triple-negative breast cancer. Cell. Physiol. Biochem., 2016, 38(3), 1003-1014.
[http://dx.doi.org/10.1159/000443052] [PMID: 26938985]
[106]
Traina, T.A.; Miller, K.; Yardley, D.A.; Eakle, J.; Schwartzberg, L.S.; O’Shaughnessy, J.; Gradishar, W.; Schmid, P.; Winer, E.; Kelly, C.; Nanda, R.; Gucalp, A.; Awada, A.; Garcia-Estevez, L.; Trudeau, M.E.; Steinberg, J.; Uppal, H.; Tudor, I.C.; Peterson, A.; Cortes, J. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer. J. Clin. Oncol., 2018, 36(9), 884-890.
[http://dx.doi.org/10.1200/JCO.2016.71.3495] [PMID: 29373071]
[107]
Lehmann, B.D.; Bauer, J.A.; Schafer, J.M.; Pendleton, C.S.; Tang, L.; Johnson, K.C.; Chen, X.; Balko, J.M.; Gómez, H.; Arteaga, C.L.; Mills, G.B.; Sanders, M.E.; Pietenpol, J.A. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res., 2014, 16(4), 406.
[http://dx.doi.org/10.1186/s13058-014-0406-x] [PMID: 25103565]
[108]
Lehmann, B.D.; Pietenpol, J.A. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J. Pathol., 2014, 232(2), 142-150.
[http://dx.doi.org/10.1002/path.4280] [PMID: 24114677]
[109]
Powe, D.G.; Voss, M.J.; Zänker, K.S.; Habashy, H.O.; Green, A.R.; Ellis, I.O.; Entschladen, F. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget, 2010, 1(7), 628-638.
[http://dx.doi.org/10.18632/oncotarget.197] [PMID: 21317458]
[110]
Manna, S.; Bostner, J.; Sun, Y.; Miller, L.D.; Alayev, A.; Schwartz, N.S.; Lager, E.; Fornander, T.; Nordenskjöld, B.; Yu, J.J.; Stål, O.; Holz, M.K. ERRα is a marker of tamoxifen response and survival in triple-negative breast cancer. Clin. Cancer Res., 2016, 22(6), 1421-1431.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0857] [PMID: 26542058]
[111]
Hilborn, E.; Gacic, J.; Fornander, T.; Nordenskjöld, B.; Stål, O.; Jansson, A. Androgen receptor expression predicts beneficial tamoxifen response in oestrogen receptor-α-negative breast cancer. Br. J. Cancer, 2016, 114(3), 248-255.
[http://dx.doi.org/10.1038/bjc.2015.464] [PMID: 26742006]
[112]
Tung, N.; Garber, J.E.; Hacker, M.R.; Torous, V.; Freeman, G.J.; Poles, E.; Rodig, S.; Alexander, B.; Lee, L.; Collins, L.C.; Schnitt, S.J. Prevalence and predictors of androgen receptor and programmed death-ligand 1 in BRCA1-associated and sporadic triple-negative breast cancer. NPJ Breast Cancer, 2016, 2, 16002.
[http://dx.doi.org/10.1038/npjbcancer.2016.2] [PMID: 28721372]
[113]
Bonnefoi, H.; Grellety, T.; Tredan, O.; Saghatchian, M.; Dalenc, F.; Mailliez, A.; L’Haridon, T.; Cottu, P.; Abadie-Lacourtoisie, S.; You, B.; Mousseau, M.; Dauba, J.; Del Piano, F.; Desmoulins, I.; Coussy, F.; Madranges, N.; Grenier, J.; Bidard, F.C.; Proudhon, C.; MacGrogan, G.; Orsini, C.; Pulido, M.; Gonçalves, A. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann. Oncol., 2016, 27(5), 812-818.
[http://dx.doi.org/10.1093/annonc/mdw067] [PMID: 27052658]
[114]
Ring, A.; Kim, Y-M.; Kahn, M. Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Rev Rep, 2014, 10(4), 512-525.
[http://dx.doi.org/10.1007/s12015-014-9515-2] [PMID: 24825509]
[115]
National Library of Medicine; National Institute of Health Registered clinical studies information., https://clinicaltrials.gov/ [june 21,2018.];2018
[116]
Clevers, H. Wnt/β-catenin signaling in development and disease. Cell, 2006, 127(3), 469-480.
[http://dx.doi.org/10.1016/j.cell.2006.10.018] [PMID: 17081971]
[117]
De SeM F.; Vermeulen, L. Wnt signaling in cancer stem cell biology. Cancers (Basel), 2016, 8, 60.
[http://dx.doi.org/10.3390/cancers8070060]
[118]
Ng, L.F.; Kaur, P.; Bunnag, N.; Suresh, J.; Sung, I.C.H.; Tan, Q.H.; Gruber, J.; Tolwinski, N.S. WNT signaling in disease. Cells, 2019, 8(8), 826.
[http://dx.doi.org/10.3390/cells8080826] [PMID: 31382613]
[119]
Geyer, F.C.; Lacroix-Triki, M.; Savage, K.; Arnedos, M.; Lambros, M.B.; MacKay, A.; Natrajan, R.; Reis-Filho, J.S. β-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod. Pathol., 2011, 24(2), 209-231.
[http://dx.doi.org/10.1038/modpathol.2010.205] [PMID: 21076461]
[120]
Xu, J.; Prosperi, J.R.; Choudhury, N.; Olopade, O.I.; Goss, K.H. β-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells. PLoS One, 2015, 10(2), e0117097.
[http://dx.doi.org/10.1371/journal.pone.0117097] [PMID: 25658419]
[121]
Gangrade, A.; Pathak, V.; Augelli-Szafran, C.E.; Wei, H-X.; Oliver, P.; Suto, M.; Buchsbaum, D.J. Preferential inhibition of wnt/β-catenin signaling by novel benzimidazole compounds in triple-negative breast cancer. Int. J. Mol. Sci., 2018, 19(5), 19.
[http://dx.doi.org/10.3390/ijms19051524] [PMID: 29783777]
[122]
Jang, G-B.; Hong, I-S.; Kim, R-J.; Lee, S.Y.; Park, S.J.; Lee, E.S.; Park, J.H.; Yun, C.H.; Chung, J.U.; Lee, K.J.; Lee, H.Y.; Nam, J.S. wnt/β-catenin small-molecule inhibitor cwp232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res., 2015, 75(8), 1691-1702.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2041] [PMID: 25660951]
[123]
Ahmed, K.; Koval, A.; Xu, J.; Bodmer, A.; Katanaev, V.L. Towards the first targeted therapy for triple-negative breast cancer: Repositioning of clofazimine as a chemotherapy-compatible selective Wnt pathway inhibitor. Cancer Lett., 2019, 449, 45-55.
[http://dx.doi.org/10.1016/j.canlet.2019.02.018] [PMID: 30771433]
[124]
Ha, G.H.; Kim, D.Y.; Breuer, E.K.; Kim, C.K. Combination treatment of polo-like kinase 1 and tankyrase-1 inhibitors enhances anticancer effect in triple-negative breast cancer cells. Anticancer Res., 2018, 38(3), 1303-1310.
[PMID: 29491053]
[125]
Xie, W.; Zhang, Y.; He, Y.; Zhang, K.; Wan, G.; Huang, Y.; Zhou, Z.; Huang, G.; Wang, J. A novel recombinant human frizzled-7 protein exhibits anti-tumor activity against triple negative breast cancer via abating Wnt/β-catenin pathway. Int. J. Biochem. Cell Biol., 2018, 103, 45-55.
[http://dx.doi.org/10.1016/j.biocel.2018.08.004] [PMID: 30096373]
[126]
de R.A.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370, 737-749.
[http://dx.doi.org/10.1042/bj20021321]
[127]
Ropero, S.; Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol., 2007, 1(1), 19-25.
[http://dx.doi.org/10.1016/j.molonc.2007.01.001] [PMID: 19383284]
[128]
Munshi, A.; Kurland, J.F.; Nishikawa, T.; Tanaka, T.; Hobbs, M.L.; Tucker, S.L.; Ismail, S.; Stevens, C.; Meyn, R.E. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin. Cancer Res., 2005, 11(13), 4912-4922.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2088] [PMID: 16000590]
[129]
Brazelle, W.; Kreahling, J.M.; Gemmer, J.; Ma, Y.; Cress, W.D.; Haura, E.; Altiok, S. Histone deacetylase inhibitors downregulate checkpoint kinase 1 expression to induce cell death in non-small cell lung cancer cells. PLoS One, 2010, 5(12), e14335.
[http://dx.doi.org/10.1371/journal.pone.0014335] [PMID: 21179472]
[130]
Ha, K.; Fiskus, W.; Choi, D.S.; Bhaskara, S.; Cerchietti, L.; Devaraj, S.G.T.; Shah, B.; Sharma, S.; Chang, J.C.; Melnick, A.M.; Hiebert, S.; Bhalla, K.N. Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget, 2014, 5(14), 5637-5650.
[http://dx.doi.org/10.18632/oncotarget.2154] [PMID: 25026298]
[131]
Min, A.; Im, S.A.; Kim, D.K.; Song, S.H.; Kim, H.J.; Lee, K.H.; Kim, T.Y.; Han, S.W.; Oh, D.Y.; Kim, T.Y.; O’Connor, M.J.; Bang, Y.J. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells. Breast Cancer Res., 2015, 17, 33.
[http://dx.doi.org/10.1186/s13058-015-0534-y] [PMID: 25888415]
[132]
Peng, G.; Chun-Jen Lin, C.; Mo, W.; Dai, H.; Park, Y.Y.; Kim, S.M.; Peng, Y.; Mo, Q.; Siwko, S.; Hu, R.; Lee, J.S.; Hennessy, B.; Hanash, S.; Mills, G.B.; Lin, S.Y. Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat. Commun., 2014, 5, 3361.
[http://dx.doi.org/10.1038/ncomms4361] [PMID: 24553445]
[133]
Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev., 2011, 75(1), 50-83.
[http://dx.doi.org/10.1128/MMBR.00031-10] [PMID: 21372320]
[134]
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[135]
Craig, D.W.; O’Shaughnessy, J.A.; Kiefer, J.A.; Aldrich, J.; Sinari, S.; Moses, T.M.; Wong, S.; Dinh, J.; Christoforides, A.; Blum, J.L.; Aitelli, C.L.; Osborne, C.R.; Izatt, T.; Kurdoglu, A.; Baker, A.; Koeman, J.; Barbacioru, C.; Sakarya, O.; De La Vega, F.M.; Siddiqui, A.; Hoang, L.; Billings, P.R.; Salhia, B.; Tolcher, A.W.; Trent, J.M.; Mousses, S.; Von Hoff, D.; Carpten, J.D. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol. Cancer Ther., 2013, 12(1), 104-116.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0781] [PMID: 23171949]
[136]
Brufsky, A.; Miles, D.; Zvirbule, Z.; Eniu, A.; Lopez-Miranda, E.; Seo, J.H. Cobimetinib combined with paclitaxel as first-line treatment for patients with advanced triple-negative breast cancer (COLET study): primary analysis of cohort I. Proceedings of the 2017 San Antonio Breast Cancer Symposium, 2017 Dec 5–9San Antonio tx2018, pp. 5-21.
[http://dx.doi.org/10.1158/1538-7445.sabcs17-p5-21-01]
[137]
Infante, J.R.; Papadopoulos, K.P.; Bendell, J.C.; Patnaik, A.; Burris, H.A., III; Rasco, D.; Jones, S.F.; Smith, L.; Cox, D.S.; Durante, M.; Bellew, K.M.; Park, J.J.; Le, N.T.; Tolcher, A.W. A phase 1b study of trametinib, an oral Mitogen-activated protein kinase kinase (MEK) inhibitor, in combination with gemcitabine in advanced solid tumours. Eur. J. Cancer, 2013, 49(9), 2077-2085.
[http://dx.doi.org/10.1016/j.ejca.2013.03.020] [PMID: 23583440]
[138]
Maiello, M.R.; D’Alessio, A.; Bevilacqua, S.; Gallo, M.; Normanno, N.; De Luca, A. EGFR and MEK blockade in triple negative breast cancer cells. J. Cell. Biochem., 2015, 116(12), 2778-2785.
[http://dx.doi.org/10.1002/jcb.25220] [PMID: 25959272]
[139]
Ayub, A.; Yip, W.K.; Seow, H.F. Dual treatments targeting IGF-1R, PI3K, mTORC or MEK synergize to inhibit cell growth, induce apoptosis, and arrest cell cycle at G1 phase in MDA-MB-231 cell line. Biomed. Pharmacother., 2015, 75, 40-50.
[http://dx.doi.org/10.1016/j.biopha.2015.08.031] [PMID: 26463630]
[140]
Kai, K.; Kondo, K.; Wang, X.; Xie, X.; Pitner, M.K.; Reyes, M.E.; Torres-Adorno, A.M.; Masuda, H.; Hortobagyi, G.N.; Bartholomeusz, C.; Saya, H.; Tripathy, D.; Sen, S.; Ueno, N.T. Antitumor activity of KW-2450 against triple-negative breast cancer by inhibiting aurora A and B kinases. Mol. Cancer Ther., 2015, 14(12), 2687-2699.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0096] [PMID: 26443806]
[141]
Maira, S.M.; Stauffer, F.; Brueggen, J.; Furet, P.; Schnell, C.; Fritsch, C.; Brachmann, S.; Chène, P.; De Pover, A.; Schoemaker, K.; Fabbro, D.; Gabriel, D.; Simonen, M.; Murphy, L.; Finan, P.; Sellers, W.; García-Echeverría, C. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther., 2008, 7(7), 1851-1863.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0017] [PMID: 18606717]
[142]
Kim, Y.J.; Choi, J-S.; Seo, J.; Song, J-Y.; Lee, S.E.; Kwon, M.J.; Kwon, M.J.; Kundu, J.; Jung, K.; Oh, E.; Shin, Y.K.; Choi, Y.L. MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer. Int. J. Cancer, 2014, 134(10), 2424-2436.
[http://dx.doi.org/10.1002/ijc.28566] [PMID: 24615768]
[143]
Mueller, K.L.; Yang, Z.Q.; Haddad, R.; Ethier, S.P.; Boerner, J.L. EGFR/Met association regulates EGFR TKI resistance in breast cancer. J. Mol. Signal., 2010, 5, 8.
[http://dx.doi.org/10.1186/1750-2187-5-8] [PMID: 20624308]
[144]
Han, Y.; Chen, M.K.; Wang, H.L.; Hsu, J.L.; Li, C.W.; Chu, Y.Y.; Liu, C.X.; Nie, L.; Chan, L.C.; Yam, C.; Wang, S.C.; He, G.J.; Hortobagyi, G.N.; Tan, X.D.; Hung, M.C. Synergism of PARP inhibitor fluzoparib (HS10160) and MET inhibitor HS10241 in breast and ovarian cancer cells. Am. J. Cancer Res., 2019, 9(3), 608-618.
[PMID: 30949414]
[145]
Du, Y.; Yamaguchi, H.; Wei, Y.; Hsu, J.L.; Wang, H-L.; Hsu, Y-H.; Lin, W.C.; Yu, W.H.; Leonard, P.G.; Lee, G.R., IV; Chen, M.K.; Nakai, K.; Hsu, M.C.; Chen, C.T.; Sun, Y.; Wu, Y.; Chang, W.C.; Huang, W.C.; Liu, C.L.; Chang, Y.C.; Chen, C.H.; Park, M.; Jones, P.; Hortobagyi, G.N.; Hung, M.C. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat. Med., 2016, 22(2), 194-201.
[http://dx.doi.org/10.1038/nm.4032] [PMID: 26779812]
[146]
Trepel, J.; Mollapour, M.; Giaccone, G.; Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer, 2010, 10(8), 537-549.
[http://dx.doi.org/10.1038/nrc2887] [PMID: 20651736]
[147]
Neckers, L.; Workman, P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res., 2012, 18(1), 64-76.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1000] [PMID: 22215907]
[148]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[149]
Garg, G.; Khandelwal, A.; Blagg, B.S. Anticancer inhibitors of Hsp90 function: Beyond the usual suspects. Adv. Cancer Res., 2016, 129, 51-88.
[http://dx.doi.org/10.1016/bs.acr.2015.12.001] [PMID: 26916001]
[150]
Song, C.H.; Park, S.Y.; Eom, K.Y.; Kim, J.H.; Kim, S.W.; Kim, J.S.; Kim, I.A. Potential prognostic value of heat-shock protein 90 in the presence of phosphatidylinositol-3-kinase overexpression or loss of PTEN, in invasive breast cancers. Breast Cancer Res., 2010, 12(2), R20.
[http://dx.doi.org/10.1186/bcr2557] [PMID: 20226014]
[151]
Pick, E.; Kluger, Y.; Giltnane, J.M.; Moeder, C.; Camp, R.L.; Rimm, D.L.; Kluger, H.M. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res., 2007, 67(7), 2932-2937.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4511] [PMID: 17409397]
[152]
Cheng, Q.; Chang, J.T.; Geradts, J.; Neckers, L.M.; Haystead, T.; Spector, N.L.; Lyerly, H.K. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res., 2012, 14(2), R62.
[http://dx.doi.org/10.1186/bcr3168] [PMID: 22510516]
[153]
Solit, D.B.; Zheng, F.F.; Drobnjak, M.; Münster, P.N.; Higgins, B.; Verbel, D.; Heller, G.; Tong, W.; Cordon-Cardo, C.; Agus, D.B.; Scher, H.I.; Rosen, N. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin. Cancer Res., 2002, 8(5), 986-993.
[PMID: 12006510]
[154]
Banerji, U.; Walton, M.; Raynaud, F.; Grimshaw, R.; Kelland, L.; Valenti, M.; Judson, I.; Workman, P. Pharmacokinetic-pharmaco- dynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models. Clin. Cancer Res., 2005, 11(19 Pt 1), 7023-7032.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0518] [PMID: 16203796]
[155]
Eiseman, J.L.; Lan, J.; Lagattuta, T.F.; Hamburger, D.R.; Joseph, E.; Covey, J.M.; Egorin, M.J. Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino] geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother. Pharmacol., 2005, 55(1), 21-32.
[http://dx.doi.org/10.1007/s00280-004-0865-3] [PMID: 15338192]
[156]
Friedland, J.C.; Smith, D.L.; Sang, J.; Acquaviva, J.; He, S.; Zhang, C.; Proia, D.A. Targeted inhibition of Hsp90 by ganetespib is effective across a broad spectrum of breast cancer subtypes. Invest. New Drugs, 2014, 32(1), 14-24.
[http://dx.doi.org/10.1007/s10637-013-9971-6] [PMID: 23686707]
[157]
Proia, D.A.; Zhang, C.; Sequeira, M.; Jimenez, J.P.; He, S.; Spector, N.; Shapiro, G.I.; Tolaney, S.; Nagai, M.; Acquaviva, J.; Smith, D.L.; Sang, J.; Bates, R.C.; El-Hariry, I. Preclinical activity profile and therapeutic efficacy of the HSP90 inhibitor ganetespib in triple-negative breast cancer. Clin. Cancer Res., 2014, 20(2), 413-424.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2166] [PMID: 24173541]
[158]
Jhaveri, K.; Chandarlapaty, S.; Lake, D.; Gilewski, T.; Robson, M.; Goldfarb, S.; Drullinsky, P.; Sugarman, S.; Wasserheit-Leiblich, C.; Fasano, J.; Moynahan, M.E.; D’Andrea, G.; Lim, K.; Reddington, L.; Haque, S.; Patil, S.; Bauman, L.; Vukovic, V.; El-Hariry, I.; Hudis, C.; Modi, S. A phase II open-label study of ganetespib, a novel heat shock protein 90 inhibitor for patients with metastatic breast cancer. Clin. Breast Cancer, 2014, 14(3), 154-160.
[http://dx.doi.org/10.1016/j.clbc.2013.12.012] [PMID: 24512858]
[159]
Awada, A; Spector, N; El-Hariry, I; Rodriguez, A; Erban, J; Cortes, J; Gomez, H; Kong, A; Hickish, T; Fein, L The ENCHANT-1 trial (NCT01677455): An open label multicenter phase 2 proof of concept study evaluating first line ganetespib monotherapy in women with metastatic HER2 positive or triple negative breast cancer (TNBC) cancer res., 2013. 73, p2–16-23-p2–16-23.
[160]
Kong, A.; Rea, D.; Ahmed, S.; Beck, J.T.; López López, R.; Biganzoli, L.; Armstrong, A.C.; Aglietta, M.; Alba, E.; Campone, M.; Hsu Schmitz, S.F.; Lefebvre, C.; Akimov, M.; Lee, S.C. Phase 1B/2 study of the HSP90 inhibitor AUY922 plus trastuzumab in metastatic HER2-positive breast cancer patients who have progressed on trastuzumab-based regimen. Oncotarget, 2016, 7(25), 37680-37692.
[http://dx.doi.org/10.18632/oncotarget.8974] [PMID: 27129177]
[161]
Modi, S.; Stopeck, A.; Linden, H.; Solit, D.; Chandarlapaty, S.; Rosen, N.; D’Andrea, G.; Dickler, M.; Moynahan, M.E.; Sugarman, S.; Ma, W.; Patil, S.; Norton, L.; Hannah, A.L.; Hudis, C. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin. Cancer Res., 2011, 17(15), 5132-5139.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0072] [PMID: 21558407]
[162]
Nuramalina, H.M. Neele Drobnitzky, Agata Patel, Luiza Madia Lourenco, Fiona F. Cahill, Yanyan Jiang, Anthony Kong and Anderson J. Ryan. Overcoming acquired resistance to HSP90 inhibition by targeting JAK-STAT signalling in triple-negative breast cancer. BMC Cancer, 2019, 19, 102.
[http://dx.doi.org/10.1186/s12885-019-5295-z]
[163]
Aleshin, A.; Finn, R.S. SRC: a century of science brought to the clinic. Neoplasia, 2010, 12(8), 599-607.
[http://dx.doi.org/10.1593/neo.10328] [PMID: 20689754]
[164]
Anbalagan, M.; Moroz, K.; Ali, A.; Carrier, L.; Glodowski, S.; Rowan, B.G. Subcellular localization of total and activated Src kinase in African American and Caucasian breast cancer. PLoS One, 2012, 7(3), e33017.
[http://dx.doi.org/10.1371/journal.pone.0033017] [PMID: 22457730]
[165]
Campone, M.; Bondarenko, I.; Brincat, S.; Hotko, Y.; Munster, P.N.; Chmielowska, E.; Fumoleau, P.; Ward, R.; Bardy-Bouxin, N.; Leip, E.; Turnbull, K.; Zacharchuk, C.; Epstein, R.J. Phase II study of single-agent bosutinib, a Src/Abl tyrosine kinase inhibitor, in patients with locally advanced or metastatic breast cancer pretreated with chemotherapy. Ann. Oncol., 2012, 23(3), 610-617.
[http://dx.doi.org/10.1093/annonc/mdr261] [PMID: 21700731]
[166]
Gucalp, A.; Sparano, J.A.; Caravelli, J.; Santamauro, J.; Patil, S.; Abbruzzi, A.; Pellegrino, C.; Bromberg, J.; Dang, C.; Theodoulou, M.; Massague, J.; Norton, L.; Hudis, C.; Traina, T.A. Phase II trial of saracatinib (AZD0530), an oral SRC-inhibitor for the treatment of patients with hormone receptor-negative metastatic breast cancer. Clin. Breast Cancer, 2011, 11(5), 306-311.
[http://dx.doi.org/10.1016/j.clbc.2011.03.021] [PMID: 21729667]
[167]
Finn, R.S.; Bengala, C.; Ibrahim, N.; Roché, H.; Sparano, J.; Strauss, L.C.; Fairchild, J.; Sy, O.; Goldstein, L.J. Dasatinib as a single agent in triple-negative breast cancer: results of an open-label phase 2 study. Clin. Cancer Res., 2011, 17(21), 6905-6913.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0288] [PMID: 22028489]
[168]
Kim, E.M.; Mueller, K.; Gartner, E.; Boerner, J. Dasatinib is synergistic with cetuximab and cisplatin in triple-negative breast cancer cells. J. Surg. Res., 2013, 185(1), 231-239.
[http://dx.doi.org/10.1016/j.jss.2013.06.041] [PMID: 23899511]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy