Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Current Progress in Biomedical Applications of Chitosan-Carbon Nanotube Nanocomposites: A Review

Author(s): Katarzyna Pieklarz*, Michał Tylman and Zofia Modrzejewska*

Volume 20, Issue 16, 2020

Page: [1619 - 1632] Pages: 14

DOI: 10.2174/1389557520666200513120407

Price: $65

Abstract

The currently observed development of medical science results from the constant search for innovative solutions to improve the health and quality of life of patients. Particular attention is focused on the design of a new generation of materials with a high degree of biocompatibility and tolerance towards the immune system. In addition, apart from biotolerance, it is important to ensure appropriate mechanical and technological properties of materials intended for intra-body applications. Knowledge of the above parameters becomes the basis for considerations related to the possibilities of choosing the appropriate polymer materials. The researchers' interest, as evidenced by the number of available publications, is attracted by nanobiocomposites based on chitosan and carbon nanotubes, which, due to their properties, enable integration with the tissues of the human body. Nanosystems can be used in many areas of medicine. They constitute an excellent base for use as dressing materials, as they exhibit antimicrobial properties. In addition, they can be carriers of drugs and biological macromolecules and can be used in gene therapy, tissue engineering, and construction of biosensors. For this reason, potential application areas of chitosan-carbon nanotube nanocomposites in medical sciences are presented in this publication, considering the characteristics of the system components.

Keywords: Nanotechnology, nanomedicine, nano-biocomposites, biopolymers, chitin, chitosan, carbon nanotubes.

Graphical Abstract

[1]
Bera, A.; Belhaj, H. Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery - A comprehensive review. J. Nat. Gas Sci. Eng., 2016, 34, 1284-1309.
[http://dx.doi.org/10.1016/j.jngse.2016.08.023]
[2]
Mnyusiwalla, A.; Daar, A.S.; Singer, P.A. ‘Mind the gap’: Science and ethics in nanotechnology. Nanotechnology, 2003, 14(3), 9-13.
[http://dx.doi.org/10.1088/0957-4484/14/3/201]
[3]
Olejnik, M. Nanokompozyty polimerowe - rola nanododatków. Techniczne Wyroby Włókiennicze, 2008, 16(1/2), 25-31.
[4]
Stodolak, E.; Frączek-Szczypta, A.; Błażewicz, M. Nanokompozyty polimerowe do zastosowań medycznych. Kompozyty, 2010, 10(4), 322-327.
[5]
Jurczyk, M.; Jakubowicz, J. Bionanomateriały; Wydawnictwo Politechniki Poznańskiej: Poznań, 2008.
[6]
Leda, H. Materiały inżynierskie w zastosowaniach biomedycznych; Wydawnictwo Politechniki Poznańskiej: Poznań, 2012.
[7]
Rabek, J.F. Polimery: Otrzymywanie, metody badawcze, zastosowanie; Wydawnictwo Naukowe PWN: Warszawa, 2013.
[8]
Pokhrel, S.; Yadav, P.N.; Adhikari, R. Applications of chitin and chitosan in industry and medical science: A review. NJST, 2015, 16(1), 99-104.
[9]
Zhao, Y.; Park, R-D.; Muzzarelli, R.A.A. Chitin deacetylases: Properties and applications. Mar. Drugs, 2010, 8(1), 24-46.
[http://dx.doi.org/10.3390/md8010024] [PMID: 20161969]
[10]
Ostrowska-Czubenko, J.; Pieróg, M.; Gierszewska, M. Modyfikacja chitozanu - krótki przegląd. Wiad. Chem., 2016, 70(9-10), 657-679.
[11]
Rinaudo, M. Chitin and chitosan: Properties and applications. Progress in polymer science. Prog. Polym. Sci., 2006, 31(7), 603-632.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[12]
Mucha, M. Chitozan wszechstronny polimer ze źródeł odnawialnych; Wydawnictwo Naukowo-Techniczne: Warszawa, 2010.
[13]
Periayah, M.H.; Halim, A.S.; Saad, A.Z. Chitosan: A promising marine polysaccharide for biomedical research. Pharmacogn. Rev., 2016, 10(19), 39-42.
[http://dx.doi.org/10.4103/0973-7847.176545] [PMID: 27041872]
[14]
Muzzarelli, R.A.A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym., 2009, 76, 167-182.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.002]
[15]
Pighinelli, L.; Kucharska, M. Chitosan-hydroxyapatite composites. Carbohydr. Polym., 2013, 93(1), 256-262.
[http://dx.doi.org/10.1016/j.carbpol.2012.06.004] [PMID: 23465927]
[16]
Modrzejewska, Z. Formy chitozanowe do zastosowań w inżynierii biomedycznej. Inż. Apar. Chem., 2011, 50(5), 74-75.
[17]
Bokura, H.; Kobayashi, S. Chitosan decreases total cholesterol in women: A randomized, double-blind, placebo-controlled trial. Eur. J. Clin. Nutr., 2003, 57(5), 721-725.
[http://dx.doi.org/10.1038/sj.ejcn.1601603] [PMID: 12771974]
[18]
Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J., 2013, 49(4), 780-792.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[19]
Moura, D.; Mano, J.F.; Paiva, M.C.; Alves, N.M. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. Sci. Technol. Adv. Mater., 2016, 17(1), 626-643.
[http://dx.doi.org/10.1080/14686996.2016.1229104] [PMID: 27877909]
[20]
Świdwińska-Gajewska, A.M.; Czerczak, S. Nanorurki węglowe – charakterystyka substancji, działanie biologiczne i dopuszczalne poziomy narażenia zawodowego. Med. Pr., 2017, 68(2), 259-276.
[PMID: 28345685]
[21]
Saeed, K.; Khan, I. Carbon nanotubes - properties and applications: A review. Carbon Lett., 2013, 14(3), 131-144.
[http://dx.doi.org/10.5714/CL.2013.14.3.131]
[22]
Mielcarek, J.; Kruszyńska, M.; Sokołowski, P. Zastosowanie nanorurek węglowych w medycynie. Farm. Pol., 2009, 65(4), 251-254.
[23]
Cecchi, M.M.; Rispoli, V. Numerical solution of electrons’ and phonons’ coupled dynamics in Carbon Nanotubes. Commun. Appl. Ind. Math., 2011, 2(1), 1-15.
[24]
Terranova, M.L.; Sessa, V.; Rossi, M. The world of carbon nanotubes: An overview of CVD growth methodologies. Chem. Vap. Depos., 2006, 12(6), 315-325.
[http://dx.doi.org/10.1002/cvde.200600030]
[25]
Wu, H-Q.; Wei, X-W.; Shao, M-W.; Gu, J-S. Synthesis of zinc oxide nanorods using carbon nanotubes as templates. J. Cryst. Growth, 2004, 265(1-2), 184-189.
[http://dx.doi.org/10.1016/j.jcrysgro.2004.01.052]
[26]
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 2014, 9(1), 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[27]
Kang, S.; Pinault, M.; Pfefferle, L.D.; Elimelech, M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007, 23(17), 8670-8673.
[http://dx.doi.org/10.1021/la701067r] [PMID: 17658863]
[28]
Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 2005, 9(6), 674-679.
[http://dx.doi.org/10.1016/j.cbpa.2005.10.005] [PMID: 16233988]
[29]
Wu, W.; Wieckowski, S.; Pastorin, G.; Benincasa, M.; Klumpp, C.; Briand, J-P.; Gennaro, R.; Prato, M.; Bianco, A. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. Engl., 2005, 44(39), 6358-6362.
[http://dx.doi.org/10.1002/anie.200501613] [PMID: 16138384]
[30]
Wang, Y.; Da, S.; Kim, M.J.; Kelly, K.F.; Guo, W.; Kittrell, C.; Hauge, R.H.; Smalley, R.E. Ultrathin “bed-of-nails” membranes of single-wall carbon nanotubes. J. Am. Chem. Soc., 2004, 126(31), 9502-9503.
[http://dx.doi.org/10.1021/ja048680j] [PMID: 15291529]
[31]
Gannon, C.J.; Cherukuri, P.; Yakobson, B.I.; Cognet, L.; Kanzius, J.S.; Kittrell, C.; Weisman, R.B.; Pasquali, M.; Schmidt, H.K.; Smalley, R.E.; Curley, S.A. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer, 2007, 110(12), 2654-2665.
[http://dx.doi.org/10.1002/cncr.23155] [PMID: 17960610]
[32]
Khabashesku, V.N.; Margrave, J.L.; Barrera, E.V. Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diamond Related Materials, 2005, 14(3-7), 859-866.
[http://dx.doi.org/10.1016/j.diamond.2004.11.006]
[33]
Bian, Z.; Wang, R.J.; Wang, W.H.; Zhang, T.; Inoue, A. carbon-nanotube-reinforced zr-based bulk metallic glass composites and their properties. Adv. Funct. Mater., 2004, 14(1), 55-63.
[http://dx.doi.org/10.1002/adfm.200304422]
[34]
Marquis, F.D. Fully integrated hybrid polymeric carbon nanotube composites. Mater. Sci. Forum, 2003, 437-438(1), 85-88.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.437-438.85]
[35]
Park, J.; Lakes, R.S. Biomaterials: An introduction; Plenum Press: New York, 1992.
[http://dx.doi.org/10.1007/978-1-4757-2156-0]
[36]
Zhao, B.; Hu, H.; Mandal, S.K.; Haddon, R.C. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater., 2005, 17(12), 3235-3241.
[http://dx.doi.org/10.1021/cm0500399]
[37]
Mattson, M.P.; Haddon, R.C.; Rao, A.M. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J. Mol. Neurosci., 2000, 14(3), 175-182.
[http://dx.doi.org/10.1385/JMN:14:3:175] [PMID: 10984193]
[38]
Mark, R.J.; Lovell, M.A.; Markesbery, W.R.; Uchida, K.; Mattson, M.P. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J. Neurochem., 1997, 68(1), 255-264.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68010255.x] [PMID: 8978733]
[39]
Mattson, M.P.; Fu, W.; Waeg, G.; Uchida, K. 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport, 1997, 8(9-10), 2275-2281.
[http://dx.doi.org/10.1097/00001756-199707070-00036] [PMID: 9243625]
[40]
Mattson, M.P.; Kater, S.B. Calcium regulation of neurite elongation and growth cone motility. J. Neurosci., 1987, 7(12), 4034-4043.
[http://dx.doi.org/10.1523/JNEUROSCI.07-12-04034.1987] [PMID: 3121806]
[41]
Chłopek, J.; Czajkowska, B.; Szaraniec, B.; Frackowiak, E.; Szostak, K.; Béguin, F. In vitro studies of carbon nanotubes biocompatibility. Carbon, 2006, 44(6), 1106-1111.
[http://dx.doi.org/10.1016/j.carbon.2005.11.022]
[42]
Carrero-Sánchez, J.C.; Elías, A.L.; Mancilla, R.; Arrellín, G.; Terrones, H.; Laclette, J.P.; Terrones, M. Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett., 2006, 6(8), 1609-1616.
[http://dx.doi.org/10.1021/nl060548p] [PMID: 16895344]
[43]
Harrison, B.S.; Atala, A. Carbon nanotube applications for tissue engineering. Biomaterials, 2007, 28(2), 344-353.
[http://dx.doi.org/10.1016/j.biomaterials.2006.07.044] [PMID: 16934866]
[44]
Herzog, E.; Casey, A.; Lyng, F.M.; Chambers, G.; Byrne, H.J.; Davoren, M. A new approach to the toxicity testing of carbonbased nanomaterials--the clonogenic assay. Toxicol. Lett., 2007, 174(1-3), 49-60.
[http://dx.doi.org/10.1016/j.toxlet.2007.08.009] [PMID: 17920791]
[45]
Farmer, D.B.; Gordon, R.G. Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization. Nano Lett., 2006, 6(4), 699-703.
[http://dx.doi.org/10.1021/nl052453d] [PMID: 16608267]
[46]
Hernández-Vargas, J.; González-Campos, J. B.; Lara-Romero, J.; Prokhorov, E.; Luna-Bárcenas, G.; Aviña-Verduzco, J. A.; González-Hernández, J. C. Chitosan/ MWCNTs‐Decorated with Silver Nanoparticle Composites: Dielectric and antibacterial characterization. J. Appl. Polym. Sci., 2014, 131(9), 40214-(1-13).
[47]
Venkatesan, J.; Jayakumar, R.; Mohandas, A.; Bhatnagar, I.; Kim, S-K. Antimicrobial activity of chitosan-carbon nanotube hydrogels. Materials (Basel), 2014, 7(5), 3946-3955.
[http://dx.doi.org/10.3390/ma7053946] [PMID: 28788658]
[48]
Song, K.; Gao, A.; Cheng, X.; Xie, K. Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity. Carbohydr. Polym., 2015, 130, 381-387.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.023] [PMID: 26076639]
[49]
Abd El-Ghany, N.A. Antimicrobial activity of new carboxymethyl chitosan-carbon nanotube biocomposites and their swell ability in different pH media. J. Carbohydr. Chem., 2017, 36(1), 31-44.
[http://dx.doi.org/10.1080/07328303.2017.1353610]
[50]
Wang, S.; Li, Y.; Zhao, R.; Jin, T.; Zhang, L.; Li, X. Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties. Int. J. Biol. Macromol., 2017, 104(Pt A), 708-715.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.044] [PMID: 28645765]
[51]
El-Tohamy, N.; Attia, M.; Easa, S.M.; Awad, N.M. Characterization and evaluation of nanocomposites chitosan-multiwalled carbon nanotubes as broad-spectrum antibacterial agent. JSRS, 2018, 35, 16-27.
[http://dx.doi.org/10.21608/jsrs.2018.26727]
[52]
Bellingeri, R.; Mulko, L.; Molina, M.; Picco, N.; Alustiza, F.; Grosso, C.; Vivas, A.; Acevedo, D.F.; Barbero, C.A. Nanocomposites based on pH-sensitive hydrogels and chitosan decorated carbon nanotubes with antibacterial properties. Mater. Sci. Eng. C, 2018, 90, 461-467.
[http://dx.doi.org/10.1016/j.msec.2018.04.090] [PMID: 29853114]
[53]
Taghipour, Y.D.; Hajialyani, M.; Naseri, R.; Hesari, M.; Mohammadi, P.; Stefanucci, A.; Mollica, A.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of natural products for management of metabolic syndrome. Int. J. Nanomedicine, 2019, 14, 5303-5321.
[http://dx.doi.org/10.2147/IJN.S213831] [PMID: 31406461]
[54]
Amraei, J.; Jam, J.E.; Arab, B.; Firouz-Abadi, R.D. Modeling the interphase region in carbon nanotube‐reinforced polymer nanocomposites. Polym. Compos., 2018, 1-16.
[55]
Qi, X.; Rui, Y.; Fan, Y.; Chen, H.; Ma, N.; Wu, Z. Galactosylated chitosan-grafted multiwall carbon nanotubes for pH-dependent sustained release and hepatic tumor-targeted delivery of doxorubicin in vivo. Colloids Surf. B Biointerfaces, 2015, 133, 314-322.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.003] [PMID: 26123852]
[56]
Mohammadi, Z.A.; Aghamiri, S.F.; Zarrabi, A.; Talaie, M.R. A comparative study on non-covalent functionalization of carbon nanotubes by chitosan and its derivatives for delivery of doxorubicin. Chem. Phys. Lett., 2015, 642, 22-28.
[http://dx.doi.org/10.1016/j.cplett.2015.10.075]
[57]
Mo, Y.; Wang, H.; Liu, J.; Lan, Y.; Guo, R.; Zhang, Y.; Xue, W.; Zhang, Y. Controlled release and targeted delivery to cancer cells of doxorubicin from polysaccharide-functionalised single-walled carbon nanotubes. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(9), 1846-1855.
[http://dx.doi.org/10.1039/C4TB02123A] [PMID: 32262257]
[58]
Dong, X.; Wei, C.; Liang, J.; Liu, T.; Kong, D.; Lv, F. Thermosensitive hydrogel loaded with chitosan-carbon nanotubes for near infrared light triggered drug delivery. Colloids Surf. B Biointerfaces, 2017, 154, 253-262.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.036] [PMID: 28347947]
[59]
Karnati, K.R.; Wang, Y. Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations. Phys. Chem. Chem. Phys., 2018, 20(14), 9389-9400.
[http://dx.doi.org/10.1039/C8CP00124C] [PMID: 29565091]
[60]
Singh, R.P.; Sharma, G. Sonali; Singh, S.; Bharti, S.; Pandey, B.L.; Koch, B.; Muthu, M.S. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater. Sci. Eng. C, 2017, 77, 446-458.
[http://dx.doi.org/10.1016/j.msec.2017.03.225] [PMID: 28532051]
[61]
Zheng, L.; Wu, S.; Tan, L.; Tan, H.; Yu, B. Chitosan-functionalised single-walled carbon nanotube-mediated drug delivery of SNX-2112 in cancer cells. J. Biomater. Appl., 2016, 31(3), 379-386.
[http://dx.doi.org/10.1177/0885328216651183] [PMID: 27231263]
[62]
Dong, X.; Liu, L.; Zhu, D.; Zhang, H.; Leng, X. Transactivator of transcription (TAT) peptide- chitosan functionalized multiwalled carbon nanotubes as a potential drug delivery vehicle for cancer therapy. Int. J. Nanomedicine, 2015, 10, 3829-3840.
[PMID: 26082633]
[63]
Afshari, R.; Mazinani, S.; Abdouss, M. Nanohybrid Nanoparticles Based on Chitosan/Functionalized Carbon Nanotubes as Anti-HIV Nanocarrier. NANO: Brief Reports and Reviews, 2015, 10(1), 1550010-(1-12).
[64]
Sharmeen, S.; Rahman, A.F.M.M.; Lubna, M.M.; Salem, K.S.; Islam, R.; Khan, M.A. Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: An approach for significant drug release. Bioact. Mater., 2018, 3(3), 236-244.
[http://dx.doi.org/10.1016/j.bioactmat.2018.03.001] [PMID: 29744462]
[65]
Gromadzka, A.; Kubiczak, M.; Jankowska, A. Terapia genowa i jej zastosowanie w leczeniu nowotworów ginekologicznych. Ginekol. Pol., 2010, 81(1), 50-54.
[PMID: 20232700]
[66]
Cieślewicz, A.R. Terapia genowa: Wprowadzenie. Farmacja Współcz., 2011, 4, 191-193.
[67]
Kumar, A. Jena. P. K.; Behera, S.; Lockey, R. F.; Mohapatra, S. Efficient DNA and peptide delivery by functionalized chitosan-coated single-wall carbon nanotubes. J. Biomed. Nanotechnol., 2005, 1(4), 392-396.
[http://dx.doi.org/10.1166/jbn.2005.052]
[68]
Liu, Y.; Yu, Z-L.; Zhang, Y-M.; Guo, D-S.; Liu, Y-P. Supramolecular architectures of β-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation. J. Am. Chem. Soc., 2008, 130(31), 10431-10439.
[http://dx.doi.org/10.1021/ja802465g] [PMID: 18627155]
[69]
Liu, X.; Zhang, Y.; Ma, D.; Tang, H.; Tan, L.; Xie, Q.; Yao, S. Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials. Colloids Surf. B Biointerfaces, 2013, 111, 224-231.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.010] [PMID: 23831590]
[70]
Kruk, A.; Gadomska-Gajadhur, A.; Sebai, A.; Ruśkowski, P. Rusztowania komórkowe w inżynierii tkankowej. Wyroby Medyczne, 2017, 4, 31-35.
[71]
Różalska, B.; Micota, B.; Paszkiewicz, M.; Sadowska, B. Inżynieria tkankowa w medycynie regeneracyjnej. Forum Zakażeń, 2015, 6(5), 291-298.
[72]
Pieklarz, K.; Tylman, M.; Modrzejewska, Z. Application of chitosan-graphene oxide nanocomposites in medical science: A review. Prog. Chem. Appl. Chitin. Deriv., 2018, XXIII, 5-24.
[http://dx.doi.org/10.15259/PCACD.23.001]
[73]
Koźlik, M.; Wójcicki, P.; Rychlik, D. Preparaty kościozastępcze. Dent Med Probl., 2011, 48(4), 547-553.
[74]
Olivas-Armendariz, I.; Martel-Estrada, S.A.; Mendoza-Duarte, M.E.; Jiménez-Vega, F.; García-Casillas, P.; Martínez-Pérez, C.A. Biodegradable Chitosan/Multi- walled Carbon Nanotube Composite for Bone Tissue Engineering. J. Biomater. Nanobiotechnol., 2013, 4(2), 204-211.
[http://dx.doi.org/10.4236/jbnb.2013.42025]
[75]
Seo, S-J.; Kim, J-J.; Kim, J-H.; Lee, J-Y.; Shin, U.S.; Lee, E-J.; Kim, H-W. Enhanced mechanical properties and bone bioactivity of chitosan/silica membrane by functionalized-carbon nanotube incorporation. Compos. Sci. Technol., 2014, 96, 31-37.
[http://dx.doi.org/10.1016/j.compscitech.2014.03.004]
[76]
Martel-Estrada, S.A.; Santos-Rodríguez, E.; Olivas-Armendáriz, I.; Cruz-Zaragoza, E.; Martínez-Pérez, C.A. The effect of radiation on the thermal properties of chitosan/mimosa tenuiflora and chitosan/mimosa tenuiflora/multiwalled carbon nanotubes (MWCNT) composites for bone tissue engineering. In: AIP Conf. Proc; , 2014; 1607, pp. 55-64.
[http://dx.doi.org/10.1063/1.4890703]
[77]
Cunha, M.R.; Alves, M.C.; Alves Calegari, A.R.; Iatecola, A.; Galdeano, E.A.; Galdeano, T.L.; Azevedo, M.; Munhoz, S.; Guzzi Plepis, A.M.; Conceição Amaro Martins, V.; Horn, M.M. In vivo study of the osteoregenerative potential of polymer membranes consisting of chitosan and carbon nanotubes. Mater. Res., 2017, 20(3), 819-825.
[http://dx.doi.org/10.1590/1980-5373-mr-2016-1112]
[78]
Türk, S.; Altınsoy, I.; Çelebi Efe, G.; Ipek, M.; Özacar, M.; Bindal, C. 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering. Mater. Sci. Eng. C, 2018, 92, 757-768.
[http://dx.doi.org/10.1016/j.msec.2018.07.020] [PMID: 30184804]
[79]
Zadeh, M.H.R.; Seifi, M.; Abdolrahimi, M.; Hadavi, M. A comprehensive in vitro study of the carbon nanotube enhanced chitosan scaffolds for cancellous bone regeneration. Biomed. Phys. Eng. Express, 2018, 4(3)
[http://dx.doi.org/10.1088/2057-1976/aab677]
[80]
Batchelor, P.E.; Howells, D.W. CNS regeneration: Clinical possibility or basic science fantasy? J. Clin. Neurosci., 2003, 10(5), 523-534.
[http://dx.doi.org/10.1016/S0967-5868(03)00004-3] [PMID: 12948453]
[81]
Dietz, V.; Curt, A. Neurological aspects of spinal-cord repair: Promises and challenges. Lancet Neurol., 2006, 5(8), 688-694.
[http://dx.doi.org/10.1016/S1474-4422(06)70522-1] [PMID: 16857574]
[82]
Lis, A.; Szarek, D.; Laska, J. Strategie inzynierii biomateriałów dla regeneracji rdzenia kregowego: Aktualny stan wiedzy. Polim. Med., 2013, 43(2), 59-80.
[PMID: 24044287]
[83]
Shokrgozar, M.A.; Mottaghitalab, F.; Mottaghitalab, V.; Farokhi, M. Fabrication of porous chitosan/poly(vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering. J. Biomed. Nanotechnol., 2011, 7(2), 276-284.
[http://dx.doi.org/10.1166/jbn.2011.1284] [PMID: 21702365]
[84]
Zhao, W.; Yu, W.; Zheng, J.; Wang, Y.; Zhang, Z.; Zhang, D. Effects of carbon nanotubes in a chitosan/collagen-based composite on mouse fibroblast cell proliferation. Cell. Mol. Neurobiol., 2014, 34(1), 43-50.
[http://dx.doi.org/10.1007/s10571-013-9985-9] [PMID: 24052168]
[85]
Doostmohammadi, A.; Esmaeili, F.; Nikbakht Katouli, S. Fabrication of Chitosan/Poly (vinyl alcohol)/Carbon Nanotube/Bioactive glass nanocomposite scaffolds for neural tissue engineering. J Nanomed Res., 2016, 4(3), 1-8.
[86]
Nawrotek, K.; Tylman, M.; Rudnicka, K.; Gatkowska, J.; Balcerzak, J. Tubular electrodeposition of chitosan-carbon nanotube implants enriched with calcium ions. J. Mech. Behav. Biomed. Mater, 2016, 60, 256-266.
[http://dx.doi.org/10.1016/j.jmbbm.2016.02.012] [PMID: 26913639]
[87]
Shrestha, S.; Shrestha, B.K.; Kim, J.I.; Ko, S.W.; Park, C.H.; Kim, C.S. Electrodeless coating polypyrrole on chitosan grafted polyurethane with functionalized multiwall carbon nanotubes electrospun scaffold for nerve tissue engineering. Carbon, 2018, 136, 430-443.
[http://dx.doi.org/10.1016/j.carbon.2018.04.064]
[88]
Cynk, P.; Gaweł, E. Zastosowanie biosensorów w diagnostyce choroby nowotworowej. Prz Med Uniw Rzesz Inst Leków., 2012, 3, 373-378.
[89]
Pawlaczyk, I.; Ziewiecki, R.; Czerchawski, L.; Krotkiewski, H.; Gancarz, R. Biosensory jako narzedzie do wykorzystania w badaniach krwi oraz wybranych białek krwi. Przegl. Lek., 2013, 70(3), 131-134.
[PMID: 24003667]
[90]
Kaushik, A.; Solanki, P.R.; Pandey, M.K.; Kaneto, K.; Ahmad, S.; Malhotra, B.D. Carbon nanotubes- chitosan nanobiocomposite for immunosensor. Thin Solid Films, 2010, 519, 1160-1166.
[http://dx.doi.org/10.1016/j.tsf.2010.08.062]
[91]
Hernández-Ibáñez, N.; García-Cruz, L.; Montiel, V.; Foster, C.W.; Banks, C.E.; Iniesta, J. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens. Bioelectron., 2016, 77, 1168-1174.
[http://dx.doi.org/10.1016/j.bios.2015.11.005] [PMID: 26579934]
[92]
Mani, V.; Govindasamy, M.; Chen, S-M.; Chen, T-W.; Kumar, A.S.; Huang, S-T. Core-shell heterostructured multiwalled carbon nanotubes@reduced graphene oxide nanoribbons/chitosan, a robust nanobiocomposite for enzymatic biosensing of hydrogen peroxide and nitrite. Sci. Rep., 2017, 7(1), 11910.
[http://dx.doi.org/10.1038/s41598-017-12050-x] [PMID: 28928402]
[93]
Samadi Pakchin, P.; Ghanbari, H.; Saber, R.; Omidi, Y. Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker. Biosens. Bioelectron., 2018, 122, 68-74.
[http://dx.doi.org/10.1016/j.bios.2018.09.016] [PMID: 30243046]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy