Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Novel Aminopyrazole Tagged Hydrazones as Anti-Tubercular Agents: Synthesis and Molecular Docking Studies

Author(s): Thatavarthi Padmini, Darna Bhikshapathi, Kandagatla Suresh, Ravindra Kulkarni* and Bigala R. Kamal

Volume 17, Issue 4, 2021

Published on: 14 May, 2020

Page: [344 - 351] Pages: 8

DOI: 10.2174/1573406416666200514084747

Price: $65

Abstract

Background: Pyrazole derivatives have been reported to possess numerous pharmacological activities viz., anti-inflammatory, antipsychotic, etc. Our group has disclosed that pyrazole benzamides display potent antibacterial and anti-tubercular activities.

Objective: Synthesis of new pyrazole acetamides which possess hydrazone group to be evaluated for antitubercular activity.

Methods: The key intermediate 5-aminopyrazole was synthesized with the known procedure, which is then converted into chloroacetamide. This compound than resulted in hydrazine derivative and finally converted into aromatic hydrazones. All the compounds were screened for antitubercular activity.

Results: All the synthesized compounds have been characterized by their spectral data obtained and subjected to anti-tubercular activity. Among all the twenty tested compounds, three compounds, 5a5, 5b5 and 5b7 have demonstrated MIC value of 3.12 μg/mL against MTB H37Rv. Docking studies revealed important hydrogen bonding interactions with InhA.

Conclusion: Three compounds 5a5, 5b5 and 5b7 were found to be most potent among the series of compounds. Docking studies of compounds explained the presence of hydrogen bonding and π- π stacking interactions with InhA. Further synthesis of more such derivatives with optimized groups would produce compounds with more potent anti-tubercular activity.

Keywords: Pyrazolylacetamides, antitubercular, synthesis, characterization, molecular docking, InhA, tuberculosis.

Graphical Abstract

[1]
Grenet, K.; Guillemot, D.; Jarlier, V.; Moreau, B.; Dubourdieu, S.; Ruimy, R.; Armand-Lefevre, L.; Bau, P.; Andremont, A. Antibacterial resistance, wayampis amerindians, french guyana. Emerg. Infect. Dis., 2004, 10(6), 1150-1153.
[http://dx.doi.org/10.3201/eid1006.031015] [PMID: 15207074]
[2]
WHO. Global Tuberculosis Report, 2018.
[http://dx.doi.org/10.1016/S0140-6736.]
[3]
Hoagland, D.T.; Liu, J.; Lee, R.B.; Lee, R.E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev., 2016, 102, 55-72.
[http://dx.doi.org/10.1016/j.addr.2016.04.026] [PMID: 27151308]
[4]
Nguyen, L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch. Toxicol., 2016, 90(7), 1585-1604.
[http://dx.doi.org/10.1007/s00204-016-1727-6] [PMID: 27161440]
[5]
Asif, M. Antitubercular drugs: advances in nitrogen containing heterocyclic compounds and some other derivatives. Int. J. Pharmaceut. Chem., 2012, 2, 110-120.
[6]
Sharma, K.; Chopra, P.; Singh, Y. Recent advances towards identification of new drug targets for Mycobacterium tuberculosis. Expert Opin. Ther. Targets, 2004, 8(2), 79-93.
[http://dx.doi.org/10.1517/14728222.8.2.79] [PMID: 15102551]
[7]
Minovski, N.; Perdih, A.; Novic, M.; Solmajer, T. Cluster-based molecular docking study for in silico identification of novel 6-fluoroquinolones as potential inhibitors against Mycobacterium tuberculosis. J. Comput. Chem., 2013, 34(9), 790-801.
[http://dx.doi.org/10.1002/jcc.23205] [PMID: 23280926]
[8]
Minovski, N.; Perdih, A.; Solmajer, T. Combinatorially-generated library of 6-fluoroquinolone analogs as potential novel antitubercular agents: a chemometric and molecular modeling assessment. J. Mol. Model., 2012, 18(5), 1735-1753.
[http://dx.doi.org/10.1007/s00894-011-1179-0] [PMID: 21833830]
[9]
Campbell, J.W.; Cronan, J.E. Jr Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu. Rev. Microbiol., 2001, 55, 305-332.
[http://dx.doi.org/10.1146/annurev.micro.55.1.305] [PMID: 11544358]
[10]
Heath, R.J.; Rock, C.O. Fatty acid biosynthesis as a target for novel antibacterials. Curr. Opin. Investig. Drugs, 2004, 5(2), 146-153.
[PMID: 15043388]
[11]
White, S.W.; Zheng, J.; Zhang, Y.M.; Rock, C.O. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem., 2005, 74, 791-831.
[http://dx.doi.org/10.1146/annurev.biochem.74.082803.133524] [PMID: 15952903]
[12]
Zhang, Y.M.; Lu, Y.J.; Rock, C.O. The reductase steps of the type II fatty acid synthase as antimicrobial targets. Lipids, 2004, 39(11), 1055-1060.
[http://dx.doi.org/10.1007/s11745-004-1330-3] [PMID: 15726819]
[13]
Morlock, G.P.; Metchock, B.; Sikes, D.; Crawford, J.T.; Cooksey, R.C. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother., 2003, 47(12), 3799-3805.
[http://dx.doi.org/10.1128/AAC.47.12.3799-3805.2003] [PMID: 14638486]
[14]
Rawat, R.; Whitty, A.; Tonge, P.J. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 13881-13886.
[http://dx.doi.org/10.1073/pnas.2235848100] [PMID: 14623976]
[15]
Sullivan, T.J.; Truglio, J.J.; Boyne, M.E.; Novichenok, P.; Zhang, X.; Stratton, C.F.; Li, H.J.; Kaur, T.; Amin, A.; Johnson, F.; Slayden, R.A.; Kisker, C.; Tonge, P.J. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem. Biol., 2006, 1(1), 43-53.
[http://dx.doi.org/10.1021/cb0500042] [PMID: 17163639]
[16]
He, X.; Alian, A.; Stroud, R.; Ortiz de Montellano, P.R. Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. J. Med. Chem., 2006, 49(21), 6308-6323.
[http://dx.doi.org/10.1021/jm060715y] [PMID: 17034137]
[17]
Encinas, L.; Keefe, H.O.; Neu, M.; Remuinan, M.J.; Patel, A.M.; Guardia, A.; Davie, C.P.; Perez-Macias, N.; Yang, H.; Convery, M.A.; Messer, J.A.; Perez-Herran, E.; Centrella, P.A.; Alvarez-Gomez, D.; Clark, M.A.; Huss, S.; O’Donovan, G.K.; Ortega-Muro, F.; McDowell, W.; Castaneda, P. AricoMuendel, C. C.; Pajk, S.; Rullas, J.; Angulo-Barturen, I.; Alvarez-Ruiz, E.; Mendoza-Losana, A.; Pages, L. B.; Castro-Pichel, J.; Evindar, G. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis Inh A. J. Med. Chem., 2014, 57, 1276-1288.
[http://dx.doi.org/10.1021/jm401326j] [PMID: 24450589]
[18]
Vilchèze, C.; Baughn, A.D.; Tufariello, J.; Leung, L.W.; Kuo, M.; Basler, C.F.; Alland, D.; Sacchettini, J.C.; Freundlich, J.S.; Jacobs, W.R. Jr Novel inhibitors of InhA efficiently kill Mycobacterium tuberculosis under aerobic and anaerobic conditions. Antimicrob. Agents Chemother., 2011, 55(8), 3889-3898.
[http://dx.doi.org/10.1128/AAC.00266-11] [PMID: 21628538]
[19]
Shirude, P.S.; Madhavapeddi, P.; Naik, M.; Murugan, K.; Shinde, V.; Nandishaiah, R.; Bhat, J.; Kumar, A.; Hameed, S.; Holdgate, G.; Davies, G.; McMiken, H.; Hegde, N.; Ambady, A.; Venkatraman, J.; Panda, M.; Bandodkar, B.; Sambandamurthy, V.K.; Read, J.A. Methyl-thiazoles: a novel mode of inhibition with the potential to develop novel inhibitors targeting InhA in Mycobacterium tuberculosis. J. Med. Chem., 2013, 56(21), 8533-8542.
[http://dx.doi.org/10.1021/jm4012033] [PMID: 24107081]
[20]
Labadie, G.R.; de la Iglesia, A.; Morbidoni, H.R. Targeting tuberculosis through a small focused library of 1,2,3-triazoles. Mol. Divers., 2011, 15(4), 1017-1024.
[http://dx.doi.org/10.1007/s11030-011-9319-0] [PMID: 21633789]
[21]
Couturier, C.; Lair, C.; Pellet, A.; Upton, A.; Kaneko, T.; Perron, C.; Cogo, E.; Menegotto, J.; Bauer, A.; Scheiper, B.; Lagrange, S.; Bacqué, E. Identification and optimization of a new series of anti-tubercular quinazolinones. Bioorg. Med. Chem. Lett., 2016, 26(21), 5290-5299.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.043] [PMID: 27671498]
[22]
Pandit, U.; Dodiya, A. Synthesis and antitubercular activity of novel pyrazole–quinazolinone hybrid analogs. Med. Chem. Res., 2013, 22, 3364-3371.
[http://dx.doi.org/10.1007/s00044-012-0351-0]
[23]
Mert, S.; Kasımoğulları, R.; İça, T.; Çolak, F.; Altun, A.; Ok, S. Synthesis, structure-activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. Eur. J. Med. Chem., 2014, 78, 86-96.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.033] [PMID: 24681068]
[24]
Bekhit, A.A.; Ashour, H.M.A.; Abdel Ghany, Y.S. Bekhit, Ael-D.; Baraka, A. Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents. Eur. J. Med. Chem., 2008, 43(3), 456-463.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.030] [PMID: 17532544]
[25]
Abdellatif, K.R.A.; Abdelall, E.K.A.; Fadaly, W.A.A.; Kamel, G.M. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1,3,5-triarylpyrazoline and 1,5-diarylpyrazole derivatives as selective COX-2 inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(2), 406-412.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.105] [PMID: 26691756]
[26]
Shelke, S.N.; Mhaske, G.R.; Bonifácio, V.D.B.; Gawande, M.B. Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives. Bioorg. Med. Chem. Lett., 2012, 22(17), 5727-5730.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.072] [PMID: 22832312]
[27]
Zhang, L.; Shan, Y.; Li, C.; Sun, Y.; Su, P.; Wang, J.; Li, L.; Pan, X.; Zhang, J. Discovery of novel anti-angiogenesis agents. Part 6: Multi-targeted RTK inhibitors. Eur. J. Med. Chem., 2017, 127, 275-285.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.059] [PMID: 28068599]
[28]
Saudi, M.; Zmurko, J.; Kaptein, S.; Rozenski, J.; Gadakh, B.; Chaltin, P.; Marchand, A.; Neyts, J.; Van Aerschot, A. Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus. Eur. J. Med. Chem., 2016, 121, 158-168.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.043] [PMID: 27240271]
[29]
Manvar, D.; Pelliccia, S.; La Regina, G.; Famiglini, V.; Coluccia, A.; Ruggieri, A.; Anticoli, S.; Lee, J.C.; Basu, A.; Cevik, O.; Nencioni, L.; Palamara, A.T.; Zamperini, C.; Botta, M.; Neyts, J.; Leyssen, P.; Kaushik-Basu, N.; Silvestri, R. New 1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides inhibit hepatitis C virus replication via suppression of cyclooxygenase-2. Eur. J. Med. Chem., 2015, 90, 497-506.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.042] [PMID: 25483263]
[30]
Nasr, T.; Bondock, S.; Eid, S. Design, synthesis, antimicrobial evaluation and molecular docking studies of some new thiophene, pyrazole and pyridone derivatives bearing sulfisoxazole moiety. Eur. J. Med. Chem., 2014, 84, 491-504.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.052] [PMID: 25050881]
[31]
Hu, Y.Q.; Zhang, S.; Zhao, F.; Gao, C.; Feng, L.S.; Lv, Z.S.; Xu, Z.; Wu, X. Isoniazid derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 133, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.002] [PMID: 28390957]
[32]
Nivsarkar, M.; Thavaselvam, D.; Prasanna, S.; Sharma, M.; Kaushik, M.P. Design, synthesis and biological evaluation of novel bicyclic β-lactams as potential antimalarials. Bioorg. Med. Chem. Lett., 2005, 15(5), 1371-1373.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.011] [PMID: 15713389]
[33]
Singh, P.; Raj, R.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Urea/oxalamide tethered β-lactam-7-chloroquinoline conjugates: synthesis and in vitro antimalarial evaluation. Eur. J. Med. Chem., 2014, 71, 128-134.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.079] [PMID: 24287561]
[34]
Naik, R.J.; Kulkarni, M.V.; Sreedhara Ranganath Pai, K.; Nayak, P.G. Click chemistry approach for bis-chromenyl triazole hybrids and their antitubercular activity. Chem. Biol. Drug Des., 2012, 80(4), 516-523.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01441.x] [PMID: 22737986]
[35]
Xu, Z.; Zhang, S.; Gao, C.; Fan, J.; Zhao, S.; Sheng, L.Z.; Feng, L.S. Isatin hybrids and their anti-tuberculosis activity. Chin. Chem. Lett., 2017, 28, 159-167.
[http://dx.doi.org/10.1016/j.cclet.2016.07.032]
[36]
Liu, Z.; Guo, X.; Liu, G. Modified calanolides incorporated with furan-2-nitro mimics against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2015, 25(6), 1297-1300.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.046] [PMID: 25681226]
[37]
Shi, D.Q.; Yao, H. Clean Synthesis of Furo[3,4-e]pyrazolo[3,4-b]pyridine-5-one derivatives in aqueous Media. J. Heterocycl. Chem., 2009, 46, 1335-1338.
[http://dx.doi.org/10.1002/jhet.224]
[38]
Kompis, I.M.; Islam, K.; Then, R.L. DNA and RNA synthesis: antifolates. Chem. Rev., 2005, 105(2), 593-620.
[http://dx.doi.org/10.1021/cr0301144] [PMID: 15700958]
[39]
Feng, L.S.; Liu, M.L.; Wang, B.; Chai, Y.; Hao, X.Q.; Meng, S.; Guo, H.Y. Synthesis and in vitro antimycobacterial activity of balofloxacin ethylene isatin derivatives. Eur. J. Med. Chem., 2010, 45(8), 3407-3412.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.027] [PMID: 20493593]
[40]
Kulkarni, R.; Kumar, V.; Babu, H.; Kumar, K.; Gaddam, N.; Fatima, A.; Muvvala, S.; Bhikshapathi, D.V.R.N.; Sriram, D.; Garlapati, A.; Vishnav, J.; Gurav, P. Synthesis, antibacterial, antifungal and antitubercular activities of N-pyrazolylbenzamide derivatives. Med. Chem., 2014, 10(2), 220-227.
[http://dx.doi.org/10.2174/15734064113099990039] [PMID: 24007493]
[41]
Kulkarni, R.; Mitkari, U.; Achaiah, G.; Laufer, S.; Bikshapti, D.V.R.N.; Chandrashekar, V.M.; Gurav, P.B.; Joshi, S.J.; Chipade, V.D. Benzamides from antiinflammatory and p38 kinase inhibitors to antituberular activity: design, synthesis and screening. Mini Rev. Med. Chem., 2018, 18(17), 1486-1497.
[http://dx.doi.org/10.2174/1389557517666170707105416] [PMID: 28685700]
[42]
Dumas, J.; Hatoum-Mokdad, H.; Sibley, R.; Riedl, B.; Scott, W.J.; Monahan, M.K.; Lowinger, T.B.; Brennan, C.; Natero, R.; Turner, T.; Johnson, J.S.; Schoenleber, R.; Bhargava, A.; Wilhelm, S.M.; Housley, T.J.; Ranges, G.E.; Shrikhande, A. 1-Phenyl-5-pyrazolyl ureas: potent and selective p38 kinase inhibitors. Bioorg. Med. Chem. Lett., 2000, 10(18), 2051-2054.
[http://dx.doi.org/10.1016/S0960-894X(00)00272-9] [PMID: 10999468]
[43]
Damodara, N.K.; Kumar, D.; Chakraborti, A.K. “All water chemistry” for a concise total synthesis of the novel class anti-anginal drug (RS), (R), and (S)-Ranolazine. Green Chem., 2013, 15, 756-767.
[http://dx.doi.org/10.1039/c3gc36997h]]
[44]
Ericsson, H. M.; Sherris, J. C. Antibiotic sensitivity testing. report of an international collaborative study. Acta Pathol. Microbiol. Scand., 1971, B, 217-223.
[45]
Alqahtani, J.M.; Asaad, A.M. Anti-tuberculous drugs and susceptibility testing methods: current knowledge and future challenges. J. Mycobac. Dis., 2014, 4, 140-151.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy