Abstract
Background: Analysis of atomic coordinates of protein-ligand complexes can provide three-dimensional data to generate computational models to evaluate binding affinity and thermodynamic state functions. Application of machine learning techniques can create models to assess protein-ligand potential energy and binding affinity. These methods show superior predictive performance when compared with classical scoring functions available in docking programs.
Objective: Our purpose here is to review the development and application of the program SAnDReS. We describe the creation of machine learning models to assess the binding affinity of protein-ligand complexes.
Methods: SAnDReS implements machine learning methods available in the scikit-learn library. This program is available for download at https://github.com/azevedolab/sandres. SAnDReS uses crystallographic structures, binding and thermodynamic data to create targeted scoring functions.
Results: Recent applications of the program SAnDReS to drug targets such as Coagulation factor Xa, cyclin-dependent kinases and HIV-1 protease were able to create targeted scoring functions to predict inhibition of these proteins. These targeted models outperform classical scoring functions.
Conclusion: Here, we reviewed the development of machine learning scoring functions to predict binding affinity through the application of the program SAnDReS. Our studies show the superior predictive performance of the SAnDReS-developed models when compared with classical scoring functions available in the programs such as AutoDock4, Molegro Virtual Docker and AutoDock Vina.
Keywords: Machine learning, SAnDReS, cyclin-dependent kinase, protein-ligand interactions, binding affinity, Gibbs free energy.
[http://dx.doi.org/10.1007/978-1-4939-7465-8_7] [PMID: 29188562]
[http://dx.doi.org/10.1016/S0006-291X(02)00632-0] [PMID: 12083781]
[http://dx.doi.org/10.2174/1389450117666160401125542] [PMID: 27033186]
[http://dx.doi.org/10.2174/0929867325666180226104126] [PMID: 29484977]
[http://dx.doi.org/10.2174/1381612811319260002] [PMID: 23260025]
[http://dx.doi.org/10.2174/092986711795029519] [PMID: 21366529]
[http://dx.doi.org/10.1007/s12539-019-00327-w] [PMID: 30877639]
[http://dx.doi.org/10.1093/bioinformatics/btz183] [PMID: 30873528]
[http://dx.doi.org/10.1021/acs.jcim.8b00712] [PMID: 30835112]
[http://dx.doi.org/10.1021/acs.jcim.8b00673] [PMID: 30808172]
[http://dx.doi.org/10.1021/acs.jcim.8b00773] [PMID: 30802041]
[http://dx.doi.org/10.1007/s10822-018-0155-5] [PMID: 30173397]
[http://dx.doi.org/10.1007/s10822-018-0133-y] [PMID: 29992528]
[http://dx.doi.org/10.1016/j.jmgm.2018.06.005] [PMID: 29940506]
[http://dx.doi.org/10.1016/j.bpc.2018.05.010] [PMID: 29906639]
[http://dx.doi.org/10.1021/acs.jcim.7b00153] [PMID: 28654262]
[http://dx.doi.org/10.1021/ci9004139] [PMID: 20095526]
[http://dx.doi.org/10.1093/bioinformatics/btq112] [PMID: 20236947]
[http://dx.doi.org/10.1021/ci500091r] [PMID: 24528282]
[http://dx.doi.org/10.1007/978-3-319-24462-4_20]
[http://dx.doi.org/10.1371/journal.pone.0085678] [PMID: 24475049]
[http://dx.doi.org/10.1007/978-1-4939-9752-7_1] [PMID: 31452095]
[http://dx.doi.org/10.1021/ci100244v] [PMID: 20845954]
[http://dx.doi.org/10.1021/ci2003889] [PMID: 22017367]
[http://dx.doi.org/10.1021/ci400042y] [PMID: 23734946]
[http://dx.doi.org/10.1093/bioinformatics/bty374] [PMID: 29757353]
[http://dx.doi.org/10.1002/jcc.26048] [PMID: 31410856]
[http://dx.doi.org/10.2174/2213275912666191102162959] [PMID: 31729287]
[http://dx.doi.org/10.2174/1386207319666160927111347] [PMID: 27686428]
[http://dx.doi.org/10.1007/978-1-4939-9752-7_4] [PMID: 31452098]
[http://dx.doi.org/10.2174/0929867324666170623092503] [PMID: 28641555]
[http://dx.doi.org/10.2174/1389450118666161116130155] [PMID: 27848884]
[http://dx.doi.org/10.1016/j.bbrc.2017.10.035] [PMID: 29017921]
[http://dx.doi.org/10.1007/s10637-018-0568-y] [PMID: 29392539]
[http://dx.doi.org/10.2174/1386207320666171121110019] [PMID: 29165067]
[http://dx.doi.org/10.1016/j.bpc.2018.01.004] [PMID: 29407904]
[http://dx.doi.org/10.1111/cbdd.13312] [PMID: 29676519]
[http://dx.doi.org/10.2174/0929867325666180417165247] [PMID: 29667549]
[http://dx.doi.org/10.2174/1386207321666180313130314] [PMID: 29532756]
[http://dx.doi.org/10.2174/1389450118666170414113159] [PMID: 28413978]
[http://dx.doi.org/10.2174/0929867325666181113122900] [PMID: 30421668]
[http://dx.doi.org/10.1016/j.jmb.2019.05.024] [PMID: 31125569]
[http://dx.doi.org/10.2174/1570180814666170810120150]
[http://dx.doi.org/10.1186/s12859-018-2448-z] [PMID: 30442086]
[http://dx.doi.org/10.1016/j.gene.2019.01.029] [PMID: 30716439]
[http://dx.doi.org/10.2174/1574893614666190104142228]
[http://dx.doi.org/10.2174/1389450120666181204165344] [PMID: 30516105]
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.100] [PMID: 31108148]
[http://dx.doi.org/10.2174/0929867326666181203125229] [PMID: 30501592]
[http://dx.doi.org/10.2174/0929867326666190906155339] [PMID: 31490743]
[http://dx.doi.org/10.1186/s12859-019-3058-0] [PMID: 31533611]
[http://dx.doi.org/10.1016/j.molstruc.2018.12.022]
[http://dx.doi.org/10.1016/j.molstruc.2018.07.080]
[http://dx.doi.org/10.2174/0929867325666180214113704] [PMID: 29446725]
[http://dx.doi.org/10.2174/1386207322999190715161959] [PMID: 31446889]
[http://dx.doi.org/10.2174/1574893614666181217142344]
[http://dx.doi.org/10.1016/j.jmgm.2018.09.003] [PMID: 30219588]
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.166] [PMID: 29802925]
[http://dx.doi.org/10.1016/j.molstruc.2018.05.005]
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.080] [PMID: 29559315]
[http://dx.doi.org/10.1016/j.molstruc.2017.11.109]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.174] [PMID: 28867234]
[http://dx.doi.org/10.2174/1570159X16666180308161642] [PMID: 29521236]
[http://dx.doi.org/10.1016/j.genrep.2018.10.011]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.092] [PMID: 28130130]
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[http://dx.doi.org/10.1107/S0907444902003451]
[http://dx.doi.org/10.1093/nar/gkg068] [PMID: 12520059]
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[http://dx.doi.org/10.2174/092986711795029573] [PMID: 21366530]
[http://dx.doi.org/10.1007/978-1-4939-9752-7_10] [PMID: 31452104]
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[http://dx.doi.org/10.1007/978-1-4939-9752-7_9] [PMID: 31452103]
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x]
[http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x]
[http://dx.doi.org/10.1016/j.bmc.2008.08.014] [PMID: 18829335]
[http://dx.doi.org/10.2174/138945008786949450] [PMID: 19128216]
[http://dx.doi.org/10.1016/j.bmc.2010.05.009] [PMID: 20570524]
[http://dx.doi.org/10.2174/138945008786949441] [PMID: 19128217]
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[http://dx.doi.org/10.1093/nar/gkm911] [PMID: 18055497]
[http://dx.doi.org/10.1093/nar/gku1088] [PMID: 25378330]
[http://dx.doi.org/10.1093/bioinformatics/btu626] [PMID: 25301850]
[http://dx.doi.org/10.1080/01621459.1972.10481251]
[http://dx.doi.org/10.1016/0006-2952(73)90196-2] [PMID: 4202581]
[http://dx.doi.org/10.1002/anie.200804695] [PMID: 19101972]
[http://dx.doi.org/10.1111/j.1432-1033.1997.0518a.x] [PMID: 9030780]
[http://dx.doi.org/10.1073/pnas.93.7.2735] [PMID: 8610110]
[http://dx.doi.org/10.1007/978-1-4615-5873-6_14] [PMID: 9552391]
[http://dx.doi.org/10.2174/1573409052952233]
[http://dx.doi.org/10.1021/jm0605740] [PMID: 17064068]
[http://dx.doi.org/10.1186/s12859-016-1411-0] [PMID: 28056778]