Review Article

Nanoparticle-based Drug Delivery Systems for Targeted Epigenetics Cancer Therapy

Author(s): Fengqian Chen, Yunzhen Shi, Jinming Zhang and Qi Liu*

Volume 21, Issue 11, 2020

Page: [1084 - 1098] Pages: 15

DOI: 10.2174/1389450121666200514222900

Price: $65

Abstract

This review summarizes the epigenetic mechanisms of deoxyribonucleic acid (DNA) methylation, histone modifications in cancer and the epigenetic modifications in cancer therapy. Due to their undesired side effects, the use of epigenetic drugs as chemo-drugs in cancer therapies is limited. The drug delivery system opens a door for minimizing these side effects and achieving greater therapeutic benefits. The limitations of current epigenetic therapies in clinical cancer treatment and the advantages of using drug delivery systems for epigenetic agents are also discussed. Combining drug delivery systems with epigenetic therapy is a promising approach to reaching a high therapeutic index and minimizing the side effects.

Keywords: Gene expression, epigenetic regulation/pathway/change, DNA methylation, histone modifications/methylation/ acetylation, non-coding RNA, bromodomain, nanoparticle/nanomedicine/nanotechnology.

Graphical Abstract

[1]
Alabert C, Barth TK, Reverón-Gómez N, et al. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 2015; 29(6): 585-90.
[http://dx.doi.org/10.1101/gad.256354.114] [PMID: 25792596]
[2]
Budhavarapu VN, Chavez M, Tyler JK. How is epigenetic information maintained through DNA replication? Epigenetics Chromatin 2013; 6(1): 32.
[http://dx.doi.org/10.1186/1756-8935-6-32] [PMID: 24225278]
[3]
Zhu B, Reinberg D. Epigenetic inheritance: uncontested? Cell Res 2011; 21(3): 435-41.
[http://dx.doi.org/10.1038/cr.2011.26] [PMID: 21321606]
[4]
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1): 6-21.
[http://dx.doi.org/10.1101/gad.947102] [PMID: 11782440]
[5]
Chen F, Alphonse MP, Liu Y, Liu Q. Targeting Mutant KRAS for Anticancer Therapy. Curr Top Med Chem 2019; 19(23): 2098-113.
[http://dx.doi.org/10.2174/1568026619666190902151307] [PMID: 31475898]
[6]
Adcock IM, Ito K, Barnes PJ. Histone deacetylation: an important mechanism in inflammatory lung diseases. COPD 2005; 2(4): 445-55.
[http://dx.doi.org/10.1080/15412550500346683] [PMID: 17147010]
[7]
Buckstein R, Yee K, Wells RA. Canadian Consortium on Evidence-based Care in MDS. 5-Azacytidine in myelodysplastic syndromes: a clinical practice guideline. Cancer Treat Rev 2011; 37(2): 160-7.
[http://dx.doi.org/10.1016/j.ctrv.2010.05.006] [PMID: 20591575]
[8]
Ravandi F, Alattar ML, Grunwald MR, et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood 2013; 121(23): 4655-62.
[http://dx.doi.org/10.1182/blood-2013-01-480228] [PMID: 23613521]
[9]
Greenberg PL, Garcia-Manero G, Moore M, et al. A randomized controlled trial of romiplostim in patients with low- or intermediate-risk myelodysplastic syndrome receiving decitabine. Leuk Lymphoma 2013; 54(2): 321-8.
[http://dx.doi.org/10.3109/10428194.2012.713477] [PMID: 22906162]
[10]
Thomas X, Dmoszynska A, Wierzbowska A, Kuliczkowski K, Mayer J, Shelekhova T, et al. Results from a randomized phase III trial of decitabine versus supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed AML Journal of Clinical Oncology 2011; 29((15_suppl)) 6504
[http://dx.doi.org/10.1200/jco.2011.29.15_suppl.6504]
[11]
Rangwala S, Duvic M, Zhang C. Trends in the treatment of cutaneous T-cell lymphoma: Critical evaluation and perspectives on vorinostat. Blood Lymph Cancer Targets Ther 2012; 2: 17-27.
[12]
Friday BB, Anderson SK, Buckner J, et al. Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro-oncol 2012; 14(2): 215-21.
[http://dx.doi.org/10.1093/neuonc/nor198] [PMID: 22090453]
[13]
Yoo C, Ryu M-H, Na Y-S, et al. Phase I and pharmacodynamic study of vorinostat combined with capecitabine and cisplatin as first-line chemotherapy in advanced gastric cancer. Invest New Drugs 2014; 32(2): 271-8.
[http://dx.doi.org/10.1007/s10637-013-9983-2] [PMID: 23712440]
[14]
El Bahhaj F, Denis I, Pichavant L, et al. Histone deacetylase inhibitors delivery using nanoparticles with intrinsic passive tumor targeting properties for tumor therapy. Theranostics 2016; 6(6): 795-807.
[http://dx.doi.org/10.7150/thno.13725] [PMID: 27162550]
[15]
Hou L, Liu Q, Shen L, et al. Nano-delivery of fraxinellone remodels tumor microenvironment and facilitates therapeutic vaccination in desmoplastic melanoma. Theranostics 2018; 8(14): 3781-96.
[http://dx.doi.org/10.7150/thno.24821] [PMID: 30083259]
[16]
Hu Y, Gong X, Zhang J, et al. Activated charge-reversal polymeric nano-system: the promising strategy in drug delivery for cancer therapy. Polymers (Basel) 2016; 8(4): 99.
[http://dx.doi.org/10.3390/polym8040099] [PMID: 30979214]
[17]
Zou L, Chen F, Bao J, et al. Preparation, characterization, and anticancer efficacy of evodiamine-loaded PLGA nanoparticles. Drug Deliv 2016; 23(3): 908-16.
[http://dx.doi.org/10.3109/10717544.2014.920936] [PMID: 24904975]
[18]
Liu Q, Chen F, Hou L, et al. Nanocarrier-mediated chemo-immunotherapy arrested cancer progression and induced tumor dormancy in desmoplastic melanoma. ACS Nano 2018; 12(8): 7812-25.
[http://dx.doi.org/10.1021/acsnano.8b01890] [PMID: 30016071]
[19]
Liu Q, Zhu H, Tiruthani K, et al. Nanoparticle-mediated trapping of Wnt family member 5A in tumor microenvironments enhances immunotherapy for B-Raf proto-oncogene mutant melanoma. ACS Nano 2018; 12(2): 1250-61.
[http://dx.doi.org/10.1021/acsnano.7b07384] [PMID: 29370526]
[20]
Cramer SA, Adjei IM, Labhasetwar V. Advancements in the delivery of epigenetic drugs. Expert Opin Drug Deliv 2015; 12(9): 1501-12.
[http://dx.doi.org/10.1517/17425247.2015.1021678] [PMID: 25739728]
[21]
Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 2010; 21(5): 797-802.
[http://dx.doi.org/10.1021/bc100070g] [PMID: 20397686]
[22]
Miyamoto K, Ushijima T. Diagnostic and therapeutic applications of epigenetics. Jpn J Clin Oncol 2005; 35(6): 293-301.
[http://dx.doi.org/10.1093/jjco/hyi088] [PMID: 15930038]
[23]
Delatouche R, Denis I, Grinda M, et al. Design of pH responsive clickable prodrugs applied to histone deacetylase inhibitors: a new strategy for anticancer therapy. Eur J Pharm Biopharm 2013; 85(3 Pt B): 862-72.
[http://dx.doi.org/10.1016/j.ejpb.2013.03.006] [PMID: 23537575]
[24]
Denis I, el Bahhaj F, Collette F, et al. Histone deacetylase inhibitor-polymer conjugate nanoparticles for acid-responsive drug delivery. Eur J Med Chem 2015; 95: 369-76.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.037] [PMID: 25827403]
[25]
Tran TH, Ramasamy T, Truong DH, et al. Development of vorinostat-loaded solid lipid nanoparticles to enhance pharmacokinetics and efficacy against multidrug-resistant cancer cells. Pharm Res 2014; 31(8): 1978-88.
[http://dx.doi.org/10.1007/s11095-014-1300-z] [PMID: 24562809]
[26]
Hong Y-D, Zhang J, Zhuang M, et al. Efficacy of decitabine-loaded gelatinases-stimuli nanoparticles in overcoming cancer drug resistance is mediated via its enhanced demethylating activity to transcription factor AP-2 epsilon. Oncotarget 2017; 8(70): 114495-505.
[http://dx.doi.org/10.18632/oncotarget.21274] [PMID: 29383097]
[27]
Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 2002; 99(6): 3740-5.
[http://dx.doi.org/10.1073/pnas.052410099] [PMID: 11891299]
[28]
Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet 2016; 17(8): 487-500.
[http://dx.doi.org/10.1038/nrg.2016.59] [PMID: 27346641]
[29]
Jones PA, Issa J-PJ, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet 2016; 17(10): 630-41.
[http://dx.doi.org/10.1038/nrg.2016.93] [PMID: 27629931]
[30]
Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 2016; 8(9)a019505
[http://dx.doi.org/10.1101/cshperspect.a019505] [PMID: 27194046]
[31]
Roulois D, Loo Yau H, Singhania R, et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 2015; 162(5): 961-73.
[http://dx.doi.org/10.1016/j.cell.2015.07.056] [PMID: 26317465]
[32]
Whitaker KJ, Vértes PE, Romero-Garcia R, et al. NSPN Consortium Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc Natl Acad Sci USA 2016; 113(32): 9105-10.
[http://dx.doi.org/10.1073/pnas.1601745113] [PMID: 27457931]
[33]
Schübeler D. Function and information content of DNA methylation. Nature 2015; 517(7534): 321-6.
[http://dx.doi.org/10.1038/nature14192] [PMID: 25592537]
[34]
Kinde B, Gabel HW, Gilbert CS, Griffith EC, Greenberg ME. Reading the unique DNA methylation landscape of the brain: Non-CpG methylation, hydroxymethylation, and MeCP2. Proc Natl Acad Sci USA 2015; 112(22): 6800-6.
[http://dx.doi.org/10.1073/pnas.1411269112] [PMID: 25739960]
[35]
Klutstein M, Nejman D, Greenfield R, Cedar H. DNA methylation in cancer and aging. Cancer Res 2016; 76(12): 3446-50.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3278] [PMID: 27256564]
[36]
Maddocks OD, Labuschagne CF, Adams PD, Vousden KH. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol Cell 2016; 61(2): 210-21.
[http://dx.doi.org/10.1016/j.molcel.2015.12.014] [PMID: 26774282]
[37]
Koch A, Joosten SC, Feng Z, et al. Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol 2018; 15(7): 459-66.
[http://dx.doi.org/10.1038/s41571-018-0004-4] [PMID: 29666440]
[38]
Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N. Requirement for Xist in X chromosome inactivation. Nature 1996; 379(6561): 131-7.
[http://dx.doi.org/10.1038/379131a0] [PMID: 8538762]
[39]
Avner P, Heard E. X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet 2001; 2(1): 59-67.
[http://dx.doi.org/10.1038/35047580] [PMID: 11253071]
[40]
Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23(20): 4051-60.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[41]
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets. PLoS Biol 2004; 2(11)e363
[http://dx.doi.org/10.1371/journal.pbio.0020363] [PMID: 15502875]
[42]
Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol 2005; 3(3)e85
[http://dx.doi.org/10.1371/journal.pbio.0030085] [PMID: 15723116]
[43]
Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol 2016; 8(4)a019521
[http://dx.doi.org/10.1101/cshperspect.a019521] [PMID: 27037415]
[44]
Zhao Y, Garcia BA. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol 2015; 7(9)a025064
[http://dx.doi.org/10.1101/cshperspect.a025064] [PMID: 26330523]
[45]
Zheng H, Huang B, Zhang B, et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol Cell 2016; 63(6): 1066-79.
[http://dx.doi.org/10.1016/j.molcel.2016.08.032] [PMID: 27635762]
[46]
Ceccacci E, Minucci S. Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia. Br J Cancer 2016; 114(6): 605-11.
[http://dx.doi.org/10.1038/bjc.2016.36] [PMID: 26908329]
[47]
Chiappinelli KB, Zahnow CA, Ahuja N, Baylin SB. Combining epigenetic and immunotherapy to combat cancer. Cancer Res 2016; 76(7): 1683-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2125] [PMID: 26988985]
[48]
Sato T, Issa JJ, Kropf P. DNA hypomethylating drugs in cancer therapy. Cold Spring Harb Perspect Med 2017; 7(5)a026948
[http://dx.doi.org/10.1101/cshperspect.a026948] [PMID: 28159832]
[49]
Zahnow C, Topper M, Stone M, Murray-Stewart T, Li H, Baylin SB, et al. Inhibitors of DNA methylation, histone deacetylation, and histone demethylation: a perfect combination for cancer therapy Advances in cancer research 130. Elsevier 2016; pp. 55-111.
[http://dx.doi.org/10.1016/bs.acr.2016.01.007]
[50]
Wongtrakoongate P. Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries. World J Stem Cells 2015; 7(1): 137-48.
[http://dx.doi.org/10.4252/wjsc.v7.i1.137] [PMID: 25621113]
[51]
Saleem M, Abbas K, Manan M, et al. Review-Epigenetic therapy for cancer. Pak J Pharm Sci 2015; 28(3): 1023-32.
[PMID: 26004710]
[52]
Zhou Z, Li H-Q, Liu F. DNA Methyltransferase Inhibitors and their Therapeutic Potential. Curr Top Med Chem 2018; 18(28): 2448-57.
[http://dx.doi.org/10.2174/1568026619666181120150122] [PMID: 30465505]
[53]
Tse JWT, Jenkins LJ, Chionh F, Mariadason JM. Aberrant DNA methylation in colorectal cancer: what should we target? Trends Cancer 2017; 3(10): 698-712.
[http://dx.doi.org/10.1016/j.trecan.2017.08.003] [PMID: 28958388]
[54]
Bohl SR, Bullinger L, Rücker FG. Epigenetic therapy: azacytidine and decitabine in acute myeloid leukemia. Expert Rev Hematol 2018; 11(5): 361-71.
[http://dx.doi.org/10.1080/17474086.2018.1453802] [PMID: 29543073]
[55]
Kantarjian HM, O’Brien S, Shan J, et al. Update of the decitabine experience in higher risk myelodysplastic syndrome and analysis of prognostic factors associated with outcome. Cancer 2007; 109(2): 265-73.
[http://dx.doi.org/10.1002/cncr.22376] [PMID: 17133405]
[56]
Kaminskas E, Farrell AT, Wang Y-C, Sridhara R, Pazdur R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 2005; 10(3): 176-82.
[http://dx.doi.org/10.1634/theoncologist.10-3-176] [PMID: 15793220]
[57]
Issa J-PJ, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004; 103(5): 1635-40.
[http://dx.doi.org/10.1182/blood-2003-03-0687] [PMID: 14604977]
[58]
Issa J-PJ, Gharibyan V, Cortes J, et al. Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol 2005; 23(17): 3948-56.
[http://dx.doi.org/10.1200/JCO.2005.11.981] [PMID: 15883410]
[59]
Pauer LR, Olivares J, Cunningham C, et al. Phase I study of oral CI-994 in combination with carboplatin and paclitaxel in the treatment of patients with advanced solid tumors. Cancer Invest 2004; 22(6): 886-96.
[http://dx.doi.org/10.1081/CNV-200039852] [PMID: 15641487]
[60]
Schermelleh L, Spada F, Easwaran HP, et al. Trapped in action: direct visualization of DNA methyltransferase activity in living cells. Nat Methods 2005; 2(10): 751-6.
[http://dx.doi.org/10.1038/nmeth794] [PMID: 16179921]
[61]
Beumer JH, Parise RA, Newman EM, et al. Concentrations of the DNA methyltransferase inhibitor 5-fluoro-2′-deoxycytidine (FdCyd) and its cytotoxic metabolites in plasma of patients treated with FdCyd and tetrahydrouridine (THU). Cancer Chemother Pharmacol 2008; 62(2): 363-8.
[http://dx.doi.org/10.1007/s00280-007-0603-8] [PMID: 17899082]
[62]
Kantarjian HM, Roboz GJ, Kropf PL, et al. Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet Oncol 2017; 18(10): 1317-26.
[http://dx.doi.org/10.1016/S1470-2045(17)30576-4] [PMID: 28844816]
[63]
Zambrano P, Segura-Pacheco B, Perez-Cardenas E, et al. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer 2005; 5(1): 44.
[http://dx.doi.org/10.1186/1471-2407-5-44] [PMID: 15862127]
[64]
Vigil-De Gracia P, Lasso M, Ruiz E, Vega-Malek JC, de Mena FT, López JC. or the HYLA treatment study. Severe hypertension in pregnancy: hydralazine or labetalol. A randomized clinical trial. Eur J Obstet Gynecol Reprod Biol 2006; 128(1-2): 157-62.
[http://dx.doi.org/10.1016/j.ejogrb.2006.02.015] [PMID: 16621226]
[65]
Davis AJ, Gelmon KA, Siu LL, et al. Phase I and pharmacologic study of the human DNA methyltransferase antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. Invest New Drugs 2003; 21(1): 85-97.
[http://dx.doi.org/10.1023/A:1022976528441] [PMID: 12795533]
[66]
Stewart DJ, Donehower RC, Eisenhauer EA, et al. A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly. Ann Oncol 2003; 14(5): 766-74.
[http://dx.doi.org/10.1093/annonc/mdg216] [PMID: 12702532]
[67]
Plummer R, Vidal L, Griffin M, et al. Phase I study of MG98, an oligonucleotide antisense inhibitor of human DNA methyltransferase 1, given as a 7-day infusion in patients with advanced solid tumors. Clin Cancer Res 2009; 15(9): 3177-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2859] [PMID: 19383817]
[68]
Carlberg C, Molnár F. Cancer Epigenetics Human Epigenetics: How Science Works. Springer 2019; pp. 89-99.
[http://dx.doi.org/10.1007/978-3-030-22907-8_8]
[69]
Giri AK, Aittokallio T. DNMT inhibitors increase methylation in the cancer genome. Front Pharmacol 2019; 10: 385.
[http://dx.doi.org/10.3389/fphar.2019.00385] [PMID: 31068808]
[70]
Santos‐Barriopedro I, Raurell‐Vila H, Vaquero A. The Role of HATs and HDACs in Cell Physiology and Disease. Gene Regulation, Epigenetics and Hormone Signaling 2017.
[http://dx.doi.org/10.1002/9783527697274.ch4]
[71]
Eyüpoglu IY, Savaskan NEE, Savaskan N. Epigenetics in brain tumors: HDACs take center stage. Curr Neuropharmacol 2016; 14(1): 48-54.
[http://dx.doi.org/10.2174/1570159X13666151030162457] [PMID: 26521944]
[72]
Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 2016; 6(10)a026831
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[73]
Duan Y-C, Ma Y-C, Qin W-P, et al. Design and synthesis of tranylcypromine derivatives as novel LSD1/HDACs dual inhibitors for cancer treatment. Eur J Med Chem 2017; 140: 392-402.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.038] [PMID: 28987602]
[74]
Newbold A, Falkenberg KJ, Prince HM, Johnstone RW. How do tumor cells respond to HDAC inhibition? FEBS J 2016; 283(22): 4032-46.
[http://dx.doi.org/10.1111/febs.13746] [PMID: 27112360]
[75]
Damaskos C, Garmpis N, Valsami S, et al. Histone deacetylase inhibitors: an attractive therapeutic strategy against breast cancer. Anticancer Res 2017; 37(1): 35-46.
[http://dx.doi.org/10.21873/anticanres.11286] [PMID: 28011471]
[76]
Miozzo M, Vaira V, Sirchia SM. Epigenetic alterations in cancer and personalized cancer treatment. Future Oncol 2015; 11(2): 333-48.
[http://dx.doi.org/10.2217/fon.14.237] [PMID: 25591842]
[77]
de Lera AR, Ganesan A. Epigenetic polypharmacology: from combination therapy to multitargeted drugs. Clin Epigenetics 2016; 8(1): 105.
[http://dx.doi.org/10.1186/s13148-016-0271-9] [PMID: 27752293]
[78]
Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clin Epigenetics 2019; 11(1): 81.
[http://dx.doi.org/10.1186/s13148-019-0675-4] [PMID: 31097014]
[79]
Stokes JA, Kumar S, Scissum-Gunn K, Singh UP, Mishra MK. Epigenetic and Cancer: An Evaluation of the Impact of Dietary Components Epigenetic Advancements in Cancer. Springer 2016; pp. 65-78.
[http://dx.doi.org/10.1007/978-3-319-24951-3_3]
[80]
Vandghanooni S, Eskandani M, Barar J, Omidi Y. Aptamedicine: a new treatment modality in personalized cancer therapy. Bioimpacts 2019; 9(2): 67-70.
[PMID: 31334037]
[81]
Bayat Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022-43.
[PMID: 28410237]
[82]
Pathania R, Kolhe RB, Ramachandran S, Mariappan G, Thakur P, Prasad PD, et al. Combination of DNMT and HDAC inhibitors reprogram cancer stem cell signaling to overcome drug resistance. AACR 2016.
[83]
Pathania R, Ramachandran S, Mariappan G, et al. Combined inhibition of DNMT and HDAC blocks the tumorigenicity of cancer stem-like cells and attenuates mammary tumor growth. Cancer Res 2016; 76(11): 3224-35.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2249] [PMID: 27197203]
[84]
Brocks D, Schmidt CR, Daskalakis M, et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat Genet 2017; 49(7): 1052-60.
[http://dx.doi.org/10.1038/ng.3889] [PMID: 28604729]
[85]
Grishina O, Schmoor C, Döhner K, et al. DECIDER: prospective randomized multicenter phase II trial of low-dose decitabine (DAC) administered alone or in combination with the histone deacetylase inhibitor valproic acid (VPA) and all-trans retinoic acid (ATRA) in patients >60 years with acute myeloid leukemia who are ineligible for induction chemotherapy. BMC Cancer 2015; 15(1): 430.
[http://dx.doi.org/10.1186/s12885-015-1432-5] [PMID: 26008690]
[86]
Motabi IH, Iqbal S, Zaidi SZA, Albtoosh B, Alshehry NF, AlGhamdi MS, et al. Phase 2 Study of 5 Days Azacytidine Priming Prior to Fludarabine, Cytarabine and G-CSF Combination for Patients with Relapsed or Refractory AML. Am Soc Hematology 2018.
[http://dx.doi.org/10.1182/blood-2018-99-114037]
[87]
Montesinos P, Vives S, Martinez-Sanchez MP, et al. Preliminary results of the flugaza trial: A phase III randomized, open label study comparing azacytidine versus fludarabine and cytarabine (FLUGA Scheme) in elderly patients with newly diagnosed acute myeloid leukemia. Am Soc Hematology 2016; 128(22): 4036.
[88]
Gaillard SL, Zahurak M, Sharma A, et al. A phase 1 trial of the oral DNA methyltransferase inhibitor CC-486 and the histone deacetylase inhibitor romidepsin in advanced solid tumors. Cancer 2019; 125(16): 2837-45.
[http://dx.doi.org/10.1002/cncr.32138] [PMID: 31012962]
[89]
Wrangle J, Wang W, Koch A, et al. Alterations of immune response of Non-Small Cell Lung Cancer with Azacytidine. Oncotarget 2013; 4(11): 2067-79.
[http://dx.doi.org/10.18632/oncotarget.1542] [PMID: 24162015]
[90]
Raqib R, Sarker P, Mily A, et al. Efficacy of sodium butyrate adjunct therapy in shigellosis: a randomized, double-blind, placebo-controlled clinical trial. BMC Infect Dis 2012; 12(1): 111.
[http://dx.doi.org/10.1186/1471-2334-12-111] [PMID: 22574737]
[91]
Jiang Z, Li W, Hu X, Zhang Q, Sun T, Cui S, et al. 283O_PR Phase III trial of chidamide, a subtype-selective histone deacetylase (HDAC) inhibitor, in combination with exemestane in patients with hormone receptor-positive advanced breast cancer. Annals of Oncology 2018; 29(((suppl_8))) mdy424. 011
[92]
Dong M, Ning Z-Q, Xing P-Y, et al. Phase I study of chidamide (CS055/HBI-8000), a new histone deacetylase inhibitor, in patients with advanced solid tumors and lymphomas. Cancer Chemother Pharmacol 2012; 69(6): 1413-22.
[http://dx.doi.org/10.1007/s00280-012-1847-5] [PMID: 22362161]
[93]
Child F, Ortiz-Romero PL, Alvarez R, et al. Phase II multicentre trial of oral quisinostat, a histone deacetylase inhibitor, in patients with previously treated stage IB-IVA mycosis fungoides/Sézary syndrome. Br J Dermatol 2016; 175(1): 80-8.
[http://dx.doi.org/10.1111/bjd.14427] [PMID: 26836950]
[94]
Venugopal B, Baird R, Kristeleit RS, et al. A phase I study of quisinostat (JNJ-26481585), an oral hydroxamate histone deacetylase inhibitor with evidence of target modulation and antitumor activity, in patients with advanced solid tumors. Clin Cancer Res 2013; 19(15): 4262-72.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0312] [PMID: 23741066]
[95]
Raffoux E, Chaibi P, Dombret H, Degos L. Valproic acid and all-trans retinoic acid for the treatment of elderly patients with acute myeloid leukemia. Haematologica 2005; 90(7): 986-8.
[PMID: 15996941]
[96]
Yang H, Hoshino K, Sanchez-Gonzalez B, Kantarjian H, Garcia-Manero G. Antileukemia activity of the combination of 5-aza-2′-deoxycytidine with valproic acid. Leuk Res 2005; 29(7): 739-48.
[http://dx.doi.org/10.1016/j.leukres.2004.11.022] [PMID: 15927669]
[97]
Atmaca A, Al-Batran SE, Maurer A, et al. Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial. Br J Cancer 2007; 97(2): 177-82.
[http://dx.doi.org/10.1038/sj.bjc.6603851] [PMID: 17579623]
[98]
Monneret C. Histone deacetylase inhibitors. Eur J Med Chem 2005; 40(1): 1-13.
[http://dx.doi.org/10.1016/j.ejmech.2004.10.001] [PMID: 15642405]
[99]
Kelly WK, Richon VM, O’Connor O, et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 2003; 9(10 Pt 1): 3578-88.
[PMID: 14506144]
[100]
Garcia-Manero G, Yang H, Bueso-Ramos C, et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 2008; 111(3): 1060-6.
[http://dx.doi.org/10.1182/blood-2007-06-098061] [PMID: 17962510]
[101]
Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 2007; 109(1): 31-9.
[http://dx.doi.org/10.1182/blood-2006-06-025999] [PMID: 16960145]
[102]
Giles FJ, Fischer T, Cortes J, Beck J, Ravandi-Kashani F, Garcia-Manero G, et al. A Phase I/II Study of Intravenous LBH589, a Novel Histone Deacetylase (HDAC) InhibitorPatients (pts) with Advanced Hematologic Malignancies. Am Soc Hematology 2004.
[103]
Hamberg P, Woo MM, Chen L-C, et al. Effect of ketoconazole-mediated CYP3A4 inhibition on clinical pharmacokinetics of panobinostat (LBH589), an orally active histone deacetylase inhibitor. Cancer Chemother Pharmacol 2011; 68(3): 805-13.
[http://dx.doi.org/10.1007/s00280-011-1693-x] [PMID: 21706316]
[104]
Catley L, Weisberg E, Tai Y-T, et al. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 2003; 102(7): 2615-22.
[http://dx.doi.org/10.1182/blood-2003-01-0233] [PMID: 12816865]
[105]
Byrd JC, Marcucci G, Parthun MR, et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 2005; 105(3): 959-67.
[http://dx.doi.org/10.1182/blood-2004-05-1693] [PMID: 15466934]
[106]
Sandor V, Bakke S, Robey RW, et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res 2002; 8(3): 718-28.
[PMID: 11895901]
[107]
Nishino N, Yoshikawa D, Watanabe LA, et al. Synthesis and histone deacetylase inhibitory activity of cyclic tetrapeptides containing a retrohydroxamate as zinc ligand. Bioorg Med Chem Lett 2004; 14(10): 2427-31.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.018] [PMID: 15109626]
[108]
Camphausen K, Burgan W, Cerra M, et al. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 2004; 64(1): 316-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2630] [PMID: 14729640]
[109]
Jose B, Oniki Y, Kato T, Nishino N, Sumida Y, Yoshida M. Novel histone deacetylase inhibitors: cyclic tetrapeptide with trifluoromethyl and pentafluoroethyl ketones. Bioorg Med Chem Lett 2004; 14(21): 5343-6.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.016] [PMID: 15454224]
[110]
Kummar S, Gutierrez M, Gardner ER, et al. Phase I trial of MS-275, a histone deacetylase inhibitor, administered weekly in refractory solid tumors and lymphoid malignancies. Clin Cancer Res 2007; 13(18 Pt 1): 5411-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0791] [PMID: 17875771]
[111]
Gojo I, Jiemjit A, Trepel JB, et al. Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 2007; 109(7): 2781-90.
[http://dx.doi.org/10.1182/blood-2006-05-021873] [PMID: 17179232]
[112]
Gore SD, Weng L-J, Zhai S, et al. Impact of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin Cancer Res 2001; 7(8): 2330-9.
[PMID: 11489809]
[113]
Camacho LH, Olson J, Tong WP, Young CW, Spriggs DR, Malkin MG. Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors. Invest New Drugs 2007; 25(2): 131-8.
[http://dx.doi.org/10.1007/s10637-006-9017-4] [PMID: 17053987]
[114]
Piekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 2009; 27(32): 5410-7.
[http://dx.doi.org/10.1200/JCO.2008.21.6150] [PMID: 19826128]
[115]
Witta SE, Jotte RM, Konduri K, et al. Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non-small-cell lung cancer who progressed on prior chemotherapy. J Clin Oncol 2012; 30(18): 2248-55.
[http://dx.doi.org/10.1200/JCO.2011.38.9411] [PMID: 22508830]
[116]
Evens AM, Vose JM, Harb W, Gordon LI, Langdon R, Grant B, et al. A Phase II Multicenter Study of the Histone Deacetylase Inhibitor (HDACi) Abexinostat (PCI-24781) in Relapsed/Refractory Follicular Lymphoma (FL) and Mantle Cell Lymphoma (MCL). Blood 2012; 120(21): 55.
[http://dx.doi.org/10.1182/blood.V120.21.55.55]
[117]
Niesvizky R, Richardson PG, Gabrail NY, Madan S, Yee AJ, Quayle SN, et al. ACY-241, a Novel, HDAC6 Selective Inhibitor: Synergy with Immunomodulatory (IMiD®) Drugs in Multiple Myeloma (MM) Cells and Early Clinical Results (ACE-MM-200 Study). Blood 2015; 126(23): 3040.
[http://dx.doi.org/10.1182/blood.V126.23.3040.3040]
[118]
Oki Y, Kelly KR, Flinn I, et al. CUDC-907 in relapsed/refractory diffuse large B-cell lymphoma, including patients with MYC-alterations: results from an expanded phase I trial. Haematologica 2017; 102(11): 1923-30.
[http://dx.doi.org/10.3324/haematol.2017.172882] [PMID: 28860342]
[119]
Furlan A, Monzani V, Reznikov LL, et al. Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat). Mol Med 2011; 17(5-6): 353-62.
[http://dx.doi.org/10.2119/molmed.2011.00020] [PMID: 21365126]
[120]
Younes A, Oki Y, Bociek RG, et al. Mocetinostat for relapsed classical Hodgkin’s lymphoma: an open-label, single-arm, phase 2 trial. Lancet Oncol 2011; 12(13): 1222-8.
[http://dx.doi.org/10.1016/S1470-2045(11)70265-0] [PMID: 22033282]
[121]
Bitzer M, Horger M, Giannini EG, et al. Resminostat plus sorafenib as second-line therapy of advanced hepatocellular carcinoma - The SHELTER study. J Hepatol 2016; 65(2): 280-8.
[http://dx.doi.org/10.1016/j.jhep.2016.02.043] [PMID: 26952006]
[122]
Yee AJ, Bensinger WI, Supko JG, et al. Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: a multicentre phase 1b trial. Lancet Oncol 2016; 17(11): 1569-78.
[http://dx.doi.org/10.1016/S1470-2045(16)30375-8] [PMID: 27646843]
[123]
Fang F, Balch C, Schilder J, et al. A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer 2010; 116(17): 4043-53.
[http://dx.doi.org/10.1002/cncr.25204] [PMID: 20564122]
[124]
Fu S, Hu W, Iyer R, et al. Phase 1b-2a study to reverse platinum resistance through use of a hypomethylating agent, azacitidine, in patients with platinum-resistant or platinum-refractory epithelial ovarian cancer. Cancer 2011; 117(8): 1661-9.
[http://dx.doi.org/10.1002/cncr.25701] [PMID: 21472713]
[125]
Connolly RM, Li H, Jankowitz RC, et al. Combination Epigenetic Therapy in Advanced Breast Cancer with 5-Azacitidine and Entinostat: A Phase II National Cancer Institute/Stand Up to Cancer Study. Clin Cancer Res 2017; 23(11): 2691-701.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1729] [PMID: 27979916]
[126]
Raffoux E, Cras A, Recher C, et al. Phase 2 clinical trial of 5-azacitidine, valproic acid, and all-trans retinoic acid in patients with high-risk acute myeloid leukemia or myelodysplastic syndrome. Oncotarget 2010; 1(1): 34-42.
[http://dx.doi.org/10.18632/oncotarget.106] [PMID: 21293051]
[127]
Sekeres MA, List AF, Cuthbertson D, et al. Phase I combination trial of lenalidomide and azacitidine in patients with higher-risk myelodysplastic syndromes. J Clin Oncol 2010; 28(13): 2253-8.
[http://dx.doi.org/10.1200/JCO.2009.26.0745] [PMID: 20354132]
[128]
Kenealy M, Patton N, Filshie R, et al. Results of a phase II study of thalidomide and azacitidine in patients with clinically advanced myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML) and low blast count acute myeloid leukemia (AML). Leuk Lymphoma 2017; 58(2): 298-307.
[http://dx.doi.org/10.1080/10428194.2016.1190971] [PMID: 27268068]
[129]
Lin J, Gilbert J, Rudek MA, et al. A phase I dose-finding study of 5-azacytidine in combination with sodium phenylbutyrate in patients with refractory solid tumors. Clin Cancer Res 2009; 15(19): 6241-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0567] [PMID: 19789320]
[130]
Issa J-P, Garcia-Manero G, Huang X, et al. Results of phase 2 randomized study of low-dose decitabine with or without valproic acid in patients with myelodysplastic syndrome and acute myelogenous leukemia. Cancer 2015; 121(4): 556-61.
[http://dx.doi.org/10.1002/cncr.29085] [PMID: 25336333]
[131]
Daver N, Kantarjian H, Ravandi F, et al. A phase II study of decitabine and gemtuzumab ozogamicin in newly diagnosed and relapsed acute myeloid leukemia and high-risk myelodysplastic syndrome. Leukemia 2016; 30(2): 268-73.
[http://dx.doi.org/10.1038/leu.2015.244] [PMID: 26365212]
[132]
Jabbour E, Issa JP, Garcia-Manero G, Kantarjian H. Evolution of decitabine development: accomplishments, ongoing investigations, and future strategies. Cancer 2008; 112(11): 2341-51.
[http://dx.doi.org/10.1002/cncr.23463] [PMID: 18398832]
[133]
Yoo CB, Jeong S, Egger G, et al. Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 2007; 67(13): 6400-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0251] [PMID: 17616700]
[134]
Liu Q, Zhu H, Liu Y, Musetti S, Huang L. BRAF peptide vaccine facilitates therapy of murine BRAF-mutant melanoma. Cancer Immunol Immunother 2018; 67(2): 299-310.
[http://dx.doi.org/10.1007/s00262-017-2079-7] [PMID: 29094184]
[135]
Liu Q, Das M, Liu Y, Huang L. Targeted drug delivery to melanoma. Adv Drug Deliv Rev 2018; 127: 208-21.
[http://dx.doi.org/10.1016/j.addr.2017.09.016] [PMID: 28939379]
[136]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[137]
Naldi I, Taranta M, Gherardini L, et al. Novel epigenetic target therapy for prostate cancer: a preclinical study. PLoS One 2014; 9(5)e98101
[http://dx.doi.org/10.1371/journal.pone.0098101] [PMID: 24851905]
[138]
Chen F, Zhang J, He Y, Fang X, Wang Y, Chen M. Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA. Biomater Sci 2016; 4(1): 167-82.
[http://dx.doi.org/10.1039/C5BM00224A] [PMID: 26484363]
[139]
Ishii Y, Hattori Y, Yamada T, Uesato S, Maitani Y, Nagaoka Y. Histone deacetylase inhibitor prodrugs in nanoparticle vector enhanced gene expression in human cancer cells. Eur J Med Chem 2009; 44(11): 4603-10.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.036] [PMID: 19632009]
[140]
Szyf M. The role of DNA hypermethylation and demethylation in cancer and cancer therapy. Curr Oncol 2008; 15(2): 72-5.
[http://dx.doi.org/10.3747/co.v15i2.210] [PMID: 18454186]
[141]
Agrawal A, Murphy RF, Agrawal DK. DNA methylation in breast and colorectal cancers. Mod Pathol 2007; 20(7): 711-21.
[http://dx.doi.org/10.1038/modpathol.3800822] [PMID: 17464311]
[142]
Hsieh C-L, Jones PA. Meddling with methylation. Nat Cell Biol 2003; 5(6): 502-4.
[http://dx.doi.org/10.1038/ncb0603-502] [PMID: 12776125]
[143]
Hamm CA, Xie H, Costa FF, et al. Global demethylation of rat chondrosarcoma cells after treatment with 5-aza-2′-deoxycytidine results in increased tumorigenicity. PLoS One 2009; 4(12)e8340
[http://dx.doi.org/10.1371/journal.pone.0008340] [PMID: 20019818]
[144]
Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300(5618): 489-92.
[http://dx.doi.org/10.1126/science.1083558] [PMID: 12702876]
[145]
Kantarjian H, Issa JPJ, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006; 106(8): 1794-803.
[http://dx.doi.org/10.1002/cncr.21792] [PMID: 16532500]
[146]
Lim SP, Neilsen P, Kumar R, Abell A, Callen DF. The application of delivery systems for DNA methyltransferase inhibitors. BioDrugs 2011; 25(4): 227-42.
[http://dx.doi.org/10.2165/11592770-000000000-00000] [PMID: 21815698]
[147]
Tran TH, Choi JY, Ramasamy T, et al. Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr Polym 2014; 114: 407-15.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.026] [PMID: 25263908]
[148]
Chen F, Zhang J, Wang L, Wang Y, Chen M. Tumor pH(e)-triggered charge-reversal and redox-responsive nanoparticles for docetaxel delivery in hepatocellular carcinoma treatment. Nanoscale 2015; 7(38): 15763-79.
[http://dx.doi.org/10.1039/C5NR04612B] [PMID: 26355843]
[149]
Zhang J, Chen R, Fang X, Chen F, Wang Y, Chen M. Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Res 2015; 8(1): 201-18.
[http://dx.doi.org/10.1007/s12274-014-0619-4]
[150]
Zhang J, Chen R, Chen F, Chen M, Wang Y. Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles: A dual-functional strategy for paclitaxel delivery. J Control Release 2015; 213(213): e137-8.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.232] [PMID: 27005093]
[151]
Chen FQ, Zhang JM, Fang XF, et al. Reversal of paclitaxel resistance in human ovarian cancer cells with redox-responsive micelles consisting of α-tocopheryl succinate-based polyphosphoester copolymers. Acta Pharmacol Sin 2017; 38(6): 859-73.
[http://dx.doi.org/10.1038/aps.2016.150] [PMID: 28260803]
[152]
Berman M, Mattheolabakis G, Suresh M, Amiji M. Reversing epigenetic mechanisms of drug resistance in solid tumors using targeted microRNA delivery. Expert Opin Drug Deliv 2016; 13(7): 987-98.
[http://dx.doi.org/10.1080/17425247.2016.1178236] [PMID: 27097309]
[153]
Xu J, Sun J, Wang P, Ma X, Li S. Pendant HDAC inhibitor SAHA derivatised polymer as a novel prodrug micellar carrier for anticancer drugs. J Drug Target 2018; 26(5-6): 448-57.
[http://dx.doi.org/10.1080/1061186X.2017.1419355] [PMID: 29251528]
[154]
Wu X, Hu Z, Nizzero S, et al. Bone-targeting nanoparticle to co-deliver decitabine and arsenic trioxide for effective therapy of myelodysplastic syndrome with low systemic toxicity. J Control Release 2017; 268: 92-101.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.012] [PMID: 29042320]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy