Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Role of the Phytochemical Compounds like Modulators in Gut Microbiota and Oxidative Stress

Author(s): Yordan Martínez, Dairon Más, Cesar Betancur, Kefyalew Gebeyew, Tolulope Adebowale, Tarique Hussain, Wensheng Lan* and Xinghua Ding*

Volume 26, Issue 22, 2020

Page: [2642 - 2656] Pages: 15

DOI: 10.2174/1381612826666200515132218

Price: $65

Abstract

Background: Currently, daily consumption of green herb functional food or medicinal herbs has increased as adopted by many people worldwide as a way of life or even as an alternative to the use of synthetic medicines. Phytochemicals, which are a series of compounds of relatively complex structures and restricted distribution in plants, usually perform the defensive functions for plants against insects, bacteria, fungi or other pathogenic factors. A series of studies have found their effectiveness in the treatment or prevention of systemic diseases such as autoimmune diseases, cancer, neurodegenerative diseases, Crohn's disease and so on.

Objective: This review systematizes the literature on the mechanisms of the phytochemicals that react against unique free radicals and prevent the oxidative stress and also summarizes their role in gut microbiota inhibiting bacterial translocation and damage to the intestinal barrier and improving the intestinal membrane condition.

Conclusion: The gut microbiota modulation and antioxidant activities of the phytochemicals shall be emphasized on the research of the active principles of the phytochemicals.

Keywords: Phytochemical compounds, dietary, beneficial, oxidative stress, gut microbiota, modulators.

[1]
Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 2001; 109(Suppl. 1): 69-75.
[PMID: 11250806]
[2]
Madhumitha G, Elango G, Roopan SM. Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl Microbiol Biotechnol 2016; 100(2): 571-81.
[http://dx.doi.org/10.1007/s00253-015-7108-x] [PMID: 26541334]
[3]
Hosseinzadeh S, Ghalesefidi MJ, Azami M, Mohaghegh MA, Hejazi SH, Ghomashlooyan M. In vitro and in vivo anthelmintic activity of seed extract of Coriandrum sativum compared to Niclosamid against Hymenolepis nana infection. J Parasit Dis 2016; 40(4): 1307-10.
[http://dx.doi.org/10.1007/s12639-015-0676-y] [PMID: 27876936]
[4]
Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 1993; 90(17): 7915-22.
[http://dx.doi.org/10.1073/pnas.90.17.7915] [PMID: 8367443]
[5]
Boyer J, Liu RH. Apple phytochemicals and their health benefits. Nutr J 2004; 3: 5.
[http://dx.doi.org/10.1186/1475-2891-3-5] [PMID: 15140261]
[6]
Akinpelu DA. Antimicrobial activity of Anacardium occidentale bark. Fitoterapia 2001; 72(3): 286-7.
[http://dx.doi.org/10.1016/S0367-326X(00)00310-5] [PMID: 11295307]
[7]
Anupama N, Madhumitha G, Rajesh KS. Role of dried fruits of Carissa carandas as anti-inflammatory agents and the analysis of phytochemical constituents by GC-MS. BioMed Res Int 2014; 2014 512369
[http://dx.doi.org/10.1155/2014/512369] [PMID: 24877106]
[8]
Purushothaman M, Dhanapal R, Balakrishnan M, Srinivasan S, Anbarasu C, Sriram R. Phytochemical and anti-ulcer investigations of the whole plant extract of Neregamia alata wight Arn. in albino rat model. Pharmacogn Mag 2009; 5(19): 19-22.
[9]
Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 2014; 146(6): 1564-72.
[http://dx.doi.org/10.1053/j.gastro.2014.01.058] [PMID: 24503132]
[10]
Azad MAK, Sarker M, Li T, Yin J. Probiotic species in the modulation of gut microbiota: An overview. BioMed Res Int 2018; 2018 9478630
[http://dx.doi.org/10.1155/2018/9478630] [PMID: 29854813]
[11]
Fukuda S, Ohno H. Gut microbiome and metabolic diseases. Semin Immunopathol 2014; 36(1): 103-14.
[http://dx.doi.org/10.1007/s00281-013-0399-z] [PMID: 24196453]
[12]
Mariat D, Firmesse O, Levenez F, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 2009; 9: 123.
[http://dx.doi.org/10.1186/1471-2180-9-123] [PMID: 19508720]
[13]
Lay C, Sutren M, Rochet V, Saunier K, Doré J, Rigottier-Gois L. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol 2005; 7(7): 933-46.
[http://dx.doi.org/10.1111/j.1462-2920.2005.00763.x] [PMID: 15946290]
[14]
Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007; 50(11): 2374-83.
[http://dx.doi.org/10.1007/s00125-007-0791-0] [PMID: 17823788]
[15]
Faria A, Fernandes I, Norberto S, Mateus N, Calhau C. Interplay between anthocyanins and gut microbiota. J Agric Food Chem 2014; 62(29): 6898-902.
[http://dx.doi.org/10.1021/jf501808a] [PMID: 24915058]
[16]
Morais CA, de Rosso VV, Estadella D, Pisani LP. Anthocyanins as inflammatory modulators and the role of the gut microbiota. J Nutr Biochem 2016; 33: 1-7.
[http://dx.doi.org/10.1016/j.jnutbio.2015.11.008] [PMID: 27260462]
[17]
Guan G, Ding S, Yin Y, Duraipandiyan V, Al-Dhabi NA, Liu G. Macleaya cordata extract alleviated oxidative stress and altered innate immune response in mice challenged with enterotoxigenic Escherichia coli. Sci China Life Sci 2019; 62(8): 1019-27.
[http://dx.doi.org/10.1007/s11427-018-9494-6] [PMID: 31102179]
[18]
Goossens V, De Vos K, Vercammen D, et al. Redox regulation of TNF signaling. Biofactors 1999; 10(2-3): 145-56.
[http://dx.doi.org/10.1002/biof.5520100210] [PMID: 10609876]
[19]
Rajendran P, Nandakumar N, Rengarajan T, et al. Antioxidants and human diseases. Clin Chim Acta 2014; 436: 332-47.
[http://dx.doi.org/10.1016/j.cca.2014.06.004] [PMID: 24933428]
[20]
Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev 2016; 2016 7432797
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[21]
Jacob RA. The integrated antioxidant system. Nutr Res 1995; 15(5): 755-66.
[http://dx.doi.org/10.1016/0271-5317(95)00041-G]
[22]
Ramchoun M, Harnafi H, Alem C, Benlyas M, Amrani S. Study on antioxidant and hypolipidemic effects of polyphenol-rich extracts from Thymus vulgaris and Lavendula multifida. Pharmacogn Rev 2009; 1(3): 106-12.
[23]
Sies H, Stahl W, Sundquist AR. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann N Y Acad Sci 1992; 669: 7-20.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb17085.x] [PMID: 1444060]
[24]
Morais CA, Oyama LM, Conrado RD, de Rosso VV, do Nascimento CO, Pisani LP. Polyphenols-rich fruit in maternal diet modulates inflammatory markers and the gut microbiota and improves colonic expression of ZO-1 in offspring. Food Res Int 2015; 77: 186-93.
[http://dx.doi.org/10.1016/j.foodres.2015.06.043]
[25]
Kende H. Biochemistry and molecular biology of plants. Science 2000; 290(5492): 719.
[http://dx.doi.org/10.1126/science.290.5492.719]
[26]
Stamp N. Out of the quagmire of plant defense hypotheses. Q Rev Biol 2003; 78(1): 23-55.
[http://dx.doi.org/10.1086/367580] [PMID: 12661508]
[27]
Berger A, Jones PJ, Abumweis SS. Plant sterols: factors affecting their efficacy and safety as functional food ingredients. Lipids Health Dis 2004; 3: 5.
[http://dx.doi.org/10.1186/1476-511X-3-5] [PMID: 15070410]
[28]
Tiwari S, Sirohi B, Shukla A, Bigoniya P. Phytochemical screening and diuretic activity of allium sativum steroidal and triterpenoid saponin fraction. Int J Pharm Sci Res 2012; 3(9): 3354-61.
[29]
Jaric S, Mitrovic M, Pavlovic P. Review of Ethnobotanical, phytochemical, and pharmacological study of Thymus serpyllum L. Evidence- based complementary and alternative medicine: eCAM 2015; 2015: 101978
[30]
Djoukeng JD, Abou-Mansour E, Tabacchi R, Tapondjou AL, Bouda H, Lontsi D. Antibacterial triterpenes from Syzygium guineense (Myrtaceae). J Ethnopharmacol 2005; 101(1-3): 283-6.
[http://dx.doi.org/10.1016/j.jep.2005.05.008] [PMID: 15967609]
[31]
Rao A, Zhang Y, Muend S, Rao R. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother 2010; 54(12): 5062-9.
[http://dx.doi.org/10.1128/AAC.01050-10] [PMID: 20921304]
[32]
Zabka M, Pavela R. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere 2013; 93(6): 1051-6.
[http://dx.doi.org/10.1016/j.chemosphere.2013.05.076] [PMID: 23800587]
[33]
Akiyama H, Fujii K, Yamasaki O, Oono T, Iwatsuki K. Antibacterial action of several tannins against Staphylococcus aureus. J Antimicrob Chemother 2001; 48(4): 487-91.
[http://dx.doi.org/10.1093/jac/48.4.487] [PMID: 11581226]
[34]
Tomiyama K, Mukai Y, Saito M, et al. Antibacterial action of a condensed tannin extracted from astringent persimmon as a component of food addictive Pancil PS-M on oral polymicrobial biofilms. BioMed Res Int 2016; 2016 5730748
[http://dx.doi.org/10.1155/2016/5730748] [PMID: 26981533]
[35]
Zhu CY, Lei MY, Andargie M, Zeng JW, Li JX. Antifungal activity and mechanism of action of tannic acid against Penicillium digitatum. Physiol Mol Plant Pathol 2019; 107: 46-50.
[http://dx.doi.org/10.1016/j.pmpp.2019.04.009]
[36]
Lei L, Xue YB, Liu Z, et al. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Sci Rep-Uk 2015 Aug 28; 5
[http://dx.doi.org/10.1038/srep13544]
[37]
Tan N, Yazıcı-Tütüniş S, Bilgin M, Tan E, Miski M. Antibacterial activities of pyrenylated coumarins from the roots of Prangos hulusii. Molecules 2017; 22(7) E1098
[http://dx.doi.org/10.3390/molecules22071098] [PMID: 28671568]
[38]
Wallace TC. Anthocyanins in cardiovascular disease. Adv Nutr 2011; 2(1): 1-7.
[http://dx.doi.org/10.3945/an.110.000042] [PMID: 22211184]
[39]
Shen Y, Croft KD, Hodgson JM, et al. Quercetin and its metabolites improve vessel function by inducing eNOS activity via phosphorylation of AMPK. Biochem Pharmacol 2012; 84(8): 1036-44.
[http://dx.doi.org/10.1016/j.bcp.2012.07.016] [PMID: 22846602]
[40]
Rahmoun NM, Boucherit-Otmani Z, Boucherit K, Benabdallah M, Villemin D, Choukchou-Braham N. Antibacterial and antifungal activity of lawsone and novel naphthoquinone derivatives. Med Mal Infect 2012; 42(6): 270-5.
[http://dx.doi.org/10.1016/j.medmal.2012.05.002] [PMID: 22682997]
[41]
Ambrogi V, Artini D, De Carneri I, et al. Studies on the antibacterial and antifungal properties of 1, 4-naphthoquinones. Br J Pharmacol 1970; 40(4): 871-80.
[http://dx.doi.org/10.1111/j.1476-5381.1970.tb10662.x] [PMID: 4992959]
[42]
Patel S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed Pharmacother 2016; 84: 1036-41.
[PMID: 27780131]
[43]
Weber KT, Andrews V, Janicki JS. Cardiotonic agents in the management of chronic cardiac failure. Am Heart J 1982; 103(4 Pt 2): 639-49.
[http://dx.doi.org/10.1016/0002-8703(82)90469-0] [PMID: 7064806]
[44]
Ameri A. The effects of Aconitum alkaloids on the central nervous system. Prog Neurobiol 1998; 56(2): 211-35.
[http://dx.doi.org/10.1016/S0301-0082(98)00037-9] [PMID: 9760702]
[45]
Tsuchiya H. Anesthetic agents of plant origin: A review of phytochemicals with anesthetic activity. Molecules 2017; 22(8) E1369
[http://dx.doi.org/10.3390/molecules22081369] [PMID: 28820497]
[46]
Moses T, Papadopoulou KK, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 2014; 49(6): 439-62.
[http://dx.doi.org/10.3109/10409238.2014.953628] [PMID: 25286183]
[47]
Bissinger R, Modicano P, Alzoubi K, et al. Effect of saponin on erythrocytes. Int J Hematol 2014; 100(1): 51-9.
[http://dx.doi.org/10.1007/s12185-014-1605-z] [PMID: 24924952]
[48]
Dash DK, Yeligar VC, Nayak SS, et al. Evaluation of hepatoprotective and antioxidant activity of Ichnocarpus frutescens (Linn.) R. Br. on paracetamol-induced hepatotoxicity in rats. Trop J Pharm Res 2007; 6(3): 755-65.
[http://dx.doi.org/10.4314/tjpr.v6i3.14656]
[49]
Kagan VE, Kisin ER, Kawai K, et al. Toward mechanism-based antioxidant interventions: lessons from natural antioxidants. Ann N Y Acad Sci 2002; 959: 188-98.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb02093.x] [PMID: 11976196]
[50]
Gritz EC, Bhandari V. The human neonatal gut microbiome: a brief review. Front Pediatr 2015; 3: 17.
[51]
Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 2017; 18(1): 2.
[http://dx.doi.org/10.1186/s12865-016-0187-3] [PMID: 28061847]
[52]
Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014; 7(1): 17-44.
[http://dx.doi.org/10.3390/nu7010017] [PMID: 25545101]
[53]
Odamaki T, Kato K, Sugahara H, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 2016; 16: 90.
[http://dx.doi.org/10.1186/s12866-016-0708-5] [PMID: 27220822]
[54]
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444(7122): 1022-3.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[55]
Quartieri A, Simone M, Gozzoli C, et al. Comparison of culture-dependent and independent approaches to characterize fecal bifidobacteria and lactobacilli. Anaerobe 2016; 38: 130-7.
[http://dx.doi.org/10.1016/j.anaerobe.2015.10.006] [PMID: 26481833]
[56]
Harmsen HJM, Raangs GC, He T, Degener JE, Welling GW. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol 2002; 68(6): 2982-90.
[http://dx.doi.org/10.1128/AEM.68.6.2982-2990.2002] [PMID: 12039758]
[57]
Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol 2007; 5(7) e177
[http://dx.doi.org/10.1371/journal.pbio.0050177] [PMID: 17594176]
[58]
Milani C, Ticinesi A, Gerritsen J, Nouvenne A, et al. Gut microbiota composition and Clostridium difficile infection in hospitalized elderly individuals: a metagenomic study. Sci Rep 2016; 6
[http://dx.doi.org/10.1038/srep25945]
[59]
Arboleya S, Watkins C, Stanton C, Ross RP. Gut bifidobacteria populations in human health and aging. Front Microbiol 2016; 7: 1204.
[http://dx.doi.org/10.3389/fmicb.2016.01204] [PMID: 27594848]
[60]
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307(5717): 1915-20.
[http://dx.doi.org/10.1126/science.1104816] [PMID: 15790844]
[61]
Azad MAK, Sarker M, Wan D. Immunomodulatory effects of probiotics on cytokine profiles. BioMed Res Int 2018; 2018 8063647
[http://dx.doi.org/10.1155/2018/8063647] [PMID: 30426014]
[62]
Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 2008; 42(2): 145-51.
[http://dx.doi.org/10.1016/j.cyto.2008.01.006] [PMID: 18304834]
[63]
Moreira APB, Texeira TFS, Ferreira AB, Peluzio MdoC, Alfenas RdeC. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr 2012; 108(5): 801-9.
[http://dx.doi.org/10.1017/S0007114512001213] [PMID: 22717075]
[64]
Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M, Gillevet P. Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res 2009; 33(10): 1836-46.
[http://dx.doi.org/10.1111/j.1530-0277.2009.01022.x] [PMID: 19645728]
[65]
Villena J, Kitazawa H. Modulation of intestinal TLR4-inflammatory signaling pathways by probiotic microorganisms: lessons learned from Lactobacillus jensenii TL2937. Front Immunol 2014; 4: 512.
[http://dx.doi.org/10.3389/fimmu.2013.00512] [PMID: 24459463]
[66]
Gouda S, Das G, Sen SK, Shin HS, Patra JK. Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 2016; 7: 1538.
[http://dx.doi.org/10.3389/fmicb.2016.01538] [PMID: 27746767]
[67]
Abachi S, Lee S, Rupasinghe HPV. Molecular mechanisms of inhibition of streptococcus species by phytochemicals. Molecules 2016; 21(2) E215
[http://dx.doi.org/10.3390/molecules21020215] [PMID: 26901172]
[68]
Neyrinck AM, Van Hée VF, Bindels LB, De Backer F, Cani PD, Delzenne NM. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br J Nutr 2013; 109(5): 802-9.
[http://dx.doi.org/10.1017/S0007114512002206] [PMID: 22676910]
[69]
Kris-Etherton PM, Hecker KD, Bonanome A, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 2002; 113(Suppl. 9B): 71S-88S.
[http://dx.doi.org/10.1016/S0002-9343(01)00995-0] [PMID: 12566142]
[70]
Manson MM. Cancer prevention -- the potential for diet to modulate molecular signalling. Trends Mol Med 2003; 9(1): 11-8.
[http://dx.doi.org/10.1016/S1471-4914(02)00002-3] [PMID: 12524205]
[71]
Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 2003; 3(10): 768-80.
[http://dx.doi.org/10.1038/nrc1189] [PMID: 14570043]
[72]
Gonzalez-Candia A, Veliz M, Carrasco-Pozo C, et al. Antenatal melatonin modulates an enhanced antioxidant/pro-oxidant ratio in pulmonary hypertensive newborn sheep. Redox Biol 2019; 22 101128
[http://dx.doi.org/10.1016/j.redox.2019.101128] [PMID: 30771751]
[73]
Sies H, Reichert AS. Selectively addressing mitochondrial glutathione and thioredoxin redox systems. Cell Chem Biol 2019; 26(3): 316-8.
[http://dx.doi.org/10.1016/j.chembiol.2019.02.017] [PMID: 30901559]
[74]
El-Demerdash FM, Tousson EM, Kurzepa J, Habib SL. Xenobiotics, oxidative stress, and antioxidants. Oxid Med Cell Longev 2018; 2018 9758951
[75]
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61(3): 253-78.
[http://dx.doi.org/10.1111/jpi.12360] [PMID: 27500468]
[76]
Rodriguez-Casado A. The health potential of fruits and vegetables phytochemicals: Notable examples. Crit Rev Food Sci Nutr 2016; 56(7): 1097-107.
[http://dx.doi.org/10.1080/10408398.2012.755149] [PMID: 25225771]
[77]
Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J 2010; 9: 3.
[http://dx.doi.org/10.1186/1475-2891-9-3] [PMID: 20096093]
[78]
Xiao J. Phytochemicals in food and nutrition. Crit Rev Food Sci Nutr 2016; 56(Suppl. 1): S1-3.
[http://dx.doi.org/10.1080/10408398.2015.1111074] [PMID: 26505214]
[79]
Pacheco-Ordaz R, Wall-Medrano A, Goñi MG, Ramos-Clamont-Montfort G, Ayala-Zavala JF, González-Aguilar GA. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria. Lett Appl Microbiol 2018; 66(1): 25-31.
[http://dx.doi.org/10.1111/lam.12814] [PMID: 29063625]
[80]
Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 2013; 24(8): 1415-22.
[http://dx.doi.org/10.1016/j.jnutbio.2013.05.001] [PMID: 23849454]
[81]
Hervert-Hernández D, Pintado C, Rotger R, Goñi I. Stimulatory role of grape pomace polyphenols on Lactobacillus acidophilus growth. Int J Food Microbiol 2009; 136(1): 119-22.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.09.016] [PMID: 19836092]
[82]
Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, et al. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 2012; 95(6): 1323-34.
[http://dx.doi.org/10.3945/ajcn.111.027847] [PMID: 22552027]
[83]
Wang Z, Lam KL, Hu J, et al. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci Nutr 2019; 7(2): 579-88.
[http://dx.doi.org/10.1002/fsn3.868] [PMID: 30847137]
[84]
Lee YL, Cesario T, Wang Y, Shanbrom E, Thrupp L. Antibacterial activity of vegetables and juices. Nutrition 2003; 19(11-12): 994-6.
[http://dx.doi.org/10.1016/j.nut.2003.08.003] [PMID: 14624951]
[85]
Ugwoke CEC, Eze KA, Tchimene KM, Anze SPG. Pharmacognostic evaluation and antimicrobial studies on Moringa Oleifera Lam. (Moringaceae). Int J Pharm Sci Res 2017; 8(1): 88-94.
[86]
Boto-Ordóñez M, Urpi-Sarda M, Queipo-Ortuño MI, Tulipani S, Tinahones FJ, Andres-Lacueva C. High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: a randomized clinical trial. Food Funct 2014; 5(8): 1932-8.
[http://dx.doi.org/10.1039/C4FO00029C] [PMID: 24958563]
[87]
Molan AL, Liu ZJ, Kruger M. The ability of blackcurrant extracts to positively modulate key markers of gastrointestinal function in rats. World J Microb Biot 2010; 26(10): 1735-43.
[http://dx.doi.org/10.1007/s11274-010-0352-4]
[88]
Nohynek LJ, Alakomi HL, Kähkönen MP, et al. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutr Cancer 2006; 54(1): 18-32.
[http://dx.doi.org/10.1207/s15327914nc5401_4] [PMID: 16800770]
[89]
Puupponen-Pimiä R, Nohynek L, Hartmann-Schmidlin S, et al. Berry phenolics selectively inhibit the growth of intestinal pathogens. J Appl Microbiol 2005; 98(4): 991-1000.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02547.x] [PMID: 15752346]
[90]
Di Lorenzo A, Nabavi SF, Sureda A, et al. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Mol Nutr Food Res 2016; 60(3): 566-79.
[http://dx.doi.org/10.1002/mnfr.201500567] [PMID: 26626862]
[91]
Tzounis X, Vulevic J, Kuhnle GGC, et al. Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr 2008; 99(4): 782-92.
[http://dx.doi.org/10.1017/S0007114507853384] [PMID: 17977475]
[92]
Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JPE. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 2011; 93(1): 62-72.
[http://dx.doi.org/10.3945/ajcn.110.000075] [PMID: 21068351]
[93]
Larrosa M, González-Sarrías A, Yáñez-Gascón MJ, et al. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J Nutr Biochem 2010; 21(8): 717-25.
[http://dx.doi.org/10.1016/j.jnutbio.2009.04.012] [PMID: 19616930]
[94]
Larrosa M, Yañéz-Gascón MJ, Selma MV, et al. Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. J Agric Food Chem 2009; 57(6): 2211-20.
[http://dx.doi.org/10.1021/jf803638d] [PMID: 19228061]
[95]
Espley RV, Butts CA, Laing WA, et al. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J Nutr 2014; 144(2): 146-54.
[http://dx.doi.org/10.3945/jn.113.182659] [PMID: 24353343]
[96]
Jayaraman P, Sakharkar MK, Lim CS, Tang TH, Sakharkar KR. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int J Biol Sci 2010; 6(6): 556-68.
[http://dx.doi.org/10.7150/ijbs.6.556] [PMID: 20941374]
[97]
Alissa EM, Ferns GA. Dietary fruits and vegetables and cardiovascular diseases risk. Crit Rev Food Sci Nutr 2017; 57(9): 1950-62.
[PMID: 26192884]
[98]
Simon JJ. Phytochemicals & cancer. J Chiropr Med 2002; 1(3): 91-6.
[http://dx.doi.org/10.1016/S0899-3467(07)60010-X] [PMID: 19674567]
[99]
Van Hung P. Phenolic compounds of cereals and their antioxidant capacity. Crit Rev Food Sci Nutr 2016; 56(1): 25-35.
[http://dx.doi.org/10.1080/10408398.2012.708909] [PMID: 25075608]
[100]
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015; 97: 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[101]
Croft KD. Dietary polyphenols: Antioxidants or not? Arch Biochem Biophys 2016; 595: 120-4.
[http://dx.doi.org/10.1016/j.abb.2015.11.014] [PMID: 27095227]
[102]
Forbes-Hernandez TY, Gasparrini M, Afrin S, et al. The healthy effects of strawberry polyphenols: which strategy behind antioxidant capacity? Crit Rev Food Sci Nutr 2016; 56(Suppl. 1): S46-59.
[http://dx.doi.org/10.1080/10408398.2015.1051919] [PMID: 26357900]
[103]
Ressmeyer AR, Mayo JC, Zelosko V, et al. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox report: communications in free radical research 8(4): 205-13.
[PMID: 14599344]
[104]
Gomes-Rochette NF, Vasconcelos MD, Nabavi SM, et al. Fruit as potent natural antioxidants and their biological effects. Curr Pharm Biotechnol 2016; 17(11): 986-93.
[http://dx.doi.org/10.2174/1389201017666160425115401]
[105]
Torres R, Faini F, Modak B, Urbina F, Labbé C, Guerrero J. Antioxidant activity of coumarins and flavonols from the resinous exudate of Haplopappus multifolius. Phytochemistry 2006; 67(10): 984-7.
[http://dx.doi.org/10.1016/j.phytochem.2006.03.016] [PMID: 16684545]
[106]
Heo HJ, Kim DO, Shin SC, Kim MJ, Kim BG, Shin DH. Effect of antioxidant flavanone, naringenin, from Citrus junoson neuroprotection. J Agric Food Chem 2004; 52(6): 1520-5.
[http://dx.doi.org/10.1021/jf035079g] [PMID: 15030205]
[107]
Karori SM, Wachira FN, Wanyoko JK, Ngure RM. Antioxidant capacity of different types of tea products. Afr J Biotechnol 2007; 6(19): 2287-96.
[http://dx.doi.org/10.5897/AJB2007.000-2358]
[108]
Butkhup L, Samappito W, Samappito S. Phenolic composition and antioxidant activity of white mulberry (Morus alba L.) fruits. Int J Food Sci Technol 2013; 48(5): 934-40.
[http://dx.doi.org/10.1111/ijfs.12044]
[109]
Chan EWC, Eng SY, Tan YP, Wong ZC, Lye PY, Tan LN. Antioxidant and sensory properties of thai herbal teas with emphasis on Thunbergia laurifolia Lindl. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai 2012; 39(4): 599-609.
[110]
Oonsivilai R, Cheng C, Bomser J, Ferruzzi MG, Ningsanond S. Phytochemical profiling and phase II enzyme-inducing properties of Thunbergia laurifolia Lindl. (RC) extracts. J Ethnopharmacol 2007; 114(3): 300-6.
[http://dx.doi.org/10.1016/j.jep.2007.08.015] [PMID: 17919864]
[111]
Wu N, Fu K, Fu YJ, et al. Antioxidant activities of extracts and main components of Pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Molecules 2009; 14(3): 1032-43.
[http://dx.doi.org/10.3390/molecules14031032] [PMID: 19305357]
[112]
Ruiz-Larrea MB, Mohan AR, Paganga G, Miller NJ, Bolwell GP, Rice-Evans CA. Antioxidant activity of phytoestrogenic isoflavones. Free Radic Res 1997; 26(1): 63-70.
[http://dx.doi.org/10.3109/10715769709097785] [PMID: 9018473]
[113]
Pouteau C, Dole P, Cathala B, Averous L, Boquillon N. Antioxidant properties of lignin in polypropylene. Polym Degrad Stabil 2003; 81(1): 9-18.
[http://dx.doi.org/10.1016/S0141-3910(03)00057-0]
[114]
Filleur F, Le Bail JC, Duroux JL, Simon A, Chulia AJ. Antiproliferative, anti-aromatase, anti-17beta-HSD and antioxidant activities of lignans isolated from Myristica argentea. Planta Med 2001; 67(8): 700-4.
[http://dx.doi.org/10.1055/s-2001-18349] [PMID: 11731908]
[115]
Zhang LL, Lin YM. Antioxidant tannins from Syzygium cumini fruit. Afr J Biotechnol 2009; 8(10): 2301-9.
[116]
Ilangovan SS, Sen S. Simultaneous inhibition of EGFR and MET receptors with phytochemical conjugated magnetic nanocarriers: in silico and in vitro study. Rsc Adv 2016; 6(83): 80121-32.
[http://dx.doi.org/10.1039/C6RA11821F]
[117]
Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 2017; 61(1) 1361779
[http://dx.doi.org/10.1080/16546628.2017.1361779] [PMID: 28970777]
[118]
Wang H, Cao GH, Prior RL. Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem 1997; 45(2): 304-9.
[http://dx.doi.org/10.1021/jf960421t]
[119]
Einbond LS, Reynertson KA, Luo XD, Basile MJ, Kennelly EJ. Anthocyanin antioxidants from edible fruits. Food Chem 2004; 84(1): 23-8.
[http://dx.doi.org/10.1016/S0308-8146(03)00162-6]
[120]
Garzon GA, Wrolstad RE. Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). Food Chem 2009; 114(1): 44-9.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.013]
[121]
Song J, Zhao M, Liu X, Zhu Y, Hu X, Chen F. Protection of cyanidin-3-glucoside against oxidative stress induced by acrylamide in human MDA-MB-231 cells. Food Chem Toxicol 2013; 58: 306-10.
[http://dx.doi.org/10.1016/j.fct.2013.05.003] [PMID: 23685245]
[122]
Blaikie SJ, Chacko EK. Sap flow, leaf gas exchange and chlorophyll fluorescence of container-grown cashew (Anacardium occidentale L.) trees subjected to repeated cycles of soil drying. Aust J Exp Agric 1998; 38(3): 305-11.
[http://dx.doi.org/10.1071/EA97124]
[123]
Widelski J, Luca SV, Skiba A, et al. Isolation and antimicrobial activity of coumarin derivatives from fruits of Peucedanum luxurians tamamsch. Molecules 2018; 23(5) E1222
[http://dx.doi.org/10.3390/molecules23051222] [PMID: 29783770]
[124]
López-Rojas P, Janeczko M, Kubiński K, Amesty Á, Masłyk M, Estévez-Braun A. Synthesis and antimicrobial activity of 4-substituted 1,2,3-triazole-coumarin derivatives. Molecules 2018; 23(1) E199
[http://dx.doi.org/10.3390/molecules23010199] [PMID: 29346325]
[125]
Sahoo J, Mekap SK, Kumar PS. Synthesis, spectral characterization of some new 3-heteroaryl azo 4-hydroxy coumarin derivatives and their antimicrobial evaluation. J Taibah Univ Sci 2015; 9(2): 187-95.
[http://dx.doi.org/10.1016/j.jtusci.2014.08.001]
[126]
Kelebek H, Selli S, Canbas A, Cabaroglu T. HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan Microchem J 2009; 91(2): 187-92.
[http://dx.doi.org/10.1016/j.microc.2008.10.008]
[127]
Balabani A, Hadjipavlou-Litina DJ, Litinas KE, Mainou M, Tsironi CC, Vronteli A. Synthesis and biological evaluation of (2,5-dihydro-1H-pyrrol-1-yl)-2H-chromen-2-ones as free radical scavengers. Eur J Med Chem 2011; 46(12): 5894-901.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.053] [PMID: 22000208]
[128]
Millezi AF, Dalla Costa KA, Oliveira JM, Lopes SP, Pereira MO, Piccoli RH. Antibacterial and anti-biofilm activity of cinnamon essential oil and eugenol. Cienc Rural 2019; 49(1)
[http://dx.doi.org/10.1590/0103-8478cr20180314]
[129]
Canales-Martinez M, Rivera-Yañez C R, Salas-Oropeza J. et al. Antimicrobial activity of bursera morelensis ramirez essential oil. African journal of traditional, complementary, and alternative medicines. AJTCAM 2017; 14(3): 74-82.
[130]
Katerere DR, Gray AI, Nash RJ, Waigh RD. Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry 2003; 63(1): 81-8.
[http://dx.doi.org/10.1016/S0031-9422(02)00726-4] [PMID: 12657301]
[131]
Mireku EA, Mensah AY, Amponsah IK, Danquah CA, Anokwah D, Kwesi Baah M. Antimicrobial pentacyclic triterpenes and glycosides from the stem bark of Cussonia bancoensis. Nat Prod Res 2018; 34(6): 859-62.
[PMID: 30289000]
[132]
Rathinamoorthy R, Thilagavathi G. Optimisation of process conditions of cotton fabric treatment with Terminalia chebula extract for antibacterial application. Indian J Fibre Text 2013; 38(3): 293-303.
[133]
Topcu G, Ertas A, Kolak U, Ozturk M, Ulubelen A. Antioxidant activity tests on novel triterpenoids from Salvia macrochlamys. ARKIVOC 2007; 2007: 195-208.
[134]
Fayed SA. Chemical composition, antioxidant, anticancer properties and toxicity evaluation of leaf essential oil of Cupressus sempervirens. Not Bot Horti Agrobot Cluj-Napoca 2015; 43(2): 320-6.
[http://dx.doi.org/10.15835/nbha43210070]
[135]
Wang X, Wang Y, Jiang M, et al. Differential cardioprotective effects of salvianolic acid and tanshinone on acute myocardial infarction are mediated by unique signaling pathways. J Ethnopharmacol 2011; 135(3): 662-71.
[http://dx.doi.org/10.1016/j.jep.2011.03.070] [PMID: 21497648]
[136]
Khin M, Jones AM, Cech NB, Caesar LK. Phytochemical analysis and antimicrobial efficacy of Macleaya cordata against extensively drug-resistant Staphylococcus aureus. Nat Prod Commun 2018; 13(11): 1479-83.
[http://dx.doi.org/10.1177/1934578X1801301117] [PMID: 31080542]
[137]
Liu H, Wang J, Zhao J, et al. Isoquinoline alkaloids from Macleaya cordata active against plant microbial pathogens. Nat Prod Commun 2009; 4(11): 1557-60.
[http://dx.doi.org/10.1177/1934578X0900401120] [PMID: 19967990]
[138]
Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN. Green Synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 2010; 5(2): 483-9.
[139]
Doncheva T, Yordanova G, Vutov V, Kostova N, Philipov S. Comparative study of alkaloid pattern of four bulgarian fumaria species. Nat Prod Commun 2016; 11(2): 211-2.
[http://dx.doi.org/10.1177/1934578X1601100220] [PMID: 27032204]
[140]
Khalaf NA, Naik RR, Shakya AK, Shalan N, Al-Othman A. Antioxidant, anti-inflammatory and anti-diarrheal activity of ethanolic extract of some selected medicinal plants grown in Jordan and Palestine. Orient J Chem 2015; 31(4): 1923-8.
[http://dx.doi.org/10.13005/ojc/310408]
[141]
Rubio-Pina J, Vazquez-Flota F. Pharmaceutical applications of the benzylisoquinoline alkaloids from Argemone mexicana L. Curr Top Med Chem 2013; 13(17): 2200-7.
[http://dx.doi.org/10.2174/15680266113139990152] [PMID: 23978133]
[142]
Gan J, Feng Y, He Z, Li X, Zhang H. Correlations between antioxidant activity and alkaloids and phenols of Maca (Lepidium meyenii). J Food Qual 2017; 2017 3185945
[http://dx.doi.org/10.1155/2017/3185945]
[143]
Tatli II, Akdemir ZS, Yesilada E, Küpeli E. Anti-inflammatory and antinociceptive potential of major phenolics from Verbascum salviifolium Boiss. Z Natforsch C J Biosci 2008; 63(3-4): 196-202.
[http://dx.doi.org/10.1515/znc-2008-3-406] [PMID: 18533461]
[144]
Boukhris M, Bouaziz M, Sayadi S. Comparative essential oil composition and antioxidant activity of flowers, leaves and stems of rose-scented Geranium (Pelargonium graveolens L’Her.) from Tunisia. Acta Hortic 2013; (997): 111-5.
[http://dx.doi.org/10.17660/ActaHortic.2013.997.13]
[145]
Fomani M, Ngeufa Happi E, Nouga Bisoue A, et al. Oxidative burst inhibition, cytotoxicity and antibacterial acriquinoline alkaloids from Citrus reticulate (Blanco). Bioorg Med Chem Lett 2016; 26(2): 306-9.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.028] [PMID: 26711890]
[146]
Adhikari T, Kumar A. Phytoaccumulation and tolerance of Riccinus communis L. to nickel. Int J Phytoremediation 2012; 14(5): 481-92.
[http://dx.doi.org/10.1080/15226514.2011.604688] [PMID: 22567726]
[147]
Queipo-Ortuño MI, Boto M, Cardona F, Andrés-Lacueva C, Tinahones FJ. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical markers. Am J Clin Nutr 2012; 95(6): 1323-34.
[148]
Patil VV, Surwase SR, Belure AS, Suryawanshi AG, Mane DV. Phytochemical analysis and antibacterial evaluation of Curcuma Longa and Curcuma Aromatica against Enteric poultry pathogens. Int J Pharm Sci Res 2019; 10(4): 2000-3.
[149]
Nayak BS, Mishra D, Pradhan BS, Upadhaya D, Ellaiah P, Ramakrishna S. Phytochemical investigation and screening of antibacterial activity of extracts from leaves of Eupatorium odoratum Linn. Asian J Chem 2012; 24(5): 2036-8.
[150]
Goncalves GMS, Gobbo J. Antimicrobial effect of anacardium occidentale extract and cosmetic formulation development. Braz Arch Biol Technol 2012; 55(6): 843-50.
[http://dx.doi.org/10.1590/S1516-89132012000600006]
[151]
Shalaby MA, Saifan HY. Some pharmacological effects of cinnamon and ginger herbs in obese diabetic rats. J Intercult Ethnopharmacol 2014; 3(4): 144-9.
[http://dx.doi.org/10.5455/jice.20140818050741] [PMID: 26401364]
[152]
Gonelimali FD, Lin J, Miao W, et al. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol 2018; 9: 1639.
[http://dx.doi.org/10.3389/fmicb.2018.01639] [PMID: 30087662]
[153]
Tapondjou LA, Lontsi D, Sondengam BL, et al. In vivo anti-nociceptive and anti-inflammatory effect of the two triterpenes, ursolic acid and 23-hydroxyursolic acid, from Cussonia bancoensis. Arch Pharm Res 2003; 26(2): 143-6.
[http://dx.doi.org/10.1007/BF02976660] [PMID: 12643591]
[154]
Mireku EA, Mensah AY, Mensah MLK, Ekuadzi E, Dickson RA. Antimicrobial and antioxidant activities of the stem bark of Cussonia bancoensis. J Med Biomed Sci 2014; 3(2): 7-13.
[http://dx.doi.org/10.4314/jmbs.v3i2.2]
[155]
Villamizar VEM. Actividad biological activity (pharmacology) and/or ethnomedicine; and phytochemical compounds isolated from some species of Fenus: Persea, Laurus, Lindera, Aniba, Phoebe, Nectandra, Cassytha, Cinnamon, Licaria, Ravensara, Pleurothyrium, Dehaasia, Apollonias, and Neolitsea (Lauraceae). Duazary 2010; 7(1): 130-51.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy