Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Metabolic Regulation and Related Molecular Mechanisms in Various Stem Cell Functions

Author(s): Hwa-Yong Lee and In-Sun Hong*

Volume 15, Issue 6, 2020

Page: [531 - 546] Pages: 16

DOI: 10.2174/1574888X15666200512105347

Price: $65

Abstract

Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.

Keywords: Stem cells, metabolism, quiescence, aging, pluripotency, differentiation, self-renewal.

[1]
Ema H, Sudo K, Seita J, et al. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev Cell 2005; 8(6): 907-14.
[http://dx.doi.org/10.1016/j.devcel.2005.03.019] [PMID: 15935779]
[2]
Singh R, Hansen D. Regulation of the balance between proliferation and differentiation in germ line stem cells. Results Probl Cell Differ 2017; 59: 31-66.
[http://dx.doi.org/10.1007/978-3-319-44820-6_2] [PMID: 28247045]
[3]
Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001; 17: 387-403.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.387] [PMID: 11687494]
[4]
Gan B, Hu J, Jiang S, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010; 468(7324): 701-4.
[http://dx.doi.org/10.1038/nature09595] [PMID: 21124456]
[5]
Gurumurthy S, Xie SZ, Alagesan B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 2010; 468(7324): 659-63.
[http://dx.doi.org/10.1038/nature09572] [PMID: 21124451]
[6]
Tothova Z, Gilliland DG. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2007; 1(2): 140-52.
[http://dx.doi.org/10.1016/j.stem.2007.07.017] [PMID: 18371346]
[7]
Shyh-Chang N, Ng HH. The metabolic programming of stem cells. Genes Dev 2017; 31(4): 336-46.
[http://dx.doi.org/10.1101/gad.293167.116] [PMID: 28314766]
[8]
Aasen T, Raya A, Barrero MJ, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008; 26(11): 1276-84.
[http://dx.doi.org/10.1038/nbt.1503] [PMID: 18931654]
[9]
Shyh-Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Development 2013; 140(12): 2535-47.
[http://dx.doi.org/10.1242/dev.091777] [PMID: 23715547]
[10]
Joseph R, Poschmann J, Sukarieh R, et al. ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content. Mol Endocrinol 2015; 29(6): 909-20.
[http://dx.doi.org/10.1210/me.2015-1020] [PMID: 25915184]
[11]
Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 2013; 14(6): 329-40.
[http://dx.doi.org/10.1038/nrm3591] [PMID: 23698583]
[12]
Rumman M, Dhawan J, Kassem M. Concise review: Quiescence in adult stem cells: Biological significance and relevance to tissue regeneration. Stem Cells 2015; 33(10): 2903-12.
[http://dx.doi.org/10.1002/stem.2056] [PMID: 26075660]
[13]
So WK, Cheung TH. Molecular regulation of cellular quiescence: A perspective from adult stem cells and its niches. Methods Mol Biol 2018; 1686: 1-25.
[http://dx.doi.org/10.1007/978-1-4939-7371-2_1] [PMID: 29030809]
[14]
Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011; 9(4): 298-310.
[http://dx.doi.org/10.1016/j.stem.2011.09.010] [PMID: 21982230]
[15]
Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 2007; 104(13): 5431-6.
[http://dx.doi.org/10.1073/pnas.0701152104] [PMID: 17374716]
[16]
Vannini N, Girotra M, Naveiras O, et al. Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nat Commun 2016; 7: 13125.
[http://dx.doi.org/10.1038/ncomms13125] [PMID: 27731316]
[17]
Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007; 110(8): 3056-63.
[http://dx.doi.org/10.1182/blood-2007-05-087759] [PMID: 17595331]
[18]
Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128(2): 325-39.
[http://dx.doi.org/10.1016/j.cell.2007.01.003] [PMID: 17254970]
[19]
Zhu LL, Wu LY, Yew DT, Fan M. Effects of hypoxia on the proliferation and differentiation of NSCs. Mol Neurobiol 2005; 31(1-3): 231-42.
[http://dx.doi.org/10.1385/MN:31:1-3:231] [PMID: 15953824]
[20]
Jády AG, Nagy ÁM, Kőhidi T, Ferenczi S, Tretter L, Madarász E. Differentiation-dependent energy production and metabolite utilization: A comparative study on neural stem cells, neurons, and astrocytes. Stem Cells Dev 2016; 25(13): 995-1005.
[http://dx.doi.org/10.1089/scd.2015.0388] [PMID: 27116891]
[21]
Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med 2007; 4(Suppl. 1): S60-7.
[http://dx.doi.org/10.1038/ncpcardio0766] [PMID: 17230217]
[22]
Sukumar M, Liu J, Mehta GU, et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab 2016; 23(1): 63-76.
[http://dx.doi.org/10.1016/j.cmet.2015.11.002] [PMID: 26674251]
[23]
Hsu P, Qu CK. Metabolic plasticity and hematopoietic stem cell biology. Curr Opin Hematol 2013; 20(4): 289-94.
[http://dx.doi.org/10.1097/MOH.0b013e328360ab4d] [PMID: 23615055]
[24]
Ahmet I, Wan R, Mattson MP, Lakatta EG, Talan M. Cardioprotection by intermittent fasting in rats. Circulation 2005; 112(20): 3115-21.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.563817] [PMID: 16275865]
[25]
Mohrin M, Shin J, Liu Y, et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 2015; 347(6228): 1374-7.
[http://dx.doi.org/10.1126/science.aaa2361] [PMID: 25792330]
[26]
Mohrin M, Widjaja A, Liu Y, Luo H, Chen D. The mitochondrial unfolded protein response is activated upon hematopoietic stem cell exit from quiescence. Aging Cell 2018; 17(3) e12756
[http://dx.doi.org/10.1111/acel.12756] [PMID: 29575576]
[27]
Yu WM, Liu X, Shen J, et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013; 12(1): 62-74.
[http://dx.doi.org/10.1016/j.stem.2012.11.022] [PMID: 23290137]
[28]
Simsek T, Kocabas F, Zheng J, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010; 7(3): 380-90.
[http://dx.doi.org/10.1016/j.stem.2010.07.011] [PMID: 20804973]
[29]
Fitzsimmons REB, Mazurek MS, Soos A, Simmons CA. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int 2018. 20188031718
[http://dx.doi.org/10.1155/2018/8031718] [PMID: 30210552]
[30]
Pasarica M, Sereda OR, Redman LM, et al. Reduced adipose tissue oxygenation in human obesity: Evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 2009; 58(3): 718-25.
[http://dx.doi.org/10.2337/db08-1098] [PMID: 19074987]
[31]
Amorin B, Alegretti AP, Valim V, et al. Mesenchymal stem cell therapy and acute graft-versus-host disease: a review. Hum Cell 2014; 27(4): 137-50.
[http://dx.doi.org/10.1007/s13577-014-0095-x] [PMID: 24903975]
[32]
Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 2008; 26(4): 960-8.
[http://dx.doi.org/10.1634/stemcells.2007-0509] [PMID: 18218821]
[33]
Tsai CC, Chen YJ, Yew TL, et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 2011; 117(2): 459-69.
[http://dx.doi.org/10.1182/blood-2010-05-287508] [PMID: 20952688]
[34]
Pattappa G, Heywood HK, de Bruijn JD, Lee DA. The metabolism of human mesenchymal stem cells during proliferation and differentiation. J Cell Physiol 2011; 226(10): 2562-70.
[http://dx.doi.org/10.1002/jcp.22605] [PMID: 21792913]
[35]
Choi JR, Pingguan-Murphy B, Wan Abas WA, et al. In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis. PLoS One 2015; 10(1) e0115034
[http://dx.doi.org/10.1371/journal.pone.0115034] [PMID: 25615717]
[36]
Valorani MG, Montelatici E, Germani A, et al. Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials. Cell Prolif 2012; 45(3): 225-38.
[http://dx.doi.org/10.1111/j.1365-2184.2012.00817.x] [PMID: 22507457]
[37]
Ciria M, García NA, Ontoria-Oviedo I, et al. Mesenchymal Stem Cell Migration and Proliferation Are Mediated by Hypoxia-Inducible Factor-1α Upstream of Notch and SUMO Pathways. Stem Cells Dev 2017; 26(13): 973-85.
[http://dx.doi.org/10.1089/scd.2016.0331] [PMID: 28520516]
[38]
Hofmann AD, Beyer M, Krause-Buchholz U, Wobus M, Bornhäuser M, Rödel G. OXPHOS supercomplexes as a hallmark of the mitochondrial phenotype of adipogenic differentiated human MSCs. PLoS One 2012; 7(4) e35160
[http://dx.doi.org/10.1371/journal.pone.0035160] [PMID: 22523573]
[39]
Forni MF, Peloggia J, Trudeau K, Shirihai O, Kowaltowski AJ. Murine Mesenchymal Stem Cell Commitment to Differentiation Is Regulated by Mitochondrial Dynamics. Stem Cells 2016; 34(3): 743-55.
[http://dx.doi.org/10.1002/stem.2248] [PMID: 26638184]
[40]
Lambertini E, Penolazzi L, Morganti C, et al. Osteogenic differentiation of human MSCs: Specific occupancy of the mitochondrial DNA by NFATc1 transcription factor. Int J Biochem Cell Biol 2015; 64: 212-9.
[http://dx.doi.org/10.1016/j.biocel.2015.04.011] [PMID: 25952151]
[41]
Han X, Nonaka K, Kato H, et al. Osteoblastic differentiation improved by bezafibrate-induced mitochondrial biogenesis in deciduous tooth-derived pulp stem cells from a child with Leigh syndrome. Biochem Biophys Rep 2018; 17: 32-7.
[http://dx.doi.org/10.1016/j.bbrep.2018.11.003] [PMID: 30533535]
[42]
Zhang Y, Marsboom G, Toth PT, Rehman J. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PLoS One 2013; 8(10) e77077
[http://dx.doi.org/10.1371/journal.pone.0077077] [PMID: 24204740]
[43]
Ma T, Grayson WL, Fröhlich M, Vunjak-Novakovic G. Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog 2009; 25(1): 32-42.
[http://dx.doi.org/10.1002/btpr.128] [PMID: 19198002]
[44]
Liu Y, Yuan X, Muñoz N, Logan TM, Ma T. Commitment to Aerobic Glycolysis Sustains Immunosuppression of Human Mesenchymal Stem Cells. Stem Cells Transl Med 2019; 8(1): 93-106.
[http://dx.doi.org/10.1002/sctm.18-0070] [PMID: 30272389]
[45]
Gharibi B, Farzadi S, Ghuman M, Hughes FJ. Inhibition of Akt/mTOR attenuates age-related changes in mesenchymal stem cells. Stem Cells 2014; 32(8): 2256-66.
[http://dx.doi.org/10.1002/stem.1709] [PMID: 24659476]
[46]
Jeong GJ, Kang D, Kim AK, Han KH, Jeon HR, Kim DI. Metabolites can regulate stem cell behavior through the STAT3/AKT pathway in a similar trend to that under hypoxic conditions. Sci Rep 2019; 9(1): 6112.
[http://dx.doi.org/10.1038/s41598-019-42669-x] [PMID: 30992510]
[47]
Mich JK, Signer RA, Nakada D, et al. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain eLife 2014; 3e02669
[48]
Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury. Cell Stem Cell 2015; 17(3): 329-40.
[http://dx.doi.org/10.1016/j.stem.2015.07.002] [PMID: 26235341]
[49]
Fuentealba LC, Rompani SB, Parraguez JI, et al. Embryonic origin of postnatal neural stem cells. Cell 2015; 161(7): 1644-55.
[http://dx.doi.org/10.1016/j.cell.2015.05.041] [PMID: 26091041]
[50]
Furutachi S, Miya H, Watanabe T, et al. Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci 2015; 18(5): 657-65.
[http://dx.doi.org/10.1038/nn.3989] [PMID: 25821910]
[51]
Ottone C, Krusche B, Whitby A, et al. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol 2014; 16(11): 1045-56.
[http://dx.doi.org/10.1038/ncb3045] [PMID: 25283993]
[52]
Kim DY, Rhee I, Paik J. Metabolic circuits in neural stem cells. Cell Mol Life Sci 2014; 71(21): 4221-41.
[http://dx.doi.org/10.1007/s00018-014-1686-0] [PMID: 25037158]
[53]
Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 2010; 7(2): 150-61.
[http://dx.doi.org/10.1016/j.stem.2010.07.007] [PMID: 20682444]
[54]
Harms KM, Li L, Cunningham LA. Murine neural stem/progenitor cells protect neurons against ischemia by HIF-1alpha-regulated VEGF signaling. PLoS One 2010; 5(3) e9767
[http://dx.doi.org/10.1371/journal.pone.0009767] [PMID: 20339541]
[55]
Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Prog Neurobiol 2011; 93(2): 182-203.
[http://dx.doi.org/10.1016/j.pneurobio.2010.10.007] [PMID: 21056618]
[56]
Gershon TR, Crowther AJ, Tikunov A, et al. Hexokinase-2-mediated aerobic glycolysis is integral to cerebellar neurogenesis and pathogenesis of medulloblastoma. Cancer Metab 2013; 1(1): 2.
[http://dx.doi.org/10.1186/2049-3002-1-2] [PMID: 24280485]
[57]
Yanes O, Clark J, Wong DM, et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 2010; 6(6): 411-7.
[http://dx.doi.org/10.1038/nchembio.364] [PMID: 20436487]
[58]
Renault VM, Rafalski VA, Morgan AA, et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 2009; 5(5): 527-39.
[http://dx.doi.org/10.1016/j.stem.2009.09.014] [PMID: 19896443]
[59]
Favaro R, Valotta M, Ferri AL, et al. Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci 2009; 12(10): 1248-56.
[http://dx.doi.org/10.1038/nn.2397] [PMID: 19734891]
[60]
Liu HK, Belz T, Bock D, et al. The nuclear receptor tailless is required for neurogenesis in the adult subventricular zone. Genes Dev 2008; 22(18): 2473-8.
[http://dx.doi.org/10.1101/gad.479308] [PMID: 18794344]
[61]
Le Belle JE, Orozco NM, Paucar AA, et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 2011; 8(1): 59-71.
[http://dx.doi.org/10.1016/j.stem.2010.11.028] [PMID: 21211782]
[62]
Martynoga B, Mateo JL, Zhou B, et al. Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes Dev 2013; 27(16): 1769-86.
[http://dx.doi.org/10.1101/gad.216804.113] [PMID: 23964093]
[63]
Goodell MA, Rando TA. Stem cells and healthy aging. Science 2015; 350(6265): 1199-204.
[http://dx.doi.org/10.1126/science.aab3388] [PMID: 26785478]
[64]
Denkinger MD, Leins H, Schirmbeck R, Florian MC, Geiger H. HSC Aging and Senescent Immune Remodeling. Trends Immunol 2015; 36(12): 815-24.
[http://dx.doi.org/10.1016/j.it.2015.10.008] [PMID: 26611154]
[65]
Liu GH, Suzuki K, Li M, et al. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun 2014; 5: 4330.
[http://dx.doi.org/10.1038/ncomms5330] [PMID: 24999918]
[66]
Liu GH, Barkho BZ, Ruiz S, et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 2011; 472(7342): 221-5.
[http://dx.doi.org/10.1038/nature09879] [PMID: 21346760]
[67]
Zhang W, Li J, Suzuki K, et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 2015; 348(6239): 1160-3.
[http://dx.doi.org/10.1126/science.aaa1356] [PMID: 25931448]
[68]
Anderson RM, Weindruch R. Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol Metab 2010; 21(3): 134-41.
[http://dx.doi.org/10.1016/j.tem.2009.11.005] [PMID: 20004110]
[69]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[70]
López-Otín C, Galluzzi L, Freije JMP, Madeo F, Kroemer G. Metabolic Control of Longevity. Cell 2016; 166(4): 802-21.
[http://dx.doi.org/10.1016/j.cell.2016.07.031] [PMID: 27518560]
[71]
Ahlqvist KJ, Suomalainen A, Hämäläinen RH. Stem cells, mitochondria and aging. Biochim Biophys Acta 2015; 1847(11): 1380-6.
[http://dx.doi.org/10.1016/j.bbabio.2015.05.014] [PMID: 26014347]
[72]
Zhang H, Menzies KJ, Auwerx J. The role of mitochondria in stem cell fate and aging. Development 2018; 145(8) dev143420
[http://dx.doi.org/10.1242/dev.143420] [PMID: 29654217]
[73]
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005; 39: 359-407.
[http://dx.doi.org/10.1146/annurev.genet.39.110304.095751] [PMID: 16285865]
[74]
Min-Wen JC, Jun-Hao ET, Shyh-Chang N. Stem cell mitochondria during aging. Semin Cell Dev Biol 2016; 52: 110-8.
[http://dx.doi.org/10.1016/j.semcdb.2016.02.005] [PMID: 26851627]
[75]
Alshamiri M, Ghanaim MMA, Barter P, et al. Expert opinion on the applicability of dyslipidemia guidelines in Asia and the Middle East. Int J Gen Med 2018; 11: 313-22.
[http://dx.doi.org/10.2147/IJGM.S160555] [PMID: 30050317]
[76]
Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441(7092): 475-82.
[http://dx.doi.org/10.1038/nature04703] [PMID: 16598206]
[77]
Gan B, DePinho RA. mTORC1 signaling governs hematopoietic stem cell quiescence. Cell Cycle 2009; 8(7): 1003-6.
[http://dx.doi.org/10.4161/cc.8.7.8045] [PMID: 19270523]
[78]
Wrighton KH. Stem cells: SIRT7, the UPR and HSC ageing. Nat Rev Mol Cell Biol 2015; 16(5): 266-7.
[http://dx.doi.org/10.1038/nrm3981] [PMID: 25857811]
[79]
Flachsbart F, Caliebe A, Kleindorp R, et al. Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci USA 2009; 106(8): 2700-5.
[http://dx.doi.org/10.1073/pnas.0809594106] [PMID: 19196970]
[80]
Paik JH, Ding Z, Narurkar R, et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 2009; 5(5): 540-53.
[http://dx.doi.org/10.1016/j.stem.2009.09.013] [PMID: 19896444]
[81]
Stein LR, Imai S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab 2012; 23(9): 420-8.
[http://dx.doi.org/10.1016/j.tem.2012.06.005] [PMID: 22819213]
[82]
Zhang H, Ryu D, Wu Y, et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 2016; 352(6292): 1436-43.
[http://dx.doi.org/10.1126/science.aaf2693] [PMID: 27127236]
[83]
Barger JL, Walford RL, Weindruch R. The retardation of aging by caloric restriction: its significance in the transgenic era. Exp Gerontol 2003; 38(11-12): 1343-51.
[http://dx.doi.org/10.1016/j.exger.2003.10.017] [PMID: 14698815]
[84]
McLeod CJ, Wang L, Wong C, Jones DL. Stem cell dynamics in response to nutrient availability. Curr Biol 2010; 20(23): 2100-5.
[http://dx.doi.org/10.1016/j.cub.2010.10.038] [PMID: 21055942]
[85]
Russell SJ, Kahn CR. Endocrine regulation of ageing. Nat Rev Mol Cell Biol 2007; 8(9): 681-91.
[http://dx.doi.org/10.1038/nrm2234] [PMID: 17684529]
[86]
Cerletti M, Jang YC, Finley LW, Haigis MC, Wagers AJ. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 2012; 10(5): 515-9.
[http://dx.doi.org/10.1016/j.stem.2012.04.002] [PMID: 22560075]
[87]
Cheng CW, Adams GB, Perin L, et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 2014; 14(6): 810-23.
[http://dx.doi.org/10.1016/j.stem.2014.04.014] [PMID: 24905167]
[88]
Mair W, McLeod CJ, Wang L, Jones DL. Dietary restriction enhances germline stem cell maintenance. Aging Cell 2010; 9(5): 916-8.
[http://dx.doi.org/10.1111/j.1474-9726.2010.00602.x] [PMID: 20569233]
[89]
Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes 2012; 61(6): 1315-22.
[http://dx.doi.org/10.2337/db11-1300] [PMID: 22618766]
[90]
Chaker Z, Aïd S, Berry H, Holzenberger M. Suppression of IGF-I signals in neural stem cells enhances neurogenesis and olfactory function during aging. Aging Cell 2015; 14(5): 847-56.
[http://dx.doi.org/10.1111/acel.12365] [PMID: 26219530]
[91]
Amiri A, Cho W, Zhou J, et al. Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci 2012; 32(17): 5880-90.
[http://dx.doi.org/10.1523/JNEUROSCI.5462-11.2012] [PMID: 22539849]
[92]
Tan W, Gu Z, Shen B, et al. PTEN/Akt-p27(kip1) Signaling Promote the BM-MSCs Senescence and Apoptosis in SLE Patients. J Cell Biochem 2015; 116(8): 1583-94.
[http://dx.doi.org/10.1002/jcb.25112] [PMID: 25649549]
[93]
Lee JY, Nakada D, Yilmaz OH, et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 2010; 7(5): 593-605.
[http://dx.doi.org/10.1016/j.stem.2010.09.015] [PMID: 21040901]
[94]
Weichhart T. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. Gerontology 2018; 64(2): 127-34.
[http://dx.doi.org/10.1159/000484629] [PMID: 29190625]
[95]
Zhou J, Li D, Wang F. Assessing the function of mTOR in human embryonic stem cells. Methods Mol Biol 2012; 821: 361-72.
[http://dx.doi.org/10.1007/978-1-61779-430-8_23] [PMID: 22125078]
[96]
Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 2009; 5(3): 279-89.
[http://dx.doi.org/10.1016/j.stem.2009.06.017] [PMID: 19733540]
[97]
Rimmelé P, Liang R, Bigarella CL, et al. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep 2015; 16(9): 1164-76.
[http://dx.doi.org/10.15252/embr.201439704] [PMID: 26209246]
[98]
Farahzadi R, Fathi E, Mesbah-Namin SA, Zarghami N. Anti-aging protective effect of L-carnitine as clinical agent in regenerative medicine through increasing telomerase activity and change in the hTERT promoter CpG island methylation status of adipose tissue-derived mesenchymal stem cells. Tissue Cell 2018; 54: 105-13.
[http://dx.doi.org/10.1016/j.tice.2018.08.012] [PMID: 30309499]
[99]
Farahzadi R, Fathi E, Mesbah-Namin SA, Zarghami N. Zinc sulfate contributes to promote telomere length extension via increasing telomerase gene expression, telomerase activity and change in the TERT gene promoter CpG island methylation status of human adipose-derived mesenchymal stem cells. PLoS One 2017; 12(11) e0188052
[http://dx.doi.org/10.1371/journal.pone.0188052] [PMID: 29145503]
[100]
Folmes CD, Martinez-Fernandez A, Faustino RS, et al. Nuclear reprogramming with c-Myc potentiates glycolytic capacity of derived induced pluripotent stem cells. J Cardiovasc Transl Res 2013; 6(1): 10-21.
[http://dx.doi.org/10.1007/s12265-012-9431-2] [PMID: 23247633]
[101]
Folmes CD, Arrell DK, Zlatkovic-Lindor J, et al. Metabolome and metaboproteome remodeling in nuclear reprogramming. Cell Cycle 2013; 12(15): 2355-65.
[http://dx.doi.org/10.4161/cc.25509] [PMID: 23839047]
[102]
Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012; 11(5): 589-95.
[http://dx.doi.org/10.1016/j.stem.2012.10.005] [PMID: 23122286]
[103]
Mookerjee SA, Gerencser AA, Nicholls DG, Brand MD. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J Biol Chem 2017; 292(17): 7189-207.
[http://dx.doi.org/10.1074/jbc.M116.774471] [PMID: 28270511]
[104]
Zhang J, Khvorostov I, Hong JS, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 2016; 35(8): 899.
[http://dx.doi.org/10.15252/embj.201694054] [PMID: 27084758]
[105]
Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 2010; 28(4): 721-33.
[http://dx.doi.org/10.1002/stem.404] [PMID: 20201066]
[106]
Varum S, Rodrigues AS, Moura MB, et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 2011; 6(6) e20914
[http://dx.doi.org/10.1371/journal.pone.0020914] [PMID: 21698063]
[107]
Chung S, Arrell DK, Faustino RS, Terzic A, Dzeja PP. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J Mol Cell Cardiol 2010; 48(4): 725-34.
[http://dx.doi.org/10.1016/j.yjmcc.2009.12.014] [PMID: 20045004]
[108]
Kaniak-Golik A, Skoneczna A. Mitochondria-nucleus network for genome stability. Free Radic Biol Med 2015; 82: 73-104.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.01.013] [PMID: 25640729]
[109]
Crespo FL, Sobrado VR, Gomez L, Cervera AM, McCreath KJ. Mitochondrial reactive oxygen species mediate cardiomyocyte formation from embryonic stem cells in high glucose. Stem Cells 2010; 28(7): 1132-42.
[http://dx.doi.org/10.1002/stem.441] [PMID: 20506541]
[110]
Xiao Q, Luo Z, Pepe AE, Margariti A, Zeng L, Xu Q. Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2. Am J Physiol Cell Physiol 2009; 296(4): C711-23.
[http://dx.doi.org/10.1152/ajpcell.00442.2008] [PMID: 19036941]
[111]
Warburg O. On respiratory impairment in cancer cells. Science 1956; 124(3215): 269-70.
[PMID: 13351639]
[112]
Folmes CD, Nelson TJ, Martinez-Fernandez A, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 2011; 14(2): 264-71.
[http://dx.doi.org/10.1016/j.cmet.2011.06.011] [PMID: 21803296]
[113]
Zhu S, Li W, Zhou H, et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 2010; 7(6): 651-5.
[http://dx.doi.org/10.1016/j.stem.2010.11.015] [PMID: 21112560]
[114]
Prigione A, Rohwer N, Hoffmann S, et al. HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 2014; 32(2): 364-76.
[http://dx.doi.org/10.1002/stem.1552] [PMID: 24123565]
[115]
Panopoulos AD, Yanes O, Ruiz S, et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 2012; 22(1): 168-77.
[http://dx.doi.org/10.1038/cr.2011.177] [PMID: 22064701]
[116]
Cacchiarelli D, Trapnell C, Ziller MJ, et al. Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell 2015; 162(2): 412-24.
[http://dx.doi.org/10.1016/j.cell.2015.06.016] [PMID: 26186193]
[117]
Nefzger CM, Rossello FJ, Chen J, et al. Cell Type of Origin Dictates the Route to Pluripotency. Cell Rep 2017; 21(10): 2649-60.
[http://dx.doi.org/10.1016/j.celrep.2017.11.029] [PMID: 29212013]
[118]
Dang CV. The interplay between MYC and HIF in the Warburg effect. Ernst Schering Found Symp Proc. 35-53.
[http://dx.doi.org//10.1007/2789_2008_088]
[119]
Cliff TS, et al. MYC Controls Human Pluripotent Stem Cell Fate Decisions through Regulation of Metabolic Flux 2017. 21(4): 502- 16.
[http://dx.doi.org/10.1016/j.stem.2017.08.018]
[120]
Shyh-Chang N, Zhu H, Yvanka de Soysa T, et al. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 2013; 155(4): 778-92.
[http://dx.doi.org/10.1016/j.cell.2013.09.059] [PMID: 24209617]
[121]
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.
[http://dx.doi.org/10.1126/science.1151526] [PMID: 18029452]
[122]
Zheng J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review) Oncol Lett 2012; 4(6): 1151-7
[123]
Giaccia AJ, Simon MC, Johnson R. The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev 2004; 18(18): 2183-94.
[http://dx.doi.org/10.1101/gad.1243304] [PMID: 15371333]
[124]
Panchision DM. The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 2009; 220(3): 562-8.
[http://dx.doi.org/10.1002/jcp.21812] [PMID: 19441077]
[125]
Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 2006; 207(2): 331-9.
[http://dx.doi.org/10.1002/jcp.20571] [PMID: 16331674]
[126]
Zhang CC, Sadek HA. Hypoxia and metabolic properties of hematopoietic stem cells. Antioxid Redox Signal 2014; 20(12): 1891-901.
[http://dx.doi.org/10.1089/ars.2012.5019] [PMID: 23621582]
[127]
Mathieu J, Zhang Z, Nelson A, et al. Hypoxia induces re-entry of committed cells into pluripotency. Stem Cells 2013; 31(9): 1737-48.
[http://dx.doi.org/10.1002/stem.1446] [PMID: 23765801]
[128]
Grayson WL, Zhao F, Bunnell B, Ma T. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 2007; 358(3): 948-53.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.054] [PMID: 17521616]
[129]
Koay EJ, Athanasiou KA. Hypoxic chondrogenic differentiation of human embryonic stem cells enhances cartilage protein synthesis and biomechanical functionality. Osteoarthritis Cartilage 2008; 16(12): 1450-6.
[http://dx.doi.org/10.1016/j.joca.2008.04.007] [PMID: 18541445]
[130]
Bargiela D, Burr SP, Chinnery PF. Mitochondria and Hypoxia: Metabolic Crosstalk in Cell-Fate Decisions. Trends Endocrinol Metab 2018; 29(4): 249-59.
[http://dx.doi.org/10.1016/j.tem.2018.02.002] [PMID: 29501229]
[131]
Frezza C. Mitochondrial metabolites: undercover signalling molecules. Interface Focus 2017; 7(2) 20160100
[http://dx.doi.org/10.1098/rsfs.2016.0100] [PMID: 28382199]
[132]
Herr CQ, Hausinger RP. Amazing Diversity in Biochemical Roles of Fe(II)/2-Oxoglutarate Oxygenases. Trends Biochem Sci 2018; 43(7): 517-32.
[http://dx.doi.org/10.1016/j.tibs.2018.04.002] [PMID: 29709390]
[133]
Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J 2012; 31(11): 2448-60.
[http://dx.doi.org/10.1038/emboj.2012.125] [PMID: 22562152]
[134]
Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3(3): 177-85.
[http://dx.doi.org/10.1016/j.cmet.2006.02.002] [PMID: 16517405]
[135]
Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem 2008; 283(42): 28106-14.
[http://dx.doi.org/10.1074/jbc.M803508200] [PMID: 18718909]
[136]
Mathieu J, Zhou W, Xing Y, et al. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 2014; 14(5): 592-605.
[http://dx.doi.org/10.1016/j.stem.2014.02.012] [PMID: 24656769]
[137]
Bae D, Mondragon-Teran P, Hernandez D, et al. Hypoxia enhances the generation of retinal progenitor cells from human induced pluripotent and embryonic stem cells. Stem Cells Dev 2012; 21(8): 1344-55.
[http://dx.doi.org/10.1089/scd.2011.0225] [PMID: 21875341]
[138]
Pimton P, Lecht S, Stabler CT, Johannes G, Schulman ES, Lelkes PI. Hypoxia enhances differentiation of mouse embryonic stem cells into definitive endoderm and distal lung cells. Stem Cells Dev 2015; 24(5): 663-76.
[http://dx.doi.org/10.1089/scd.2014.0343] [PMID: 25226206]
[139]
Xie Y, Zhang J, Lin Y, et al. Defining the role of oxygen tension in human neural progenitor fate. Stem Cell Reports 2014; 3(5): 743-57.
[http://dx.doi.org/10.1016/j.stemcr.2014.09.021] [PMID: 25418722]
[140]
Yasui T, Uezono N, Nakashima H, et al. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports 2017; 8(6): 1743-56.
[http://dx.doi.org/10.1016/j.stemcr.2017.05.001] [PMID: 28591654]
[141]
Singh RP, Franke K, Kalucka J, et al. HIF prolyl hydroxylase 2 (PHD2) is a critical regulator of hematopoietic stem cell maintenance during steady-state and stress. Blood 2013; 121(26): 5158-66.
[http://dx.doi.org/10.1182/blood-2012-12-471185] [PMID: 23667053]
[142]
Wagegg M, Gaber T, Lohanatha FL, et al. Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner. PLoS One 2012; 7(9) e46483
[http://dx.doi.org/10.1371/journal.pone.0046483] [PMID: 23029528]
[143]
Dahan P, Lu V, Nguyen RMT, Kennedy SAL, Teitell MA. Metabolism in pluripotency: Both driver and passenger? J Biol Chem 2019; 294(14): 5420-9.
[http://dx.doi.org/10.1074/jbc.TM117.000832] [PMID: 29463682]
[144]
Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 1993; 99(2): 673-9.
[http://dx.doi.org/10.1530/jrf.0.0990673] [PMID: 8107053]
[145]
Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 2005; 102(13): 4783-8.
[http://dx.doi.org/10.1073/pnas.0501283102] [PMID: 15772165]
[146]
Brown GC. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 1992; 284(Pt 1): 1-13.
[http://dx.doi.org/10.1042/bj2840001] [PMID: 1599389]
[147]
Cho YM, Kwon S, Pak YK, et al. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 2006; 348(4): 1472-8.
[http://dx.doi.org/10.1016/j.bbrc.2006.08.020] [PMID: 16920071]
[148]
Saretzki G, Walter T, Atkinson S, et al. Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 2008; 26(2): 455-64.
[http://dx.doi.org/10.1634/stemcells.2007-0628] [PMID: 18055443]
[149]
Olson SE, Seidel GE Jr. Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol Reprod 2000; 62(2): 248-52.
[http://dx.doi.org/10.1095/biolreprod62.2.248] [PMID: 10642559]
[150]
Schmelter M, Ateghang B, Helmig S, Wartenberg M, Sauer H. Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 2006; 20(8): 1182-4.
[http://dx.doi.org/10.1096/fj.05-4723fje] [PMID: 16636108]
[151]
Son MY, Choi H, Han YM, Cho YS. Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency. Stem Cells 2013; 31(11): 2374-87.
[http://dx.doi.org/10.1002/stem.1509] [PMID: 23939908]
[152]
Kasahara A, Cipolat S, Chen Y, Dorn GW II, Scorrano L. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 2013; 342(6159): 734-7.
[http://dx.doi.org/10.1126/science.1241359] [PMID: 24091702]
[153]
Moussaieff A, Rouleau M, Kitsberg D, et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 2015; 21(3): 392-402.
[http://dx.doi.org/10.1016/j.cmet.2015.02.002] [PMID: 25738455]
[154]
Chappell J, Dalton S. Roles for MYC in the establishment and maintenance of pluripotency. Cold Spring Harb Perspect Med 2013; 3(12) a014381
[http://dx.doi.org/10.1101/cshperspect.a014381] [PMID: 24296349]
[155]
Teslaa T, Teitell MA. Pluripotent stem cell energy metabolism: an update. EMBO J 2015; 34(2): 138-53.
[http://dx.doi.org/10.15252/embj.201490446] [PMID: 25476451]
[156]
Gu W, Gaeta X, Sahakyan A, et al. Glycolytic Metabolism Plays a Functional Role in Regulating Human Pluripotent Stem Cell State. Cell Stem Cell 2016; 19(4): 476-90.
[http://dx.doi.org/10.1016/j.stem.2016.08.008] [PMID: 27618217]
[157]
Kilberg MS, Terada N, Shan J. Influence of Amino Acid Metabolism on Embryonic Stem Cell Function and Differentiation. Adv Nutr 2016; 7(4): 780S-9S.
[http://dx.doi.org/10.3945/an.115.011031] [PMID: 27422515]
[158]
Washington JM, Rathjen J, Felquer F, et al. L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 2010; 298(5): C982-92.
[http://dx.doi.org/10.1152/ajpcell.00498.2009] [PMID: 20164384]
[159]
Shiraki N, Shiraki Y, Tsuyama T, et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 2014; 19(5): 780-94.
[http://dx.doi.org/10.1016/j.cmet.2014.03.017] [PMID: 24746804]
[160]
Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight SL. Dependence of mouse embryonic stem cells on threonine catabolism. Science 2009; 325(5939): 435-9.
[http://dx.doi.org/10.1126/science.1173288] [PMID: 19589965]
[161]
Shyh-Chang N, Locasale JW, Lyssiotis CA, et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 2013; 339(6116): 222-6.
[http://dx.doi.org/10.1126/science.1226603] [PMID: 23118012]
[162]
Mikkelsen TS, Hanna J, Zhang X, et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008; 454(7200): 49-55.
[http://dx.doi.org/10.1038/nature07056] [PMID: 18509334]
[163]
Alexander PB, Wang J, McKnight SL. Targeted killing of a mammalian cell based upon its specialized metabolic state. Proc Natl Acad Sci USA 2011; 108(38): 15828-33.
[http://dx.doi.org/10.1073/pnas.1111312108] [PMID: 21896756]
[164]
Gaspar JA, Doss MX, Hengstler JG, Cadenas C, Hescheler J, Sachinidis A. Unique metabolic features of stem cells, cardiomyocytes, and their progenitors. Circ Res 2014; 114(8): 1346-60.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.302021] [PMID: 24723659]
[165]
Zgheib R, Battaglia-Hsu SF, Hergalant S, et al. Folate can promote the methionine-dependent reprogramming of glioblastoma cells towards pluripotency. Cell Death Dis 2019; 10(8): 596.
[http://dx.doi.org/10.1038/s41419-019-1836-2] [PMID: 31395852]
[166]
Nombela-Arrieta C, Silberstein LE. The science behind the hypoxic niche of hematopoietic stem and progenitors. Hematology (Am Soc Hematol Educ Program) 2014; 2014(1): 542-7.
[http://dx.doi.org/10.1182/asheducation-2014.1.542] [PMID: 25696908]
[167]
Redondo PA, Pavlou M, Loizidou M, Cheema U. Elements of the niche for adult stem cell expansion. J Tissue Eng 2017. 82041731417725464
[http://dx.doi.org/10.1177/2041731417725464] [PMID: 28890779]
[168]
Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 2014; 15(4): 243-56.
[http://dx.doi.org/10.1038/nrm3772] [PMID: 24651542]
[169]
Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 2008; 9(2): 115-28.
[http://dx.doi.org/10.1038/nrg2269] [PMID: 18202695]
[170]
Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol 2007; 23: 675-99.
[http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104154] [PMID: 17645413]
[171]
Park Y, Gerson SL. DNA repair defects in stem cell function and aging. Annu Rev Med 2005; 56: 495-508.
[http://dx.doi.org/10.1146/annurev.med.56.082103.104546] [PMID: 15660524]
[172]
Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact of ROS signaling. Development 2014; 141(22): 4206-18.
[http://dx.doi.org/10.1242/dev.107086] [PMID: 25371358]
[173]
Rouault-Pierre K, Lopez-Onieva L, Foster K, et al. HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell 2013; 13(5): 549-63.
[http://dx.doi.org/10.1016/j.stem.2013.08.011] [PMID: 24095676]
[174]
Kocabas F, Zheng J, Thet S, et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 2012; 120(25): 4963-72.
[http://dx.doi.org/10.1182/blood-2012-05-432260] [PMID: 22995899]
[175]
Takubo K, Nagamatsu G, Kobayashi CI, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013; 12(1): 49-61.
[http://dx.doi.org/10.1016/j.stem.2012.10.011] [PMID: 23290136]
[176]
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid Med Cell Longev 2016. 20161245049
[http://dx.doi.org/10.1155/2016/1245049] [PMID: 27478531]
[177]
Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014; 15(6): 411-21.
[http://dx.doi.org/10.1038/nrm3801] [PMID: 24854789]
[178]
De Barros S, Dehez S, Arnaud E, et al. Aging-related decrease of human ASC angiogenic potential is reversed by hypoxia preconditioning through ROS production. Mol Ther 2013; 21(2): 399-408.
[http://dx.doi.org/10.1038/mt.2012.213] [PMID: 23070114]
[179]
Tatapudy S, Aloisio F, Barber D, Nystul T. Cell fate decisions: emerging roles for metabolic signals and cell morphology. EMBO Rep 2017; 18(12): 2105-18.
[http://dx.doi.org/10.15252/embr.201744816] [PMID: 29158350]
[180]
Dansen TB, Smits LM, van Triest MH, et al. Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat Chem Biol 2009; 5(9): 664-72.
[http://dx.doi.org/10.1038/nchembio.194] [PMID: 19648934]
[181]
Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science 2010; 330(6003): 517-21.
[http://dx.doi.org/10.1126/science.1192912] [PMID: 20966255]
[182]
Velu CS, Niture SK, Doneanu CE, Pattabiraman N, Srivenugopal KS. Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 2007; 46(26): 7765-80.
[http://dx.doi.org/10.1021/bi700425y] [PMID: 17555331]
[183]
Piccoli C, Ria R, Scrima R, et al. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem 2005; 280(28): 26467-76.
[http://dx.doi.org/10.1074/jbc.M500047200] [PMID: 15883163]
[184]
Csete M, Walikonis J, Slawny N, et al. Oxygen-mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture. J Cell Physiol 2001; 189(2): 189-96.
[http://dx.doi.org/10.1002/jcp.10016] [PMID: 11598904]
[185]
Ueda T, Nagamachi A, Takubo K, et al. Fbxl10 overexpression in murine hematopoietic stem cells induces leukemia involving metabolic activation and upregulation of Nsg2. Blood 2015; 125(22): 3437-46.
[http://dx.doi.org/10.1182/blood-2014-03-562694] [PMID: 25872778]
[186]
Karigane D, Kobayashi H, Morikawa T, et al. p38α Activates Purine Metabolism to Initiate Hematopoietic Stem/Progenitor Cell Cycling in Response to Stress. Cell Stem Cell 2016; 19(2): 192-204.
[http://dx.doi.org/10.1016/j.stem.2016.05.013] [PMID: 27345838]
[187]
Miyamoto K, Araki KY, Naka K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1(1): 101-12.
[http://dx.doi.org/10.1016/j.stem.2007.02.001] [PMID: 18371339]
[188]
Xu C, Luo J, He L, et al. Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca(2+) signaling in the Drosophila midgut. eLife 2017; 6 e22441
[189]
Phan LM, Yeung SC, Lee MH. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med 2014; 11(1): 1-19.
[PMID: 24738035]
[190]
Romero-Garcia S, Lopez-Gonzalez JS, Báez-Viveros JL, Aguilar-Cazares D, Prado-Garcia H. Tumor cell metabolism: an integral view. Cancer Biol Ther 2011; 12(11): 939-48.
[http://dx.doi.org/10.4161/cbt.12.11.18140] [PMID: 22057267]
[191]
Fritz V, Fajas L. Metabolism and proliferation share common regulatory pathways in cancer cells. Oncogene 2010; 29(31): 4369-77.
[http://dx.doi.org/10.1038/onc.2010.182] [PMID: 20514019]
[192]
Russell RC, Fang C, Guan KL. An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development 2011; 138(16): 3343-56.
[http://dx.doi.org/10.1242/dev.058230] [PMID: 21791526]
[193]
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40(2): 310-22.
[http://dx.doi.org/10.1016/j.molcel.2010.09.026] [PMID: 20965424]
[194]
Tohyama S, Fujita J, Hishiki T, et al. Glutamine Oxidation Is Indispensable for Survival of Human Pluripotent Stem Cells. Cell Metab 2016; 23(4): 663-74.
[http://dx.doi.org/10.1016/j.cmet.2016.03.001] [PMID: 27050306]
[195]
Hemmi N, Tohyama S, Nakajima K, et al. A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med 2014; 3(12): 1473-83.
[http://dx.doi.org/10.5966/sctm.2014-0072] [PMID: 25355733]
[196]
Tohyama S, Hattori F, Sano M, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2013; 12(1): 127-37.
[http://dx.doi.org/10.1016/j.stem.2012.09.013] [PMID: 23168164]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy