Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Transcription/Expression of KLRB1 Gene as A Prognostic Indicator in Human Esophageal Squamous Cell Carcinoma

Author(s): Guangwei Zhang, Ying Liu, Fajin Dong* and Xianming Liu*

Volume 23, Issue 7, 2020

Page: [667 - 674] Pages: 8

DOI: 10.2174/1386207323666200517114154

Price: $65

Abstract

Aim and Objective: Esophageal squamous cell carcinoma (ESCC) is the most prevalent type of cancer with worldwide distribution and dismal prognosis despite ongoing efforts to improve treatment options. Therefore, it is essential to determine the prognostic factors for ESCC.

Methods and Results: We determined KLRB1 to be a prognostic indicator of human ESCC. KLRB1 was expressed at low levels in ESCC patients. Based on the risk score, patients were divided into high and low-risk groups. High-risk patients showed a poor survival rate. The prediction model based on the N stage, sex, and KLRB1 was significantly better than that based on the N stage and sex. The modified prediction model showed a robust ROC curve with an AUC value of 0.973. The knockdown of KLRB1 inhibited the growth of human ESCC cells. KLRB1 regulated Akt, mTOR, p27, p38, NF-κB, Cyclin D1, and JNK signaling, which was consistent with the result of GSEA.

Conclusion: KLRB1 is a potential prognostic marker for human ESCC patients.

Keywords: ESCC, prognosis, survival, prediction model, KLRB1, treatment.

[1]
Lin, L.; Lin, D.C. Biological significance of tumor heterogeneity in esophageal squamous cell carcinoma. Cancers (Basel), 2019, 11(8), E1156.
[http://dx.doi.org/10.3390/cancers11081156] [PMID: 31409002]
[2]
Liang, H.; Fan, J.H.; Qiao, Y.L. Epidemiology, etiology, and prevention of esophageal squamous cell carcinoma in China. Cancer Biol. Med., 2017, 14(1), 33-41.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0093] [PMID: 28443201]
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[4]
Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin., 2005, 55(2), 74-108.
[http://dx.doi.org/10.3322/canjclin.55.2.74] [PMID: 15761078]
[5]
Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer, 2010, 127(12), 2893-2917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[6]
Lambert, R.; Hainaut, P. The multidisciplinary management of gastrointestinal cancer. Epidemiology of oesophagogastric cancer. Best Pract. Res. Clin. Gastroenterol., 2007, 21(6), 921-945.
[http://dx.doi.org/10.1016/j.bpg.2007.10.001] [PMID: 18070696]
[7]
Bütof, R.; Hofheinz, F.; Zöphel, K.; Schmollack, J.; Jentsch, C.; Zschaeck, S.; Kotzerke, J.; van den Hoff, J.; Baumann, M. Prognostic value of SUR in patients with trimodality treatment of locally advanced esophageal carcinoma. J. Nucl. Med., 2018. [E-pub ahead of print]
[http://dx.doi.org/10.2967/jnumed.117.207670] [PMID: 30166358]
[8]
Napier, K.J.; Scheerer, M.; Misra, S. Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J. Gastrointest. Oncol., 2014, 6(5), 112-120.
[http://dx.doi.org/10.4251/wjgo.v6.i5.112] [PMID: 24834141]
[9]
Thude, H.; Rother, S.; Sterneck, M.; Klempnauer, J.; Nashan, B.; Schwinzer, R.; Koch, M. The killer cell lectin-like receptor B1 (KLRB1) 503T>C polymorphism (rs1135816) and acute rejection after liver transplantation. HLA, 2018, 91(1), 52-55.
[http://dx.doi.org/10.1111/tan.13172] [PMID: 29111570]
[10]
Pleshkan, V.V.; Zinov’eva, M.V.; Vinogradova, T.V.; Sverdlov, E.D. Transcription of the KLRB1 gene is suppressed in human cancer tissues. Mol. Gen. Mikrobiol. Virusol., 2007, 2007(4), 3-7.
[PMID: 18159636]
[11]
Kamishikiryo, J.; Fukuhara, H.; Okabe, Y.; Kuroki, K.; Maenaka, K. Molecular basis for LLT1 protein recognition by human CD161 protein (NKRP1A/KLRB1). J. Biol. Chem., 2011, 286(27), 23823-23830.
[http://dx.doi.org/10.1074/jbc.M110.214254] [PMID: 21572041]
[12]
Liu, K.; Jin, H.; Guo, Y.; Liu, Y.; Wan, Y.; Zhao, P.; Zhou, Z.; Wang, J.; Wang, M.; Zou, C.; Wu, W.; Cheng, Z.; Dai, Y. CFTR interacts with Hsp90 and regulates the phosphorylation of AKT and ERK1/2 in colorectal cancer cells. FEBS Open Bio, 2019, 9(6), 1119-1127.
[http://dx.doi.org/10.1002/2211-5463.12641] [PMID: 30985981]
[13]
Liu, K.; Wang, X.; Zou, C.; Zhang, J.; Chen, H.; Tsang, L.; Yu, M.K.; Chung, Y.W.; Wang, J.; Dai, Y.; Liu, Y.; Zhang, X. Defective CFTR promotes intestinal proliferation via inhibition of the hedgehog pathway during cystic fibrosis. Cancer Lett., 2019, 446, 15-24.
[http://dx.doi.org/10.1016/j.canlet.2018.12.018] [PMID: 30639531]
[14]
Son, J.; Lyssiotis, C.A.; Ying, H.; Wang, X.; Hua, S.; Ligorio, M.; Perera, R.M.; Ferrone, C.R.; Mullarky, E.; Shyh-Chang, N.; Kang, Y.; Fleming, J.B.; Bardeesy, N.; Asara, J.M.; Haigis, M.C.; DePinho, R.A.; Cantley, L.C.; Kimmelman, A.C. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013, 496(7443), 101-105.
[http://dx.doi.org/10.1038/nature12040] [PMID: 23535601]
[15]
Vining, P.; Birdas, T.J. Management of clinical T2N0 esophageal cancer: a review. J. Thorac. Dis., 2019, 11(Suppl. 12), S1629-S1632.
[http://dx.doi.org/10.21037/jtd.2019.07.85] [PMID: 31489230]
[16]
Li, S.; Chung, D.C.; Mullen, J.T. Screening high-risk populations for esophageal and gastric cancer. J. Surg. Oncol., 2019, 120(5), 831-846.
[http://dx.doi.org/10.1002/jso.25656] [PMID: 31373005]
[17]
Long, L.; Pang, X.X.; Lei, F.; Zhang, J.S.; Wang, W.; Liao, L.D.; Xu, X.E.; He, J.Z.; Wu, J.Y.; Wu, Z.Y.; Wang, L.D.; Lin, D.C.; Li, E.M.; Xu, L.Y. SLC52A3 expression is activated by NF-κB p65/Rel-B and serves as a prognostic biomarker in esophageal cancer. Cell. Mol. Life Sci., 2018, 75(14), 2643-2661.
[http://dx.doi.org/10.1007/s00018-018-2757-4] [PMID: 29428966]
[18]
Kim, H.S.; Kim, S.M.; Kim, H.; Pyo, K.H.; Sun, J.M.; Ahn, M.J.; Park, K.; Keam, B.; Kwon, N.J.; Yun, H.J.; Kim, H.G.; Chung, I.J.; Lee, J.S.; Lee, K.H.; Kim, D.J.; Lee, C.G.; Hur, J.; Chung, H.; Park, J.C.; Shin, S.K.; Lee, S.K.; Kim, H.R.; Moon, Y.W.; Lee, Y.C.; Kim, J.H.; Paik, S.; Cho, B.C. Phase II clinical and exploratory biomarker study of dacomitinib in recurrent and/or metastatic esophageal squamous cell carcinoma. Oncotarget, 2015, 6(42), 44971-44984.
[http://dx.doi.org/10.18632/oncotarget.6056] [PMID: 26462025]
[19]
Kim, H.S.; Kwon, H.J.; Jung, I.; Yun, M.R.; Ahn, M.J.; Kang, B.W.; Sun, J.M.; Kim, S.B.; Yoon, D.H.; Park, K.U.; Lee, S.H.; Koh, Y.W.; Kim, S.H.; Choi, E.C.; Koo, D.H.; Sohn, J.H.; Kim, B.; Kwon, N.J.; Yun, H.J.; Lee, M.G.; Lee, J.H.; Kim, T.M.; Kim, H.R.; Kim, J.H.; Paik, S.; Cho, B.C. Phase II clinical and exploratory biomarker study of dacomitinib in patients with recurrent and/or metastatic squamous cell carcinoma of head and neck. Clin. Cancer Res., 2015, 21(3), 544-552.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1756] [PMID: 25424851]
[20]
Hou, X.; Wen, J.; Ren, Z.; Zhang, G. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer. Oncotarget, 2017, 8(26), 43571-43578.
[http://dx.doi.org/10.18632/oncotarget.16721] [PMID: 28388588]
[21]
O’Keeffe, J.; Doherty, D.G.; Kenna, T.; Sheahan, K.; O’Donoghue, D.P.; Hyland, J.M.; O’Farrelly, C. Diverse populations of T cells with NK cell receptors accumulate in the human intestine in health and in colorectal cancer. Eur. J. Immunol., 2004, 34(8), 2110-2119.
[http://dx.doi.org/10.1002/eji.200424958] [PMID: 15259008]
[22]
Braud, V.M.; Biton, J.; Becht, E.; Knockaert, S.; Mansuet-Lupo, A.; Cosson, E.; Damotte, D.; Alifano, M.; Validire, P.; Anjuère, F.; Cremer, I.; Girard, N.; Gossot, D.; Seguin-Givelet, A.; Dieu-Nosjean, M.C.; Germain, C. Expression of LLT1 and its receptor CD161 in lung cancer is associated with better clinical outcome. OncoImmunology, 2018, 7(5), e1423184.
[http://dx.doi.org/10.1080/2162402X.2017.1423184] [PMID: 29721382]
[23]
Kovalska, J.; Cervinkova, M.; Chmelikova, E.; Planska, D.; Cizkova, J.; Horak, V. Immunohistochemical evidence of the involvement of natural killer (CD161+) cells in spontaneous regression of lewis rat sarcoma. In Vivo, 2019, 33(1), 47-52.
[http://dx.doi.org/10.21873/invivo.11437] [PMID: 30587601]
[24]
Iliopoulou, E.G.; Karamouzis, M.V.; Missitzis, I.; Ardavanis, A.; Sotiriadou, N.N.; Baxevanis, C.N.; Rigatos, G.; Papamichail, M.; Perez, S.A. Increased frequency of CD4+ cells expressing CD161 in cancer patients. Clin. Cancer Res., 2006, 12(23), 6901-6909.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0977] [PMID: 17145807]
[25]
Gentles, A.J.; Newman, A.M.; Liu, C.L.; Bratman, S.V.; Feng, W.; Kim, D.; Nair, V.S.; Xu, Y.; Khuong, A.; Hoang, C.D.; Diehn, M.; West, R.B.; Plevritis, S.K.; Alizadeh, A.A. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med., 2015, 21(8), 938-945.
[http://dx.doi.org/10.1038/nm.3909] [PMID: 26193342]
[26]
Li, N.; Zeng, J.; Sun, F.; Tong, X.; Meng, G.; Wu, C.; Ding, X.; Liu, L.; Han, M.; Lu, C.; Dai, F. p27 inhibits CDK6/CCND1 complex formation resulting in cell cycle arrest and inhibition of cell proliferation. Cell Cycle, 2018, 17(19-20), 2335-2348.
[http://dx.doi.org/10.1080/15384101.2018.1526598] [PMID: 30317923]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy