Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Presence of Cathelicidin-1 in Milk as an Indicator of the Severity of Mammary Infection in Ewes

Author(s): Angeliki I. Katsafadou, Natalia G.C. Vasileiou, George T. Tsangaris, Katerina S. Ioannidi, Athanasios K. Anagnostopoulos, Charalambos Billinis, Ilektra A. Fragkou, Elias Papadopoulos, Vasia S. Mavrogianni, Dafni T. Lianou, Dimitris C. Chatzopoulos and George C. Fthenakis*

Volume 18, Issue 2, 2021

Published on: 10 May, 2020

Page: [162 - 168] Pages: 7

DOI: 10.2174/1570164617999200510234638

Price: $65

Abstract

Aims: The importance of cathelicidin-1 as an indicator of the severity of mammary infection in ewes.

Background: Mastitis is an important disease of sheep, affecting their health and welfare.

Objective: The association of the presence of cathelicidin-1 in milk samples from ewes with mastitis with the severity of the infection.

Methods: Ewes were intramammarily inoculated with Mannheimia haemolytica or Staphylococcus chromogenes. Conventional (clinical, bacteriological and cytological examinations; milk yield measurements) and proteomics evaluation (2-DE, MALDI-TOF MS) to record cathelicidin-1 spot optical densities in milk samples were recorded.

Results: Ewes challenged with M. haemolytica developed clinical and ewes challenged with S. chromogenes subclinical mastitis (P=0.05). The challenged organism was isolated from milk samples from inoculated mammary glands; increased somatic cell counts were also recorded. Cathelicidin- 1 was detected in milk samples from the inoculated side of udders of all ewes. Mean spot density of cathelicidin-1 from samples from inoculated glands of ewes challenged with M. haemolytica was higher than from ewes challenged with S. chromogenes: 2896 ± 973 versus 1312 ± 361 (P =0.034). There were significant correlations between the presence of clinical mastitis / somatic cell counts with the spot density of cathelicidin-1 on 2-DE gels (P=0.043 and P=0.023, respectively). There was also a significant inverse correlation between the mean spot densities of cathelicidin-1 in milk samples and the milk yield of respective ewes on D10 (P =0.031).

Conclusion: Potentially, cathelicidin-1 could be used as a marker to indicate the severity of damage to the mammary parenchyma.

Keywords: Biomarker, cathelicidin-1, mastitis, mammary epithelial cells, pathogenesis, proteomics, sheep, somatic cell counts.

Graphical Abstract

[1]
Gelasakis, A.I.; Mavrogianni, V.S.; Petridis, I.G.; Vasileiou, N.G.C.; Fthenakis, G.C. Mastitis in sheep--The last 10 years and the future of research. Vet. Microbiol., 2015, 181(1-2), 136-146.
[http://dx.doi.org/10.1016/j.vetmic.2015.07.009] [PMID: 26216457]
[2]
Katsafadou, A.I.; Tsangaris, G.T.; Anagnostopoulos, A.K.; Billinis, C.; Barbagianni, M.S.; Vasileiou, N.G.C.; Spanos, S.A.; Mavrogianni, V.S.; Fthenakis, G.C. Differential quantitative proteomics study of experimental Mannheimia haemolytica mastitis in sheep. J. Proteomics, 2019, 205, 103393.
[http://dx.doi.org/10.1016/j.jprot.2019.103393] [PMID: 31154024]
[3]
Addis, M.F.; Pisanu, S.; Marogna, G.; Cubeddu, T.; Pagnozzi, D.; Cacciotto, C.; Campesi, F.; Schianchi, G.; Rocca, S.; Uzzau, S. Production and release of antimicrobial and immune defense proteins by mammary epithelial cells following Streptococcus uberis infection of sheep. Infect. Immun., 2013, 81(9), 3182-3197.
[http://dx.doi.org/10.1128/IAI.00291-13] [PMID: 23774600]
[4]
Katsafadou, A.I.; Vasileiou, N.G.C.; Fthenakis, G.C. Use of proteomics in the study of mastitis in ewes. Pathogens, 2019, 8(3), 134.
[http://dx.doi.org/10.3390/pathogens8030134] [PMID: 31470519]
[5]
Katsafadou, A.I.; Politis, A.P.; Mavrogianni, V.S.; Barbagianni, M.S.; Vasileiou, N.G.C.; Fthenakis, G.C.; Fragkou, I.A. Mammary defences and immunity against mastitis in sheep. Animals (Basel), 2019, 9(10), 726.
[http://dx.doi.org/10.3390/ani9100726] [PMID: 31561433]
[6]
Agier, J.; Efenberger, M.; Brzezińska-Błaszczyk, E. Cathelicidin impact on inflammatory cells. Cent. Eur. J. Immunol., 2015, 40(2), 225-235.
[http://dx.doi.org/10.5114/ceji.2015.51359] [PMID: 26557038]
[7]
Tomasinsig, L.; De Conti, G.; Skerlavaj, B.; Piccinini, R.; Mazzilli, M.; D’Este, F.; Tossi, A.; Zanetti, M. Broad-spectrum activity against bacterial mastitis pathogens and activation of mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis. Infect. Immun., 2010, 78(4), 1781-1788.
[http://dx.doi.org/10.1128/IAI.01090-09] [PMID: 20100862]
[8]
Smolenski, G.A.; Wieliczko, R.J.; Pryor, S.M.; Broadhurst, M.K.; Wheeler, T.T.; Haigh, B.J. The abundance of milk cathelicidin proteins during bovine mastitis. Vet. Immunol. Immunopathol., 2011, 143(1-2), 125-130.
[http://dx.doi.org/10.1016/j.vetimm.2011.06.034] [PMID: 21774993]
[9]
Mehrzad, J.; Desrosiers, C.; Lauzon, K.; Robitaille, G.; Zhao, X.; Lacasse, P. Proteases involved in mammary tissue damage during endotoxin-induced mastitis in dairy cows. J. Dairy Sci., 2005, 88(1), 211-222.
[http://dx.doi.org/10.3168/jds.S0022-0302(05)72679-5] [PMID: 15591384]
[10]
Mavrogianni, V.S.; Fthenakis, G.C.; Brooks, H.; Papaioannou, N.; Cripps, P.J.; Taitzoglou, I.; Brellou, G.; Saratsis, P. The effects of inoculation of Mannheimia haemolytica into the teat of lactating ewes. Vet. Res., 2005, 36(1), 13-25.
[http://dx.doi.org/10.1051/vetres:2004048] [PMID: 15610720]
[11]
Vasileiou, N.G.C.; Cripps, P.J.; Ioannidi, K.S.; Katsafadou, A.I.; Chatzopoulos, D.C.; Barbagianni, M.S.; Tsioli, V.; Dermisiadou, E.; Karavanis, E.; Papadopoulos, N.; Lianou, D.T.; Mavrogianni, V.S.; Petinaki, E.; Fthenakis, G.C. Experimental study for evaluation of the efficacy of a biofilm-embedded bacteria-based vaccine against Staphylococcus chromogenes-associated mastitis in sheep. Vet. Microbiol., 2019, 239, 108480.
[http://dx.doi.org/10.1016/j.vetmic.2019.108480] [PMID: 31767091]
[12]
Miles, A.A.; Misra, S.S.; Irwin, J.O. The estimation of the bactericidal power of the blood. J. Hyg. (Lond.), 1938, 38(6), 732-749.
[PMID: 20475467]
[13]
Katsafadou, A.I.; Tsangaris, G.Th.; Vasileiou, N.G.C.; Ioannidi, K.S.; Anagnostopoulos, A.K.; Billinis, C.; Fragkou, I.A.; Papadopoulos, E.; Mavrogianni, V.S.; Michael, C.K.; Addis, M.F.; Fthenakis, G.C. Detection of cathelicidin-1 in the milk as an early indicator of mastitis in ewes. Pathogens, 2019, 8(4), 270.
[http://dx.doi.org/10.3390/pathogens8040270] [PMID: 31795190]
[14]
Vasileiou, N.G.C.; Chatzopoulos, D.C.; Cripps, P.J.; Ioannidi, K.S.; Gougoulis, D.A.; Chouzouris, T.M.; Lianou, D.T.; Gonzalez-Valerio, T.C.; Vallverdu, R.G.; Argyros, S.; Cesio, M.; Font, I.; Mavrogianni, V.S.; Petinaki, E.; Fthenakis, G.C. Evaluation of efficacy of a biofilm-embedded bacteria-based vaccine against Staphylococcal mastitis in sheep-A randomized, placebo-controlled field study. J. Dairy Sci., 2019, 102(10), 9328-9344.
[http://dx.doi.org/10.3168/jds.2019-16287] [PMID: 31400892]
[15]
Barrow, G.I.; Feltham, R.K.A. Cowan and Steel’s manual for the identification of medical bacteria, 3rd ed; Cambridge University Press: Cambridge, UK, 1993, p. 352.
[http://dx.doi.org/10.1017/CBO9780511527104]
[16]
Euzéby, J.P. List of bacterial names with standing in nomenclature: a folder available on the internet. Int. J. Syst. Bacteriol., 1997, 47(2), 590-592.
[http://dx.doi.org/10.1099/00207713-47-2-590] [PMID: 9103655]
[17]
Recommended methods for somatic cell counting. Bull. Int. Dairy Fed., 1984, 168, 1-19.
[18]
Fthenakis, G. Ovine mastitis with special reference to subclinical mastitis associated with coagulase-negative Staphylococci; University of London: London, UK, 1988, p. 390.
[19]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[20]
Anagnostopoulos, A.K.; Katsafadou, A.I.; Pierros, V.; Kontopodis, E.; Fthenakis, G.C.; Arsenos, G.; Karkabounas, S.C.; Tzora, A.; Skoufos, I.; Tsangaris, G.T. Milk of Greek sheep and goat breeds; characterization by means of proteomics. J. Proteomics, 2016, 147, 76-84.
[http://dx.doi.org/10.1016/j.jprot.2016.04.008] [PMID: 27102495]
[21]
Fragkou, I.A.; Boscos, C.M.; Fthenakis, G.C. Diagnosis of clinical or subclinical mastitis in ewes. Small Rumin. Res., 2014, 118, 86-92.
[http://dx.doi.org/10.1016/j.smallrumres.2013.12.015]
[22]
Fthenakis, G.C.; Jones, J.E.T. The effect of experimentally induced subclinical mastitis on milk yield of ewes and on the growth of lambs. Br. Vet. J., 1990, 146(1), 43-49.
[http://dx.doi.org/10.1016/0007-1935(90)90075-E] [PMID: 2306602]
[23]
Fthenakis, G.C.; Jones, J.E.T. The effect of inoculation of coagulase-negative staphylococci into the ovine mammary gland. J. Comp. Pathol., 1990, 102(2), 211-219.
[http://dx.doi.org/10.1016/S0021-9975(08)80126-0] [PMID: 2324343]
[24]
Zecchinon, L.; Fett, T.; Desmecht, D. How Mannheimia haemolytica defeats host defence through a kiss of death mechanism. Vet. Res., 2005, 36(2), 133-156.
[http://dx.doi.org/10.1051/vetres:2004065] [PMID: 15720968]
[25]
Addis, M.F.; Pisanu, S.; Ghisaura, S.; Pagnozzi, D.; Marogna, G.; Tanca, A.; Biosa, G.; Cacciotto, C.; Alberti, A.; Pittau, M.; Roggio, T.; Uzzau, S. Proteomics and pathway analyses of the milk fat globule in sheep naturally infected by Mycoplasma agalactiae provide indications of the in vivo response of the mammary epithelium to bacterial infection. Infect. Immun., 2011, 79(9), 3833-3845.
[http://dx.doi.org/10.1128/IAI.00040-11] [PMID: 21690237]
[26]
Addis, M.F.; Tedde, V.; Dore, S.; Pisanu, S.; Puggioni, G.M.G.; Roggio, A.M.; Pagnozzi, D.; Lollai, S.; Cannas, E.A.; Uzzau, S. Evaluation of milk cathelicidin for detection of dairy sheep mastitis. J. Dairy Sci., 2016, 99(8), 6446-6456.
[http://dx.doi.org/10.3168/jds.2015-10293] [PMID: 27265177]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy