Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Hypervalent Iodine-mediated/Catalyzed Oxidative Cycloisomerization/Annulation of Alkynes for Metal-free Synthesis of Oxazoles

Author(s): Akio Saito*

Volume 24, Issue 18, 2020

Page: [2048 - 2069] Pages: 22

DOI: 10.2174/1385272824999200510232438

Price: $65

Abstract

Since oxazoles have found widespread applications not only as synthetic intermediates but also as biologically active compounds, much effort has been focused on developing novel and efficient methods for the synthesis of this heterocycle. From the viewpoint of green and sustainable chemistry, hypervalent iodine and other halogen reagents have gained increasing popularity in metal-free oxidative transformation due to their low toxicity, transition-metal-like reactivity, high stability, easy handling and other benefits. In this account, our two approaches to the metal-free synthesis of oxazoles by means of a peculiar activation of alkynes by iodine species are described with the related contexts. One is iodine(III)-mediated/catalyzed oxidative cycloisomerization reactions of N-propargyl amides for the preparation of oxazoles bearing various functional groups at their side chains. In these reactions, iodine(III) species works as a donor of various heteroatomic functional groups as well as an activator of carbon-carbon triple bonds in a single step. Furthermore, this methodology can be extended to iodine(III)-mediated/catalyzed oxidative annulation of alkynes and nitriles as another approach, in which heteroatoms on iodine(III) species are incorporated in the azole rings.

Keywords: Alkyne, annulation, cyclization, hypervalent iodine, metal-free method, oxazole.

Graphical Abstract

[1]
(a)Kakkar, S.; Narasimhan, B. A comprehensive review on biological activities of oxazole derivatives. BMC Chem, 2019, 13(1), 16.
[http://dx.doi.org/10.1186/s13065-019-0531-9] [PMID: 31384765]
(b)Lamberth, C. Oxazole and Isoxazole Chemistry in Crop Protection. J. Heterocycl. Chem., 2018, 55, 2035-2045.
[http://dx.doi.org/10.1002/jhet.3252]
(c)Jin, Z. Muscarine, imidazole, oxazole, and thiazole alkaloids. Nat. Prod. Rep., 2011, 28(6), 1143-1191.
[http://dx.doi.org/10.1039/c0np00074d] [PMID: 21472175]
(d)Yeh, V.S.C. Recent advances in the total syntheses of oxazole-containingnatural products. Tetrahedron, 2004, 60, 11995-12042.
[http://dx.doi.org/10.1016/j.tet.2004.10.001]
[2]
(a)Gulevich, A.V.; Dudnik, A.S.; Chernyak, N.; Gevorgyan, V. Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem. Rev., 2013, 113(5), 3084-3213.
[http://dx.doi.org/10.1021/cr300333u] [PMID: 23305185]
(b)Bresciani, S.; Tomkinson, N.C.O. Transition metal-mediated synthesis of oxazoles. Heterocycles, 2014, 89, 2479-2542.
[http://dx.doi.org/10.3987/REV-14-808]
(c)Hu, Y.; Xin, X.; Wan, B. Cyclization reactions of propargylic amides: Mild access to N-heterocycles. Tetrahedron Lett., 2015, 56, 32-52.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.061]
(d)Ibrara, A.; Khan, I.; Abbas, N.; Farooq, U.; Khan, A. Transition-metal-free synthesis of oxazoles: Valuable structural fragments in drug discovery. RSC Advances, 2016, 6, 93016-93047.
[http://dx.doi.org/10.1039/C6RA19324B]
[3]
(a)Wang, Z. Robinson-Gabriel oxazole synthesis. In:Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons, 2010, pp. 2410-2413.
(b)Li, J.J. Fischer oxazole synthesis. In:Name Reactions; Springer International Publishing, 2014, pp. 255-256.
[http://dx.doi.org/10.1007/978-3-319-03979-4_107]
(c)Bredereck, H.; Bangert, R. Synthesis of oxazole. Angew. Chem. Int. Ed. Engl., 1962, 1, 662-663.
[http://dx.doi.org/10.1002/anie.196206622]
(d)Revuelta, J.; Machetti, F.; Cicchi, S. Five-membered heterocycles: 1,3-Azoles. In Modern Heterocyclic Chemistry; Wiley-VCH Verlag GmbH & Co., 2011, pp. 809-923.
(e)Wu, Y.-J. Five-membered ring systems: With N and S atom.Heterocyclic Chemistry; Gribble, G.W., Ed; Elsevier, 2017, Vol. 29, pp. 315-336.
[4]
(a)Eloy, F.; Derycker, A. The utilization of propargylamine in heterocyclic synthesis. Preparation of oxazoles, thiazoles and imidazoles. Chim. Ther., 1973, 8, 437-446.
(b)Hashmi, A.S.K.; Weyrauch, J.P.; Frey, W.; Bats, J.W. Gold catalysis: mild conditions for the synthesis of oxazoles from N-propargylcarboxamides and mechanistic aspects. Org. Lett., 2004, 6(23), 4391-4394.
[http://dx.doi.org/10.1021/ol0480067] [PMID: 15524491]
(c)Milton, M.D.; Inada, Y.; Nishibayashi, Y.; Uemura, S. Ruthenium- and gold-catalysed sequential reactions: a straightforward synthesis of substituted oxazoles from propargylic alcohols and amides. Chem. Commun. (Camb.), 2004, 2004(23), 2712-2713.
[http://dx.doi.org/10.1039/b411180j] [PMID: 15568080]
(d)Bartoli, G.; Cimarelli, C.; Cipolletti, R.; Diomedi, S.; Giovannini, R.; Mari, M.; Marsili, L.; Marcantoni, E. Microwave-assisted cerium(III)-promoted cyclization of propargyl amides to polysubstituted oxazole derivatives. Eur. J. Org. Chem., 2012, 2012(3), 630-636.
[http://dx.doi.org/10.1002/ejoc.201101302]
(e)Senadi, G.C.; Hu, W-P.; Hsiao, J-S.; Vandavasi, J.K.; Chen, C-Y.; Wang, J-J. Facile, selective, and regiocontrolled synthesis of oxazolines and oxazoles mediated by ZnI2 and FeCl3. Org. Lett., 2012, 14(17), 4478-4481.
[http://dx.doi.org/10.1021/ol301980g] [PMID: 22876973]
(f)Hu, Y.; Yi, R.; Wu, F.; Wan, B. Synthesis of functionalized oxazoles via silver-catalyzed cyclization of propargylamides and allenylamides. J. Org. Chem., 2013, 78(15), 7714-7726.
[http://dx.doi.org/10.1021/jo401330t] [PMID: 23837437]
(g)Wachenfeldt, H.v.; Röse, P.; Paulsen, F.; Loganathan, N.; Strand, D. Catalytic three-component domino reaction for the preparation of trisubstituted oxazoles. Chemistry, 2013, 19, 7982-7988.
[http://dx.doi.org/10.1002/chem.201300019]
[5]
(a)Arcadi, A.; Cacchi, S.; Cascia, L.; Fabrizi, G.; Marinelli, F. Preparation of 2,5-disubstituted oxazoles from N-propargylamides. Org. Lett., 2001, 3(16), 2501-2504.
[http://dx.doi.org/10.1021/ol016133m] [PMID: 11483045]
(b)Merkul, E.; Muller, T.J. A new consecutive three-component oxazole synthesis by an Amidation-Coupling-Cycloisomerization (ACCI) sequence. Chem. Commun. (Camb.), 2006, 2006(46), 4817-4819.
[http://dx.doi.org/10.1039/B610839C] [PMID: 17345739]
(c)Saito, A.; Iimura, K.; Hanzawa, Y. Synthesis of oxazoles through Pd-catalyzed cycloisomerization-allylation of N-propargylamides with allyl carbonates. Tetrahedron Lett., 2010, 51, 1471-1474.
[http://dx.doi.org/10.1016/j.tetlet.2010.01.018]
(d)Beccalli, E.M.; Borsini, E.; Broggini, G.; Palmisano, G.; Sottocornola, S. Intramolecular Pd(II)-catalyzed cyclization of propargylamides: straightforward synthesis of 5-oxazolecarbaldehydes. J. Org. Chem., 2008, 73(12), 4746-4749.
[http://dx.doi.org/10.1021/jo800621n] [PMID: 18489152]
[6]
(a)Weyrauch, J.P.; Hashmi, A.S.K.; Schuster, A.; Hengst, T.; Schetter, S.; Littmann, A.; Rudolph, M.; Hamzic, M.; Visus, J.; Rominger, F.; Frey, W.; Bats, J.W. Cyclization of propargylic amides: mild access to oxazole derivatives. Chemistry, 2010, 16(3), 956-963.
[http://dx.doi.org/10.1002/chem.200902472] [PMID: 19938017]
(b)Paradise, C.L.; Sarkar, P.R.; Razzak, M.; De Brabander, J.K. Gold-catalysed synthesis of amino acid-derived 2,5-disubstituted oxazoles. Org. Biomol. Chem., 2011, 9(11), 4017-4020.
[http://dx.doi.org/10.1039/c1ob05390f] [PMID: 21499644]
(c)Timoshenko, M.A.; Ayusheev, A.B.; Kharitonov, Y.V.; Shakirov, M.M.; Shul’ts, E.E. Synthetic transformations of higher terpenoids. XXXIV. Preparation of carboxyl derivatives of isopimaric acid. Chem. Nat. Compd., 2014, 50, 673-680.
[http://dx.doi.org/10.1007/s10600-014-1050-5]
(d)Hashmi, A.S.K.; Blanco Jaimes, M.C.; Schuster, A.M.; Rominger, F. From propargylic amides to functionalized oxazoles: domino gold catalysis/oxidation by dioxygen. J. Org. Chem., 2012, 77(15), 6394-6408.
[http://dx.doi.org/10.1021/jo301288w] [PMID: 22800562]
(e)Hashmi, A.S.K.; Littmann, A. Gold catalysis: one-pot alkylideneoxazoline synthesis/Alder-ene reaction. Chem. Asian J., 2012, 7(6), 1435-1442.
[http://dx.doi.org/10.1002/asia.201200046] [PMID: 22434782]
(f)Luo, W.; Zhao, J.; Ji, J.; Lin, L.; Liu, X.; Mei, H.; Feng, X. A catalytic asymmetric carbonyl-ene reaction of β,γ-unsaturated α-ketoesters with 5-methyleneoxazolines. Chem. Commun. (Camb.), 2015, 51(49), 10042-10045.
[http://dx.doi.org/10.1039/C5CC02748A] [PMID: 26008767]
(g)Nalivela, K.S.; Rudolph, M.; Baeissa, E.S.; Alhogbi, B.G.; Mkhalid, I.A.I.; Hashmia, A.S.K. Sequential Au/Cu catalysis: A two catalyst one-pot protocol for the enantioselective synthesis of oxazole α-hydroxy esters via intramolecular cyclization/intermolecular Alder-ene reaction. Adv. Synth. Catal., 2018, 360, 2183-2190.
[http://dx.doi.org/10.1002/adsc.201800246]
(h)Peng, H.; Akhmedov, N.G.; Liang, Y-F.; Jiao, N.; Shi, X. Synergistic gold and iron dual catalysis: Preferred radical addition toward vinyl-gold intermediate over alkene. J. Am. Chem. Soc., 2015, 137(28), 8912-8915.
[http://dx.doi.org/10.1021/jacs.5b05415] [PMID: 26136160]
(i)Guo, P.; Huang, J-H.; Huang, Q-C.; Qian, X-H. Synthesis of novel 1,3-oxazole derivatives with insect growth-inhibiting activities. Chin. Chem. Lett., 2013, 24, 957-961.
[http://dx.doi.org/10.1016/j.cclet.2013.06.033]
(j)An, H.; Mai, S.; Xuan, Q.; Zhou, Y.; Song, Q. Gold- catalyzed radical-involved intramolecular cyclization of internal N-propargylamides for the construction of 5-oxazole ketones. J. Org. Chem., 2019, 84(1), 401-408.
[http://dx.doi.org/10.1021/acs.joc.8b02334] [PMID: 30516044]
(k)Wang, B.; Chen, Y.; Zhou, L.; Wang, J.; Tung, C-H.; Xu, Z. Synthesis of oxazoles by tandem cycloisomerization/allylic alkylation of propargyl amides with allylic alcohols: Zn(OTf)2 as π acid and σ acid catalyst. J. Org. Chem., 2015, 80(24), 12718-12724.
[http://dx.doi.org/10.1021/acs.joc.5b02382] [PMID: 26618919]
(l)Gao, X-H.; Qian, P-C.; Zhang, X-G.; Deng, C-L. FeBr3-catalyzed tandem reaction of N-propargylamides with disulfides or diselenides for the synthesis of oxazole derivatives. Synlett, 2016, 27, 1110-1115.
[http://dx.doi.org/10.1055/s-0035-1561202]
(m)Yi, W.; Liu, Q-Y.; Fang, X-X.; Lou, S-C.; Liu, G-Q. Preparation of oxazolines and oxazoles via a PhI(OAc)2-promoted cyclization of N-propargylamides. Org. Biomol. Chem., 2018, 16(38), 7012-7018.
[http://dx.doi.org/10.1039/C8OB01474D] [PMID: 30232498]
[7]
(a)Moody, C.J.; Doyle, K.J. The synthesis of oxazoles from diazocarbronyl compounds. In:Heterocyclic Chemistry; Gribble, G.W. Ed.; Elsevier: London, 1997, Vol. 9, 1-16.
(b)Wolbers, P.; Misske, A.M.; Hoffinann, H.M.R. Synthesis of the enantiopure C15-C26 segment of phorboxazole A and B. Tetrahedron Lett., 1999, 40, 4527-4530.
[http://dx.doi.org/10.1016/S0040-4039(99)00803-5]
(c)Lee, Y.R.; Suk, J.Y. Efficient synthesis of phenalenone derivatives by rhodium(II)-catalyzed reactions. Tetrahedron Lett., 2000, 41, 4795-4799.
[http://dx.doi.org/10.1016/S0040-4039(00)00716-4]
(d)Kozmin, S.A.; Iwama, T.; Huang, Y.; Rawal, V.H. An efficient approach to Aspidosperma alkaloids via [4 + 2] cycloadditions of aminosiloxydienes: stereocontrolled total synthesis of (+/-)-tabersonine. Gram-scale catalytic asymmetric syntheses of (+)-tabersonine and (+)-16-methoxytabersonine. Asymmetric syntheses of (+)-aspidospermidine and (-)-quebrachamine. J. Am. Chem. Soc., 2002, 124(17), 4628-4641.
[http://dx.doi.org/10.1021/ja017863s] [PMID: 11971711]
(e)Linder, J.; Blake, A.J.; Moody, C.J. Total synthesis of siphonazole and its O-methyl derivative, structurally unusual bis-oxazole natural products. Org. Biomol. Chem., 2008, 6(21), 3908-3916.
[http://dx.doi.org/10.1039/b810855b] [PMID: 18931796]
[8]
(a)Wan, C.; Zhang, J.; Wang, S.; Fan, J.; Wang, Z. Facile synthesis of polysubstituted oxazoles via a copper-catalyzed tandem oxidative cyclization. Org. Lett., 2010, 12(10), 2338-2341.
[http://dx.doi.org/10.1021/ol100688c] [PMID: 20394433]
(b)Chen, C.; Chen, W.; Bao, Q. Convenient route to trisubstituted oxazoles via a copper-catalysed tandemoxidative cyclisation by oxygen oxidation. J. Chem. Res., 2015, 39, 7-10.
[http://dx.doi.org/10.3184/174751915X14192609116136]
(c)Dutta, S.; Sharma, S.; Sharma, A.; Sharma, R.K. Fabrication of core-shell-structured organic-inorganic hybrid nanocatalyst for the expedient synthesis of polysubstituted oxazoles via tandem oxidative cyclization pathway. ACS Omega, 2017, 2(6), 2778-2791.
[http://dx.doi.org/10.1021/acsomega.7b00382] [PMID: 31457616]
(d)Wei, L.; You, S.; Tuo, Y.; Cai, M. A highly efficient heterogeneous copper-catalyzed oxidative cyclization of benzylamines and 1,3-dicarbonyl compounds to give trisubstituted oxazoles. Synthesis, 2019, 51, 3091-3100.
[http://dx.doi.org/10.1055/s-0037-1610710]
(e)Xu, Z.; Zhang, C.; Jiao, N. Synthesis of oxazoles through copper-mediated aerobic oxidative dehydrogenative annulation and oxygenation of aldehydes and amines. Angew. Chem. Int. Ed. Engl., 2012, 51(45), 11367-11370.
[http://dx.doi.org/10.1002/anie.201206382] [PMID: 23047285]
(f)Liu, D.; Yu, J.; Cheng, J. Copper- catalyzed oxidative cyclization of chalcone and benzylic amine leading to 2,5-diaryl oxazoles via carbonecarbon double bond cleavage. Tetrahedron, 2014, 70, 1149-1153.
[http://dx.doi.org/10.1016/j.tet.2013.12.077]
[9]
(a)He, W.; Li, C.; Zhang, L. An efficient [2+2+1] synthesis of 2,5-disubstituted oxazoles via gold-catalyzed intermolecular alkyne oxidation. J. Am. Chem. Soc., 2011, 133(22), 8482-8485.
[http://dx.doi.org/10.1021/ja2029188] [PMID: 21563762]
(b)Li, X.; Huang, L.; Chen, H.; Wu, W.; Huang, H.; Jiang, H. Copper-catalyzed oxidative [2+2+1] cycloaddition: Regioselective synthesis of 1,3-oxazoles from internal alkynes and nitriles. Chem. Sci. (Camb.), 2012, 3, 3463-3467.
[http://dx.doi.org/10.1039/c2sc21041j]
(c)Rassadin, V.A.; Boyarskiy, V.P.; Kukushkin, V.Y. Facile gold-catalyzed heterocyclization of terminal alkynes and cyanamides leading to substituted 2-amino-1,3-oxazoles. Org. Lett., 2015, 17(14), 3502-3505.
[http://dx.doi.org/10.1021/acs.orglett.5b01592] [PMID: 26135038]
(d)Mallick, R.K.; Prabagar, B.; Sahoo, A.K. Regioselective synthesis of 2,4,5-trisubstituted oxazoles and ketene aminals via hydroamidation and iodo-imidation of ynamides. J. Org. Chem., 2017, 82(19), 10583-10594.
[http://dx.doi.org/10.1021/acs.joc.7b02124] [PMID: 28920679]
(e)Pan, J.; Li, X.; Qiu, X.; Luo, X.; Jiao, N. Copper-catalyzed oxygenation approach to oxazoles from amines, alkynes, and molecular oxygen. Org. Lett., 2018, 20(9), 2762-2765.
[http://dx.doi.org/10.1021/acs.orglett.8b00992] [PMID: 29664305]
(f)Luo, Y.; Ji, K.; Li, Y.; Zhang, L. Tempering the reactivities of postulated α-oxo gold carbenes using bidentate ligands: implication of tricoordinated gold intermediates and the development of an expedient bimolecular assembly of 2,4-disubstituted oxazoles. J. Am. Chem. Soc., 2012, 134(42), 17412-17415.
[http://dx.doi.org/10.1021/ja307948m] [PMID: 23039251]
(g)Cano, I.; Alvarez, E.; Nicasio, M.C.; Parez, P.J. Regioselective formation of 2,5-disubstituted oxazoles via copper(I)-catalyzed cycloaddition of acyl azides and 1-alkynes. J. Am. Chem. Soc., 2011, 133(2), 191-193.
[http://dx.doi.org/10.1021/ja109732s] [PMID: 21171608]
(h)Chatzopoulou, E.; Davies, P.W. Highly regioselective synthesis of 2,4,5-(hetero)aryl substituted oxazoles by intermolecular [3+2]-cycloaddition of unsymmetrical internal alkynes. Chem. Commun. (Camb.), 2013, 49(77), 8617-8619.
[http://dx.doi.org/10.1039/c3cc45410j] [PMID: 23958931]
(i)Han, X-L.; Zhou, C-J.; Liu, X-G.; Zhang, S-S.; Wang, H.; Li, Q. Regioselective synthesis of 5-aminooxazoles via Cp*Co(III)- catalyzed formal [3+2] cycloaddition of N-(pivaloyloxy)amides with ynamides. Org. Lett., 2017, 19(22), 6108-6111.
[http://dx.doi.org/10.1021/acs.orglett.7b02959] [PMID: 29047277]
(j)Su, H.; Bao, M.; Pei, C.; Hu, W.; Qiu, L.; Xu, X. Gold-catalyzed dual annulation of azide-tetheredalkynes with nitriles: expeditious synthesis of oxazolo[4,5-c]quinolines. Org. Chem. Front., 2019, 6, 2404-2409.
[http://dx.doi.org/10.1039/C9QO00568D]
(k)Pei, C.;Zhang,C.;Qian,Y.;Xu,X.Catalyticcarbene/alkynemetathesis(CAM):a versatilestrategyforalkyne bifunctionalization Org. Biomol. Chem.,, 2018. 16, 8677–8685
[10]
(a)Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
(b)Budhwan, R.; Yadav, S.; Murarka, S. Late stage functionalization of heterocycles using hypervalent iodine(III) reagents. Org. Biomol. Chem., 2019, 17(26), 6326-6341.
[http://dx.doi.org/10.1039/C9OB00694J] [PMID: 31215580]
(c)Morimoto, K.; Dohi, T.; Kita, Y. Metal-free oxidative cross-coupling reaction of aromatic compounds containing heteroatoms. Synlett, 2017, 28, 1680-1694.
[http://dx.doi.org/10.1055/s-0036-1588455]
(d)de Andrade, V.S.C.; de Mattos, M.C.S. N-Halo reagents: Modern synthetic approaches for heterocyclic synthesis. Synthesis, 2019, 51, 1841-1870.
[http://dx.doi.org/10.1055/s-0037-1611746]
(e)Wu, X-F.; Gong, J-L.; Qi, X. A powerful combination: recent achievements on using TBAI and TBHP as oxidation system. Org. Biomol. Chem., 2014, 12(31), 5807-5817.
[http://dx.doi.org/10.1039/C4OB00276H] [PMID: 24846326]
(f)Chen, R.; Chen, J.; Zhang, J.; Wan, X. Combination of Tetrabutylammonium iodide (TBAI) with Tert-butyl hydroperoxide (TBHP): An efficient transition-metal-free system to construct various chemical bonds. Chem. Rec., 2018, 18(9), 1292-1305.
[http://dx.doi.org/10.1002/tcr.201700069] [PMID: 29513383]
[11]
(a)Varma, R.S.; Kumar, D. A facile one-pot synthesis of 2,5-disubstituted oxazoles using iodobenzene diacetate. J. Heterocycl. Chem., 1998, 35, 1533-1534.
[http://dx.doi.org/10.1002/jhet.5570350654]
(b)Lee, J.C.; Seo, J-W.; Baek, J.W. Synthesis of 2-substituted 4,5-diphenyloxazoles under solvent-free microwave irradiation conditions. Synth. Commun., 2007, 37, 2159-2162.
[http://dx.doi.org/10.1080/00397910701392244]
(c)Kawano, Y.; Togo, H. Iodoarene-mediated one-pot preparation of 2,4,5-trisubstituted oxazoles from ketones. Synlett, 2008, 2, 217-220.
(d)Ishiwata, Y.; Togo, H. Iodoarene-mediated one-pot preparation of 2,5-disubstituted and 2,4,5-trisubstituted oxazoles from alkyl aryl ketones with oxone in nitriles. Tetrahedron, 2009, 65, 10720-10724.
[http://dx.doi.org/10.1016/j.tet.2009.09.109]
(e)Kumar, D.; Sundaree, S.; Patel, G.; Kumar, A. A novel and short synthesis of naturally occurring 5-(30-indolyl)oxazoles. J. Heterocycl. Chem., 2010, 47, 1425-1428.
[http://dx.doi.org/10.1002/jhet.472]
(f)Saito, A.; Hyodo, N.; Hanzawa, Y. Synthesis of highly substituted oxazoles through iodine(III)-mediated reactions of ketones with nitriles. Molecules, 2012, 17(9), 11046-11055.
[http://dx.doi.org/10.3390/molecules170911046] [PMID: 22976468]
(g)Imai, S.; Kikui, H.; Moriyama, K.; Togo, H. One-pot preparation of 2, 5- disubstituted and 2, 4, 5-trisubstituted oxazoles from aromatic ketones with molecular iodine, oxone, and trifluoromethanesulfonic acid in nitriles Tetrahedron, 2015, 71, 5267-5274.
[http://dx.doi.org/10.1016/j.tet.2015.06.022]
[12]
(a)Lee, J.C.; Hong, T. A novel and direct synthesis of 2-alkyl-5-aryl disubstituted oxazoles. Tetrahedron Lett., 1997, 38, 8959-8960.
[http://dx.doi.org/10.1016/S0040-4039(97)10362-8]
(b)Lee, J.C.; Song, I-G. Mercury(II) p-toluenesulfonate mediated synthesis of oxazoles under microwave irradiation. Tetrahedron Lett., 2000, 41, 5891-5894.
[http://dx.doi.org/10.1016/S0040-4039(00)00929-1]
(c)Kotani, E.; Kobayashi, S.; Adachi, M.; Tsujioka, T.; Nakamura, K.; Tobinaga, S. Synthesis of oxazole by the reaction of ketones with iron(III) solvates of nitriles. Chem. Pharm. Bull. (Tokyo), 1989, 37, 606-609.
[http://dx.doi.org/10.1248/cpb.37.606]
(d)Nagayoshi, K.; Sato, T. One-step Synthesis of oxazole from ketones and nitriles using copper(II) trifluoromethanesulfonate as a key reagent. Chem. Lett., 1983, 12(9), 1355-1356.
[http://dx.doi.org/10.1246/cl.1983.1355]
[13]
(a)Xie, J.; Jiang, H.; Cheng, Y.; Zhu, C. Metal-free, organocatalytic cascade formation of C-N and C-O bonds through dual sp3 C-H activation: oxidative synthesis of oxazole derivatives. Chem. Commun. (Camb.), 2012, 48(7), 979-981.
[http://dx.doi.org/10.1039/C2CC15813B] [PMID: 22146854]
(b)Naresh, G.; Narender, T. Molecular iodine mediated synthesis of polysubstituted oxazoles by oxidative domino cyclization in water. RSC Advances, 2014, 4, 11862-11866.
[http://dx.doi.org/10.1039/C4RA00501E]
(c)Liu, X.; Zhou, Y.; Chen, G.; Yang, Z.; Li, Q.; Liu, P. Iodine-catalyzed oxidative annulation of 3-cyanoacetylindoles with benzylamines: facile access to 5-(3-indolyl)oxazoles. Org. Biomol. Chem., 2018, 16(19), 3572-3575.
[http://dx.doi.org/10.1039/C8OB00833G] [PMID: 29708248]
(d)Gao, Q-H.; Fei, Z.; Zhu, Y-P.; Lian, M.; Jia, F-C.; Liu, M-C.; She, N-F.; Wu, A-X. Metal-free dual sp3 C-H functionalization: I2-promoted domino oxidative cyclization to construct 2,5-disubstituted oxazoles. Tetrahedron, 2013, 69, 22-28.
[http://dx.doi.org/10.1016/j.tet.2012.10.072]
(e)Hu, T.; Yan, H.; Liu, X.; Wu, C.; Fan, Y.; Huang, J.; Huang, G. Metal-free sp3 C-H functionalization: PABS/I2-promoted synthesis of polysubstituted oxazole derivatives from arylethanones and 2-amino-2-alkyl/arylacetic acid. Synlett, 2015, 26, 2866-2869.
[http://dx.doi.org/10.1055/s-0035-1560660]
[14]
(a)Wan, C.; Gao, L.; Wang, Q.; Zhang, J.; Wang, Z. Simple and efficient preparation of 2,5-disubstituted oxazoles via a metal-free-catalyzed cascade cyclization. Org. Lett., 2010, 12(17), 3902-3905.
[http://dx.doi.org/10.1021/ol101596s] [PMID: 20681600]
(b)Graham, T.H. A direct synthesis of oxazoles from aldehydes. Org. Lett., 2010, 12(16), 3614-3617.
[http://dx.doi.org/10.1021/ol101346w] [PMID: 20704403]
[15]
(a)Zhao, F.; Liu, X.; Qi, R.; Negrerie, D.Z.; Huang, J.; Du, Y.; Zhao, K. Synthesis of 2-(trifluoromethyl)oxazoles from β-monosubstituted enamines via PhI(OCOCF3)2-mediated trifluoroacetoxylation and cyclization. J. Org. Chem., 2011, 76(24), 10338-10344.
[http://dx.doi.org/10.1021/jo202070h] [PMID: 22066895]
(b)Liu, X.; Cheng, R.; Zhao, F.; Zhang Negrerie, D.; Du, Y.; Zhao, K. Direct β-acyloxylation of enamines via PhIO-mediated intermolecular oxidative C-O bond formation and its application to the synthesis of oxazoles. Org. Lett., 2012, 14(21), 5480-5483.
[http://dx.doi.org/10.1021/ol3025583] [PMID: 23098266]
[16]
Muller, T.J.J. Multicomponent Reactions, Science of Synthesis; 1st ed.; Thieme: Stuttgart, 2014, Vol. 1 and 2, .
[17]
(a)Jiang, H.; Huang, H.; Cao, H.; Qi, C. TBHP/I2-mediated domino oxidative cyclization for one-pot synthesis of polysubstituted oxazoles. Org. Lett., 2010, 12(23), 5561-5563.
[http://dx.doi.org/10.1021/ol1023085] [PMID: 21058706]
(b)Xue, W-J.; Li, Q.; Zhu, Y-P.; Wang, J-G.; Wu, A-X. Convergent integration of two self-labor domino sequences: a novel method for the synthesis of oxazole derivatives from methyl ketones and benzoins. Chem. Commun. (Camb.), 2012, 48(29), 3485-3487.
[http://dx.doi.org/10.1039/c2cc18077d] [PMID: 22286368]
(c)Cao, Z.; Lv, H.; Liu, Y.; Nie, Z.; Liu, H.; Yang, T.; Luo, W.; Liu, Q.; Guo, C. Dimethyl sulfoxide oxygen donor-based annulation of ketones and ammonium persulfate: Regioselective synthesis of 2,4-disubstituted oxazoles. Adv. Synth. Catal., 2019, 361, 1632-1640.
[http://dx.doi.org/10.1002/adsc.201801671]
[18]
(a)Samimi, H.A.; Mohammadi, S. A new approach to ring expansion of keto aziridines to 2,5-diaryloxazoles. Synlett, 2013, 24, 223-225.
[http://dx.doi.org/10.1055/s-0032-1317925]
(b)Samimi, H.A.; Dadvar, F. N-Bromosuccinimide as a brominating agent for the transformation of N-H (or N-benzyl) ketoaziridines into oxazoles. Synthesis, 2015, 47, 1899-1904.
[http://dx.doi.org/10.1055/s-0034-1380518]
[19]
(a)Bathula, S.R.; Reddy, M.P.; Viswanadham, K.K.D.R.; Sathyanarayana, P.; Reddy, M.S. Access to di- and trisubstituted oxazoles by NBS-mediated oxidative cyclisation of N-acyl amino acid derivatives. Eur. J. Org. Chem., 2013, 4552-4557.
[http://dx.doi.org/10.1002/ejoc.201300421]
(b)Dinda, M.; Samanta, S.; Eringathodi, S.; Ghosh, P.K. Solar photo-thermochemical syntheses of 4-bromo-2,5-substituted oxazoles from N-arylethylamides. RSC Advances, 2014, 4, 12252-12256.
[http://dx.doi.org/10.1039/c3ra47603k]
(c)Samanta, S.; Donthiri, R.R.; Dinda, M.; Adimurthy, S. Iodine catalysed intramolecular C(sp3)-H functionalization: Synthesis of 2,5-disubstitutedoxazoles from N- arylethylamides. RSC Advances, 2015, 5, 66718-66722.
[http://dx.doi.org/10.1039/C5RA13441B]
(d)Estudillo, I.R; Batchu, V.R.; Boto, A. One-pot conversion of amino acids into 2,5-disubstituted oxazoles: No metals needed. Adv. Synth. Catal., 2014, 356, 3742-3748.
[http://dx.doi.org/10.1002/adsc.201400496]
(e)Gao, W-C.; Hu, F.; Huo, Y-M.; Chang, H-H.; Li, X.; Wei, W-L. I2- catalyzed C-O bond formation and dehydrogenation: Facile synthesis of oxazolines and oxazoles controlled by bases. Org. Lett., 2015, 17(15), 3914-3917.
[http://dx.doi.org/10.1021/acs.orglett.5b01933] [PMID: 26226059]
(f)Yu, P.; Zheng, S-C.; Yang, N-Y.; Tan, B.; Liu, X-Y. Phosphine-catalyzed remote β-C-H functionalization of amines triggered by trifluoromethylation of alkenes: one-pot synthesis of bistrifluoromethylated enamides and oxazoles. Angew. Chem. Int. Ed. Engl., 2015, 54(13), 4041-4045.
[http://dx.doi.org/10.1002/anie.201412310] [PMID: 25694337]
[20]
(a)Zhou, W.; Xie, C.; Han, J.; Pan, Y. Catalyst-free intramolecular oxidative cyclization of N-allylbenzamides: a new route to 2,5-substituted oxazoles. Org. Lett., 2012, 14(18), 4766-4769.
[http://dx.doi.org/10.1021/ol302031z] [PMID: 22934604]
(b)Zheng, Y.; Li, X.; Ren, C.; Negrerie, D.Z.; Du, Y.; Zhao, K. Synthesis of oxazoles from enamides via phenyliodine diacetate-mediated intramolecular oxidative cyclization. J. Org. Chem., 2012, 77(22), 10353-10361.
[http://dx.doi.org/10.1021/jo302073e] [PMID: 23106159]
(c)Hempel, C.; Nachtsheim, B.J. Iodine(III)-promoted synthesis of oxazoles through oxidative cyclization of N-styrylbenzamides. Synlett, 2013, 24, 2119-2123.
[http://dx.doi.org/10.1055/s-0033-1339491]
(d)Panda, N.; Mothkuri, R. Synthesis of substituted oxazoles from enamides. New J. Chem., 2014, 38, 5727-5735.
[http://dx.doi.org/10.1039/C4NJ01101E]
(e)Kamiya, M.; Sonoda, M.; Tanimori, S. A rapid access to substituted oxazoles via PIFA-mediated oxidativecyclization of enamides. Tetrahedron, 2017, 73, 1247-1254.
[http://dx.doi.org/10.1016/j.tet.2017.01.027]
(f)Liu, Q.; Zhang, X.; He, Y.; Hussain, M.I.; Hua, W.; Xiong, Y.; Zhu, X. Tetrahedron, 2016, 72, 5749-5753.
[http://dx.doi.org/10.1016/j.tet.2016.07.082]
(g)Weng, Y.; Lv, W.; Yu, J.; Ge, B.; Cheng, G. Preparation of 2,4,5-trisubstituted oxazoles through iodine mediated aerobic oxidative cyclization of enaminones. Org. Lett., 2018, 20(7), 1853-1856.
[http://dx.doi.org/10.1021/acs.orglett.8b00376] [PMID: 29552889]
(h)Xu, K.; Yang, S.; Ding, Z. PhI(OAc)2-mediated oxidative rearrangement of allylic amides: efficient synthesis of oxazoles and β-keto amides Org. Chem. Front, 2020, 7, 69-72.
[http://dx.doi.org/10.1039/C9QO01298B]
[21]
(a)Saito, A.; Matsumoto, A.; Hanzawa, Y. PIDA-mediated synthesis of oxazoles through oxidative cycloisomerization of propargylamides. Tetrahedron Lett., 2010, 51, 2247-2250.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.096]
(b)Saito, A.; Anzai, T.; Matsumoto, A.; Hanzawa, Y. PIFA-mediated oxidative cycloisomerization of 2-propargyl-1,3- dicarbonyl compounds: Divergent synthesis of furfuryl alcohols and furfurals. Tetrahedron Lett., 2011, 52, 4658-4661.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.117]
(c)Okamura, Y.; Sato, D.; Yoshimura, A.; Zhdankin, V.V.; Saito, A. Iodine(III)-mediated/catalyzed cycloisomerization-amination sequence of N-propargyl carboxamides. Adv. Synth. Catal., 2017, 359, 3243-3247.
[http://dx.doi.org/10.1002/adsc.201700587]
(d)Suzuki, S.; Saito, A. Single-step synthesis of iodinated oxazoles from N-propargyl amides mediated by I2/iodosylbenzene/TMSOTf systems. J. Org. Chem., 2017, 82, 11859-11864.
[http://dx.doi.org/10.1021/acs.joc.7b01563] [PMID: 28817273]
(e)Asari, N.; Takemoto, Y.; Shinomoto, Y.; Yagyu, T.; Yoshimura, A.; Zhdankin, V.V.; Saito, A. Catalytic cycloisomerization-fluorination sequence of N-propargyl amides by iodoarene/HFˆ??pyridine/selectfluor systems. Asian J. Org. Chem., 2016, 5, 1314-1317.
[http://dx.doi.org/10.1002/ajoc.201600383]
[22]
(a)Saito, A.; Taniguchi, A.; Kambara, Y.; Hanzawa, Y. Metal-free [2 + 2 + 1] annulation of alkynes, nitriles, and oxygen atoms: iodine(III)-mediated synthesis of highly substituted oxazoles. Org. Lett., 2013, 15(11), 2672-2675.
[http://dx.doi.org/10.1021/ol4009816] [PMID: 23698073]
(b)Yagyu, T.; Takemoto, Y.; Yoshimura, A.; Zhdankin, V.V.; Saito, A. Iodine(III)-catalyzed formal [2 + 2 + 1] cycloaddition reaction for metal-free construction of oxazoles. Org. Lett., 2017, 19(10), 2506-2509.
[http://dx.doi.org/10.1021/acs.orglett.7b00742] [PMID: 28471179]
(c)Saito, A.; Kambara, Y.; Yagyu, T.; Noguchi, K.; Yoshimura, A.; Zhdankin, V.V. Metal-free [2 + 2 + 1] annulation of alkynes, nitriles and N-atoms from iminoiodanes for synthesis of highly substituted imidazoles. Adv. Synth. Catal., 2015, 357, 667-671.
[http://dx.doi.org/10.1002/adsc.201500032]
(d)Baba, T.; Takahashi, S.; Kambara, Y.; Yoshimura, A.; Nemykin, V.N.; Zhdankin, V.V.; Saito, A. Developmentof imino-λ3-iodanes with improved reactivity for metal-free [2+2+1] cycloaddition-type reactions. Adv. Synth. Catal., 2017, 359, 3860-3864.
[http://dx.doi.org/10.1002/adsc.201700934]
(e)Ohura, A.; Itoh, T.; Ishida, H.; Saito, A.; Yamamoto, K. Three-component regioselective synthesis of tetrahydrofuro[2,3-d]oxazoles and their efficient conversion to oxazoles. Asian J. Org. Chem., 2017, 6, 673-676.
[http://dx.doi.org/10.1002/ajoc.201700074]
[23]
(a)Murai, K.; Tateishi, K.; Saito, A. Barluenga-s reagent with HBF4 as an efficient catalyst for alkyne-carbonyl metathesis of unactivated alkynes. Org. Biomol. Chem., 2016, 14(44), 10352-10356.
[http://dx.doi.org/10.1039/C6OB02090A] [PMID: 27766339]
(b)Takeda, Y.; Kajihara, R.; Kobayashi, N.; Noguchi, K.; Saito, A. Molecular-iodine-catalyzed cyclization of 2-alkynylanilines via iodocyclization-protodeiodination sequence. Org. Lett., 2017, 19(24), 6744-6747.
[http://dx.doi.org/10.1021/acs.orglett.7b03497] [PMID: 29185766]
(c)Shimizu, H.; Yoshimura, A.; Noguchi, K.; Nemykin, V.N.; Zhdankin, V.V.; Saito, A. Oxidative cycloaddition of hydroxamic acids with dienes or guaiacols mediated by iodine(III) reagents. Beilstein J. Org. Chem., 2018, 14, 531-536.
[http://dx.doi.org/10.3762/bjoc.14.39] [PMID: 29623114]
(d)Uraoka, S.; Shinohara, I.; Shimizu, H.; Noguchi, K.; Yoshimura, A.; Zhdankin, V.V.; Saito, A. Hetero-Diels-Alder reaction and ene reaction of acylnitroso species in situ generated by hypoiodite catalysis. Eur. J. Org. Chem., 2018, 2018(45), 6199-6203.
[http://dx.doi.org/10.1002/ejoc.201801340]
[24]
(a)Waser, J. Alkynylation with hypervalent iodine reagents. Top. Curr. Chem. (Cham), 2016, 373, 187-222.
[http://dx.doi.org/10.1007/128_2015_660] [PMID: 26318485]
(b)Rebrovic, L.; Koser, G.F. Alkynylaryliodonium tosylates and aryl[beta-(tosyloxy)vinyl]iodonium tosylates from reactions of terminal alkynes with [hydroxy(tosyloxy)iodo]benzene. J. Org. Chem., 1984, 49, 4700-4702.
[http://dx.doi.org/10.1021/jo00198a022]
(c)Ochiai, M.; Kunishima, M.; Sumi, K.; Nagao, Y.; Fujita, E.; Arimoto, M.; Yamaguchi, H. Reaction of alkynyltrimethylsilanes with a hypervalent organoiodine compound: A new general synthesis of alkynyliodonium salts. Tetrahedron Lett., 1985, 26, 4501-4504.
[http://dx.doi.org/10.1016/S0040-4039(00)88941-8]
(d)Kitamura, T.; Kotani, M.; Fujiwara, Y. An alternative synthesis of alkynyl(phenyl)iodonium triflates using (diacetoxyiodo)benzene and alkynylsilanes. Synthesis, 1998, 1998(10), 1416-1418.
[http://dx.doi.org/10.1055/s-1998-2171]
(e)Stang, P.J.; Arif, A.M.; Crittell, C.M. Ethynyl(phenyl)iodonium triflate, [HC=IPh][OSO2CF3]: Preparation, spectroscopic properties, formation mechanism and X-ray structure analysis. Angew. Chem. Int. Ed. Engl., 1990, 29, 287-288.
[http://dx.doi.org/10.1002/anie.199002871]
(f)Stang, P.J.; Williamson, B.L.; Zhdankin, V.V. Preparation of functionalizedalkynyl(phenyl)iodonium salts via a novel iodonium transfer process between alkynylstannanes and PhI+CN-OTf. J. Am. Chem. Soc., 1991, 113, 5870-5871.
[http://dx.doi.org/10.1021/ja00015a055]
(g)Zhdankin, V.V.; Persichini, P.J., III; Cui, R.; Jin, Y. A convenient synthesis of alkynyliodonium salts from alkynylboronates and hypervalent iodine reagents. Synlett, 2000, 2000, 719-721.
(h)Bouma, M.J.; Olofsson, B. General one-pot synthesis of alkynyliodonium salts and alkynyl benziodoxolones from aryl iodides. Chemistry, 2012, 18(45), 14242-14245.
[http://dx.doi.org/10.1002/chem.201202977] [PMID: 23033155]
[25]
(a)Kasumov, T.M.; Pirguliyev, N.S.; Brel, V.K.; Grishin, Y.K.; Zefirov, N.S.; Stang, P.J. New one-pot method for the stereoselective synthesis of (E)-[β- (trifluoromethylsulfonyloxy)alkenyl](aryl)iodonium triflates. Tetrahedron, 1997, 53, 13139-13148.
[http://dx.doi.org/10.1016/S0040-4020(97)00836-3]
(b)Hara, S.; Yoshida, M.; Fukuhara, T.; Yoneda, N. Stereo- and regioselective addition of iodotoluene difluoride to alk-1-ynes. Selective synthesis of 2-fluoro-1-iodoalk-1-enes. Chem. Commun. (Camb.), 1998, 1998, 965-966.
[http://dx.doi.org/10.1039/a801273c]
(c)Ochiai, M.; Hirobe, M.; Yoshimura, A.; Nishi, Y.; Miyamoto, K.; Shiro, M. Internal delivery of soft chlorine and bromine atoms: stereoselective synthesis of (E)-β-halogenovinyl(aryl)-λ3-iodanes through domino λ3 iodanation-1,4-halogen shift-fluorination of alkynes. Org. Lett., 2007, 9(17), 3335-3338.
[http://dx.doi.org/10.1021/ol071345q] [PMID: 17658841]
(d)Kitamura, T.; Furuki, R.; Taniguchi, H.; Stang, P.J. Stereoselective anti-addition of iodosylbenzene. Trifluoromethanesulfonic acid to terminal alkynes. Preparation of E-[β- (trifluoromethanesulfonyloxy)vinyl)-]iodonium triflates. Tetrahedron Lett., 1990, 31, 703-704.
[http://dx.doi.org/10.1016/S0040-4039(00)94607-0]
(e)Kitamura, T.; Furuki, R.; Taniguchi, H.; Stang, P.J. Electrophilic additions of iodosylbenzene activated by trifluoromethanesulfonic acid, [PhIO-TfOH], to alkynes. Tetrahedron, 1992, 48, 7149-7156.
[http://dx.doi.org/10.1016/S0040-4020(01)88255-7]
(f)Kitamura, T.; Kotani, M.; Fujiwara, Y. An efficient ligand exchange reaction of β- (trifyloxy)vinyliodonium triflates with aryllithium reagents leading to diaryliodonium triflates. Tetrahedron Lett., 1996, 37, 3721-3722.
[http://dx.doi.org/10.1016/0040-4039(96)00668-5]
[26]
(a)Stang, P.J.; Boehshar, M.; Wingert, H.; Kitamura, T. Acetylenic esters. Preparation and characterization of alkynyl carboxylates via polyvalent iodonium species. J. Am. Chem. Soc., 1988, 110, 3272-3278.
[http://dx.doi.org/10.1021/ja00218a043]
(b)Stang, P.J.; Kitamura, T.; Boehshar, M.; Wingert, H. Acetylenic esters. Preparation and characterization of alkynyl dialkyl phosphates, RC .tplbond COPO(OR-)2. J. Am. Chem. Soc., 1989, 111, 2225-2230.
[http://dx.doi.org/10.1021/ja00188a042]
(c)Souto, J.A.; Becker, P.; Iglesias, A.; Muñiz, K. Metal-free iodine(III)-promoted direct intermolecular C-H amination reactions of acetylenes. J. Am. Chem. Soc., 2012, 134(37), 15505-15511.
[http://dx.doi.org/10.1021/ja306211q] [PMID: 22909000]
(d)Wang, H.; Cheng, Y.; Becker, P.; Raabe, G.; Bolm, C. Synthesis of sulfoximidoyl-containing hypervalent iodine(III) reagents and their use in transition-metal-free sulfoximidations of alkynes. Angew. Chem. Int. Ed. Engl., 2016, 55(41), 12655-12658.
[http://dx.doi.org/10.1002/anie.201605743] [PMID: 27444808]
[27]
(a)Tamura, Y.; Yakura, T.; Haruta, J.; Kita, K. An efficient conversion of keto groups into dihydroxyacetone groups: Oxidation of ethynylcarbinol intermediates by using hypervalent iodine reagent. Tetrahedron Lett., 1985, 26, 3837-3840.
[http://dx.doi.org/10.1016/S0040-4039(00)89264-3]
(b)Morisrty, R.M.; Condeiu, C.; Taoand, A.; Prskash, O. New organohypervalent iodine reagents for α-methylphosphonylations and α-diphenyl- and α- dimethylphosphinylations. Tetrahedron Lett., 1997, 38, 2401-2404.
[http://dx.doi.org/10.1016/S0040-4039(97)00388-2]
(c)Sheremetev, A.B.; Mantseva, E.V. Novel alkynyl(phenyl)iodonium salts: nitrofurazanylate as a counterion. Tetrahedron Lett., 2001, 42, 5759-5761.
[http://dx.doi.org/10.1016/S0040-4039(01)01050-4]
(d)Mo, D-L.; Dai, L-X.; Hou, X-L. The reaction of terminal alkynes with PhI(OAc)2:a convenient procedure for the preparation of α-acyloxy ketones. Tetrahedron Lett., 2009, 50, 5578-5581.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.081]
(e)Pandit, P.; Gayen, K.S.; Khamarui, S.; Chatterjee, N.; Maiti, D.K. Addition of halide to π-bond directly from aqueous NaX solution: a general strategy for installation of two different functional groups. Chem. Commun. (Camb.), 2011, 47(24), 6933-6935.
[http://dx.doi.org/10.1039/c1cc11685a] [PMID: 21597639]
[28]
(a)Moriarty, R.M.; Penmasta, R.; Awasthi, A.K.; Prakash, I. Mild oxidative cleavage of alkynes using[bis(trifluoroacetoxy)iodo]pentafluorobenzene. J. Org. Chem., 1988, 53, 6124-6125.
[http://dx.doi.org/10.1021/jo00261a031]
(b)Miyamoto, K.; Sei, Y.; Yamaguchi, K.; Ochiai, M. Iodomesitylene-catalyzed oxidative cleavage of carbon-carbon double and triple bonds using m-chloroperbenzoic acid as a terminal oxidant. J. Am. Chem. Soc., 2009, 131(4), 1382-1383.
[http://dx.doi.org/10.1021/ja808829t] [PMID: 19133783]
(c)Jiang, Q.; Zhao, A.; Xu, B.; Jia, J.; Liu, X.; Guo, C. PIFA-mediated esterification reaction of alkynes with alcohols via oxidative cleavage of carbon triple bonds. J. Org. Chem., 2014, 79(6), 2709-2715.
[http://dx.doi.org/10.1021/jo5003517] [PMID: 24601600]
(d)Khamarui, S.; Maiti, R.; Maiti, D.K. General base-tuned unorthodox synthesis of amides and ketoesters with water. Chem. Commun. (Camb.), 2015, 51(2), 384-387.
[http://dx.doi.org/10.1039/C4CC07961B] [PMID: 25406587]
(e)Moriarty, R.M.; Vaid, R.K.; Duncan, M.P.; Vaid, B.K. Oxidative rearrangement of alkynes to carboxylic acid esters by [hydroxy(tosyloxy)iodo]benzene in methanol. Tetrahedron Lett., 1987, 28, 2845-2848.
[http://dx.doi.org/10.1016/S0040-4039(00)96224-5]
(f)Pirguliyev, N.S.; Brel, V.K.; Zefirov, N.S.; Stang, P.J. Induced oxidative rearrangement of non-terminal alkynes by [fluoro(trifluoromethanesulfonyloxy)iodo]benzene to esters of 2-alkyl- and 2-arylalkanoic acids. Mendeleev Commun., 1999, 1999, 189-190.
[http://dx.doi.org/10.1070/MC1999v009n05ABEH001107]
[29]
(a)Wipf, P; Venkataraman, S A new thiazole synthesis by cyclocondensation of thioamides and alkynyl(aryl)iodonium reagents. J. Org. Chem, 1996, 61, 8004-8005.
[http://dx.doi.org/10.1021/jo961681c]
(b)Miyamoto, K.; Nishi, Y.; Ochiai, M. Thiazole synthesis by cyclocondensation of 1- alkynyl(phenyl)-λ3-iodanes with thioureas and thioamides. Angew. Chem. Int. Ed, 2005, 44, 6896-6899.
[http://dx.doi.org/10.1002/ange.200502438]
(c)Kitamura, T.; Tsuda, K.; Fujiwara, Y. Novel heteroaromatie C-H insertion of alkylidenecarbenes. A new entry to furopyridine synthesis. Tetrahedron Lett, 1998, 39, 5375–5376.
(d)Feldman, K.S.; Perkins, A.L. 1,6-C–H insertion of alkylidenecarbenes in 1-naphthol and 1-anthrol derivatives. Tetrahedron Lett., , 2001, 42, 6031–6033.
(e)Feldman, K.S.; Bruendl, M.M.; Schildknegt, K.; Bohnstedt, A.C. Inter- and intramolecular addition/cyclizations of sulfonamide anions with alkynyliodonium triflates. Synthesis of dihydropyrrole, pyrrole, indole, and tosylenamide heterocycles. J. Org. Chem, 1996, 61, 5440-5452.
[http://dx.doi.org/10.1021/jo9605814]
(f)Ochiai, M.; Kunishima, M.; Nagao, Y.; Fuji, K.; Shiro, M.; Fujita, E. Tandem Michael-carbene insertion reactions of alkynyliodonium salts. Extremely efficient cyclopentene annulations. J. Am. Chem. Soc, 1986, 108, 8281-8283.
[http://dx.doi.org/10.1021/ja00286a037]
(g)Wu, J.; Yoshikai, N. Modular synthesis of multisubstituted furans through palladium-catalyzed three-component condensation of alkynylbenziodoxoles, carboxylic acids, and imines. Angew. Chem. Int. Ed., 2015, 54, 11107-11111.
[http://dx.doi.org/10.1002/anie.201504687]
(h)Dixon, L.I.; Carroll, M.A.; Gregson, T.J.; Ellames, G.J.; Harrington, R.W.; Clegg, W. Unprecedented regiochemical control in the formation of aryl[1,2-a]imidazopyridines from alkynyliodonium salts: mechanistic insights. Org. Biomol. Chem, 2013, 11, 5877-5884.
[http://dx.doi.org/10.1039/c3ob41112e]
[30]
(a)Ochiai, M.; Nishi, Y.; Hashimoto, S; Tsuchimoto, Y.; Chen, D.-W. Synthesis of 2,4-disubstituted thiazoles from (Z)-(2-acetoxyvinyl)phenyl- λ3-iodanes: Nucleophilic substitution of α-λ3-iodanyl ketones with thioureas and thioamides. J. Org. Chem, 2003, 68, 7887-7888.
[http://dx.doi.org/10.1021/jo020759o]
(b)Chaudhuri, P.D.; Guo, R.; Malinakova, H.C Formation of benzofurans in a stoichiometric annulation reaction between stable pallada(II)cycles and hypervalent vinyl- and alkynyl(phenyl)iodonium salts. J. Organomet. Chem, 2008, 693, 567-573.
[http://dx.doi.org/10.1016/j.jorganchem.2007.11.034]
(c)Yuan, H.; Guo, L.; Liu, F; Miao, Z; Feng, L; Gao, H Copper-catalyzed tandem O-vinylation of arylhydroxylamines/[3,3]- rearrangement/cyclization: Synthesis of highly substituted indoles and benzoindoles. ACS Catal, 2019, 9, 3906-3912.
[http://dx.doi.org//10.1021/acscatal.9b00470]
(d)Ochiai, M.; Kitagawa, Y. Aziridination of activated imines with monocarbonyl iodonium ylides generated from (Z)-(2- acetoxyvinyl)iodonium salts via ester exchange: Stereoselective synthesis of 2-acylaziridines. J. Org. Chem, 1999, 64, 3181-3189.
[http://dx.doi.org/10.1021/jo982346m]
(e)Mészáros, Á.; Székely, A.; Stirling, A.; Novák, Z. Design of trifluoroalkenyl iodonium salts for a hypervalency-aided alkenylation– cyclization strategy: Metal-free construction of aziridine rings. Angew. Chem. Int. Ed, 2018, 57, 6643-6647.
[http://dx.doi.org/10.1002/anie.201802347]
(f)Sheng, J.; Wang, Y.; Su, X.; He, R.; Chen, C. Copper-catalyzed [2+2+2] modular synthesis of multisubstituted pyridines: Alkenylation of nitriles with vinyliodonium salts. Angew. Chem. Int. Ed, 2017, 56, 4824-4828.
[http://dx.doi.org/10.1002/anie.201700696]
[31]
(a)Tellitu, I.; Serna, S.; Herrero, M.T.; Moreno, I.; Dominguez, E.; SanMartin, R. Intramolecular PIFA-mediated alkyne amidation and carboxylation reaction. J. Org. Chem., 2007, 72(4), 1526-1529.
[http://dx.doi.org/10.1021/jo062320s] [PMID: 17288399]
(b)Serna, S.; Tellitu, I.; Dominguez, E.; Moreno, I.; SanMartin, R. Expeditious approach to 5-aroyl-pyrrolidinones by a novel PIFA-mediated alkyne amidation reaction. Org. Lett., 2005, 7(14), 3073-3076.
[http://dx.doi.org/10.1021/ol0510623] [PMID: 15987208]
[32]
Ochiai, M; Takaoka, Y; Masaki, Y; Inenaga, M; Nagao, Y Synthesis of iodo(III) enol lactones via iodine(III)-induced lactonization of alkynoic acids. Structurally potential serine protease inactivators. Tetrahedron Lett., 1989, 30, 6701-6704.
[http://dx.doi.org/10.1016/S0040-4039(00)70655-1]
[33]
(a)Capozzi, G.; Caristi, C.; Gattuso, M. Intramolecular cyclisation using methyl(bismethylthio)sulphonium salts, bromine, and iodine. 5-Methylene-4,5-dihydro-oxazoles from 3-amidopropynes. J. Chem. Soc., Perkin Trans. 1, 1984, 255-260.
[http://dx.doi.org/10.1039/p19840000255]
(b)Hu, Y.; Yi, R.; Wang, C.; Xin, X.; Wu, F.; Wan, B. From propargylamides to oxazole derivatives: NIS-mediated cyclization and further oxidation by dioxygen. J. Org. Chem., 2014, 79(7), 3052-3059.
[http://dx.doi.org/10.1021/jo5001719] [PMID: 24620818]
(c)Gazzola, S.; Beccalli, E.M.; Borelli, T.; Castellano, C.; Chiacchio, M.A.; Diamante, D.; Broggini, G. Copper(II)-catalyzed alkoxyhalogenation of alkynyl ureas and amides as a route to haloalkylidene-substituted heterocycles. J. Org. Chem., 2015, 80(14), 7226-7234.
[http://dx.doi.org/10.1021/acs.joc.5b01227] [PMID: 26111065]
(d)Urbanaite, A.; Jonusis, M.; Buksnaitiene, R.; Balkaitis, S.; Cikotiene, I. Electrophile-mediated reactions of functionalized propargylic substrates. Eur. J. Org. Chem., 2015, 2015, 7091-7113.
[http://dx.doi.org/10.1002/ejoc.201501063]
[34]
Saito, A.; Enomoto, Y.; Hanzawa, Y. Pd-catalyzed Cycloisomerization-Allylation of 4-Alkynones: Synthesis of 5-Homoallylfuran derivatives. Tetrahedron Lett., 2011, 52, 4299-4302.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.037]
[35]
Wachenfeldt, H.V.; Paulsen, F.; Sundin, A.; Strand, D. Synthesis of substituted oxazoles from N-benzyl propargyl amines and acid chlorides. Eur. J. Org. Chem., 2013, 2013, 4578-4585.
[http://dx.doi.org/10.1002/ejoc.201300285]
[36]
(a)Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. An annulative electrophilic amination approach to 3-aminobenzoheteroles. J. Org. Chem., 2012, 77(1), 617-625.
[http://dx.doi.org/10.1021/jo202207s] [PMID: 22132905]
(b)Yao, B.; Wang, Q.; Zhu, J. Palladium(II)-catalyzed intramolecular diamination of alkynes under aerobic oxidative conditions: catalytic turnover of an iodide ion. Angew. Chem. Int. Ed. Engl., 2012, 51(21), 5170-5174.
[http://dx.doi.org/10.1002/anie.201201640] [PMID: 22499532]
(c)Ha, T.M.; Yao, B.; Wang, Q.; Zhu, J. Sulfonamide and tertiary amine as nucleophiles in Pd(II)-catalyzed diamination of alkynes: Synthesis of tetracyclic indolobenzothiazine S,S-dioxides. Org. Lett., 2015, 17(21), 5256-5259.
[http://dx.doi.org/10.1021/acs.orglett.5b02621] [PMID: 26488548]
(d)Ho, H.E.; Oniwa, K.; Yamamoto, Y.; Jin, T. N-Methyl transfer induced copper-mediated oxidative diamination of alkynes. Org. Lett., 2016, 18(10), 2487-2490.
[http://dx.doi.org/10.1021/acs.orglett.6b01067] [PMID: 27153403]
[37]
(a)Hadjiarapoglou, L.; Spyroudis, S.; Varvoglis, A. Phenyliodine(III) bis[phthalimidate]: A novel polyvalent iodine compound. Synthesis, 1983, 1983, 207-208.
[http://dx.doi.org/10.1055/s-1983-30282]
(b)Kim, H.J.; Kim, J.; Cho, S.H.; Chang, S. Intermolecular oxidative C-N bond formation under metal-free conditions: control of chemoselectivity between aryl sp2 and benzylic sp3 C-H bond imidation. J. Am. Chem. Soc., 2011, 133(41), 16382-16385.
[http://dx.doi.org/10.1021/ja207296y] [PMID: 21928852]
(c)Iglesias, A.; Perez, E.G.; Muñiz, K. An intermolecular palladium-catalyzed diamination of unactivated alkenes. Angew. Chem. Int. Ed. Engl., 2010, 49(44), 8109-8111.
[http://dx.doi.org/10.1002/anie.201003653] [PMID: 20862757]
(d)Kiyokawa, K.; Yahata, S.; Kojima, T.; Minakata, S. Hypervalent iodine(III)-mediated oxidative decarboxylation of β,γ-unsaturated carboxylic acids. Org. Lett., 2014, 16(17), 4646-4649.
[http://dx.doi.org/10.1021/ol5022433] [PMID: 25162482]
(e)Kantak, A.A.; Marchetti, L.; DeBoef, B. Regioselective C-H bond amination by aminoiodanes. Chem. Commun. (Camb.), 2015, 51(17), 3574-3577.
[http://dx.doi.org/10.1039/C4CC10246K] [PMID: 25632832]
(f)Yoshimura, A.; Koski, S.R.; Fuchs, J.M.; Saito, A.; Nemykin, V.N.; Zhdankin, V.V. Saccharin-based μ-oxo imidoiodane: a readily available and highly reactive reagent for electrophilic amination. Chemistry, 2015, 21(14), 5328-5331.
[http://dx.doi.org/10.1002/chem.201500335] [PMID: 25694131]
[38]
(a)Roben, C.; Souto, J.A.; Gonzalez, Y.; Lishchynskyi, A.; Muñiz, K. Enantioselective metal-free diamination of styrenes. Angew. Chem. Int. Ed. Engl., 2011, 50(40), 9478-9482.
[http://dx.doi.org/10.1002/anie.201103077] [PMID: 21948449]
(b)Souto, J.A.; Martinez, C.; Velilla, I.; Muñiz, K. Defined hypervalent iodine(III) reagents incorporating transferable nitrogen groups: nucleophilic amination through electrophilic activation. Angew. Chem. Int. Ed. Engl., 2013, 52(4), 1324-1328.
[http://dx.doi.org/10.1002/anie.201206420] [PMID: 23208818]
(c)Souto, J.A.; Zian, D.; Muñiz, K. Iodine(III)-mediated intermolecular allylic amination under metal-free conditions. J. Am. Chem. Soc., 2012, 134(17), 7242-7245.
[http://dx.doi.org/10.1021/ja3013193] [PMID: 22506727]
(d)Lishchynskyi, A.; Muñiz, K. An approach to the regioselective diamination of conjugated di- and trienes. Chemistry, 2012, 18(8), 2212-2216.
[http://dx.doi.org/10.1002/chem.201103435] [PMID: 22279008]
(e)Romero, R.M.; Souto, J.A.; Muñiz, K. Substitution effects of hypervalent iodine(III) reagents in the diamination of styrene. J. Org. Chem., 2016, 81(14), 6118-6122.
[http://dx.doi.org/10.1021/acs.joc.6b01070] [PMID: 27310710]
(f)Muñiz, K.; Barreiro, L.; Romero, R.M.; Mart??nez, C. Catalytic asymmetric diamination of styrenes. J. Am. Chem. Soc., 2017, 139(12), 4354-4357.
[http://dx.doi.org/10.1021/jacs.7b01443] [PMID: 28277652]
[39]
(a)Kong, A.; Blakey, S.B. Intermolecular olefin diamination for the stereoselective synthesis of 3- aminopiperidines. Synthesis, , 2012, 44, 1190-1198.
[http://dx.doi.org/10.1055/s-0031-1290591]
(b)Chen, H.; Kaga, A.; Chiba, S. Diastereoselective aminooxygenation and diamination of alkenes with amidines by hypervalent iodine(III) reagents. Org. Lett., 2014, 16, 6136-6139.
[40]
(a)Togo, H.; Iida, S. Synthetic Use of molecular iodine for organic synthesis. Synlett, 2006, 2006, 2159-2175.
[http://dx.doi.org/10.1055/s-2006-950405]
(b)Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev., 2011, 111(4), 2937-2980.
[http://dx.doi.org/10.1021/cr100214d] [PMID: 21425870]
(c)Gabriele, B.; Mancuso, R.; Larock, R.C. Recent advances in the synthesis of iodoheterocycles via iodocyclization of functionalized alkynes. Curr. Org. Chem., 2014, 18, 341-358.
[http://dx.doi.org/10.2174/13852728113179990034]
(d)Aggarwal, T.; Kumar, S.; Verma, A.K. Iodine-mediated synthesis of heterocycles via electrophilic cyclization of alkynes. Org. Biomol. Chem., 2016, 14(32), 7639-7653.
[http://dx.doi.org/10.1039/C6OB01054G] [PMID: 27383580]
[41]
(a)Djuardi, E.; Nelis., E.M Furo[3,4-b]furan formations from alkynols of xylose. Tetrahedron Lett, 1999, 40, 7193-7196.
[http://dx.doi.org/10.1016/S0040-4039(99)01561-0]
(b)Liu, H.; Tan, C.-H.. Iodobenzene-catalysed iodolactonisation using sodiumperborate monohydrate as oxidant. Tetrahedron Lett, 2007, 48, 8220-8222.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.078]
(c)Zheng, C.; Fan, R. Hypervalent iodine-mediated regioselective cyclization of acetylenicmalonates: Facile synthesis of 1-diiodomethylene indane and cyclopentanederivatives. Chem. Commun. (Camb.), 2011, 47, 12221-12223.
[42]
(a)Hessian, K.O.; Flynn, B.L. Selective endo and exo iodocyclizations in the synthesis of quinolines and indoles. Org. Lett, 2006, 8, 243-246.
[http://dx.doi.org/10.1021/ol052518j]
(b)Kim, I.; Kim, S.G.; Kim, J.Y; Lee, G.H A novel approach to 3-acylated indolizine structures via iodine- mediated hydrative cyclization. Tetrahedron Lett., 2007, 48, 8976-8981.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.101]
[43]
Kim, I.; Barluenga, J.; Trincado, M.; Rubio, E.; Gonzalez, J.M. Direct intramolecular arylation of aldehydes promoted by reaction with IPy2BF4/HBF4: Synthesis of benzocyclic ketones. Angew. Chem. Int. Ed., 2006, 45, 3140-3143.
[http://dx.doi.org/10.1002/anie.200504448]
[44]
Zhdankin, V.V.; Crittell, C.M.; Stang, P.J. A general approach to unsymmetrical tricoordinate iodinanes: Single step preparation of mixed iodosobenzene sulfonates Phl(X)OSO2R, via reaction of iodosobenzene with Me3SiX. Tetrahedron Lett., 1990, 31, 4821-4824.
[http://dx.doi.org/10.1016/S0040-4039(00)97741-4]
[45]
(a)Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V.A.; Coelho, J.A.S.; Toste, F.D. Modern approaches for asymmetric construction of carbon-fluorine quaternary stereogenic centers: Synthetic challenges and pharmaceutical needs. Chem. Rev., 2018, 118(7), 3887-3964.
[http://dx.doi.org/10.1021/acs.chemrev.7b00778] [PMID: 29608052]
(b)Szpera, R.; Moseley, D.F.J.; Smith, L.B.; Sterling, A.J.; Gouverneur, V. The fluorination of C-H bonds: Developments and perspectives. Angew. Chem. Int. Ed. Engl., 2019, 58(42), 14824-14848.
[http://dx.doi.org/10.1002/anie.201814457] [PMID: 30759327]
(c)Neumann, C.N.; Ritter, T. Facile C-F bond formation through a concerted nucleophilic aromatic substitution mediated by the PhenoFluor reagent. Acc. Chem. Res., 2017, 50(11), 2822-2833.
[http://dx.doi.org/10.1021/acs.accounts.7b00413] [PMID: 29120599]
(d)Chen, C.; Fu, L.; Chen, P.; Liu, G. Recent advances and perspectives of transition metal-catalyzed asymmetric fluorination reactions. Chin. J. Chem., 2017, 35, 1781-1788.
[http://dx.doi.org/10.1002/cjoc.201700489]
(e)Liang, S.; Hammond, G.B.; Xu, B. Hydrogen bonding: Regulator for nucleophilic fluorination. Chemistry, 2017, 23(71), 17850-17861.
[http://dx.doi.org/10.1002/chem.201702664] [PMID: 28833711]
(f)Li, M.; Zheng, H.; Xue, X-s.; Cheng, J-p. Ordering the relative power of electrophilic fluorinating, trifluoromethylating, and trifluoromethylthiolating reagents: A summary of recent efforts. Tetrahedron Lett., 2018, 59, 1278-1285.
[http://dx.doi.org/10.1016/j.tetlet.2018.02.039]
[46]
(a)Sawaguchi, M.; Hara, S.; Fukuhara, T.; Yoneda, Y. Fluorocyclization of unsaturated alcohols and carboxylic acids by iodotoluene difluoride and amine-HF complexes. J. Fluor. Chem., 2000, 104, 277-280.
[http://dx.doi.org/10.1016/S0022-1139(00)00241-4]
(b)Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Regio- and enantioselective aminofluorination of alkenes. Angew. Chem. Int. Ed. Engl., 2013, 52(9), 2469-2473.
[http://dx.doi.org/10.1002/anie.201208471] [PMID: 23362120]
(c)Wang, Q.; Zhong, W.; Wei, X.; Ning, M.; Meng, X.; Li, Z. Metal-free intramolecular aminofluorination of alkenes mediated by PhI(OPiv)2/hydrogen fluoride-pyridine system. Org. Biomol. Chem, 2012, 10, 8566-8569.
[http://dx.doi.org/10.1039/C2OB26664D]
(d)Cui, J.; Jia, Q.; Feng, R.-Z.; Liu, S.-S.; He, T; Zhang, C Boron trifluoride etherate functioning as a fluorine source in an iodosobenzene-mediated intramolecular aminofluorination of homoallylic amines. Org. Lett, 2014, 16, 1442-1445.
[http://dx.doi.org/10.1021/ol500238k]
(e)Liu, G.-Q.;.; Li, Y.-M Regioselective (diacetoxyiodo)benzene-promotedhalocyclization of unfunctionalized olefins. J. Org. Chem, 2014, 79, 10094-10109.
[http://dx.doi.org/10.1021/jo501739j]
(f)Kong, W; Guo, Q; Xu, Z; Wang, G; Jiang, X; Wang, R Iodine(III)-mediated oxy-fluorination of alkenyl oximes: An easy path to monofluoromethyl-substituted isoxazolines. Org. Lett, 2015, 17, 3686-3689.
[http://dx.doi.org/10.1021/acs.orglett.5b01646]
(g)Gonzalez, M.A.C.; Nordeman, P.; Gomez, A.B. Meyer, D.N.; Antoni, G.; Schou, M.; Szabo, K.J.. [18F]Fluoro-benziodoxole: A no-carrier-added electrophilic fluorinating reagent. Rapid, simple radiosynthesis, purification and application for fluorine-18 labelling. Chem. Commun. (Camb.), 2018, 54, 4286-4289.
[http://dx.doi.org/10.1039/C8CC00526E]
[47]
(a)Kitamura, T.; Muta, K.; Kuriki, S. Catalytic fluorination of 1,3-dicarbonyl compounds using iodoarene catalysts. Tetrahedron Lett., 2013, 54, 6118-6120.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.129]
(b)Kitamura, T.; Muta, K.; Oyamada, J. Hypervalent iodine-mediated fluorination of styrene derivatives: Stoichiometric and catalytic transformation to 2,2-difluoroethylarenes. J. Org. Chem., 2015, 80(21), 10431-10436.
[http://dx.doi.org/10.1021/acs.joc.5b01929] [PMID: 26450682]
(c)Kitamura, T.; Miyake, A.; Muta, K.; Oyamada, A.J. Hypervalent iodine/HF reagents for the synthesis of 3 - fluoropyrrolidines. J. Org. Chem., 2017, 82(22), 11721-11726.
[http://dx.doi.org/10.1021/acs.joc.7b01266] [PMID: 28695730]
[48]
Suzuki, S.; Kamo, T.; Fukushi, K.; Hiramatsu, T.; Tokunaga, E.; Dohi, T.; Kita, Y.; Shibata, N. Iodoarene-catalyzed fluorination and aminofluorination by an Ar-I/HFpyridine/mCPBA system. Chem. Sci. (Camb.), 2014, 5, 2754-2760.
[http://dx.doi.org/10.1039/C3SC53107D]
[49]
(a)Banik, S.M.; Medley, J.W.; Jacobsen, E.N. Catalytic, asymmetric difluorination of alkenes to generate difluoromethylated stereocenters. Science, 2016, 353(6294), 51-54.
[http://dx.doi.org/10.1126/science.aaf8078] [PMID: 27365443]
(b)Banik, S.M.; Medley, J.W.; Jacobsen, E.N. Catalytic, diastereoselective 1,2-difluorination of alkenes. J. Am. Chem. Soc, 2016, 138, 5000-5003.
[http://dx.doi.org/10.1021/jacs.6b02391]
(c)Medley, J.W.; Banik, S.M.; Jacobsen, E.N.. Enantioselective, catalytic fluorolactonization reactions with a nucleophilic fluoride source. J. Am. Chem. Soc, 2016, 138, 13858-13861.
[http://dx.doi.org/10.1021/jacs.6b09499]
(d)Banik, S.M.; Mennie, K.M.; Jacobsen, E.N. Catalytic 1,3-difunctionalization via oxidative C-C bond activation. J. Am. Chem. Soc, 2017, 139, 9152-9155.
[http://dx.doi.org/10.1021/jacs.7b05160]
(e)Mennie, K.M.; Banik, S.M.; Reichert, E.C.; Jacobsen, E.N Catalytic diastereo- and enantioselective fluoroamination of alkenes. J. Am. Chem. Soc, 2018, 140, 4797-4802.
[http://dx.doi.org/10.1021/jacs.8b02143]
(f)Haj, M.K; Banik, S.M.; Jacobsen, E.N. Catalytic, enantioselective 1,2-difluorination of cinnamamides. Org. Lett., 2019, 21, 4919-4923.
[http://dx.doi.org/10.1021/acs.orglett.9b00938]
[50]
(a)Kitamura, T; Mizuno, S; Muta, KS; Oyamada, J Synthesis of β- fluorovinyliodonium salts by the reaction of alkynes with hypervalent iodine/HF reagents. J. Org. Chem, 2018, 83, 2773-2778.
[http://dx.doi.org/10.1021/acs.joc.7b03223]
(b)Herszman, J.D; Berger, M; Waldvogel, S.R Fluorocyclization of N-propargylamides to oxazoles by electrochemically generated ArIF2. Org. Lett., 2019, 21, 7893-7896.
[http://dx.doi.org/10.1021/acs.orglett.9b02884]
[51]
Ye, C.; Twamley, B.; Shreeve, J.M. Straightforward syntheses of hypervalent iodine(III) reagents mediated by Selectfluor. Org. Lett., 2005, 7(18), 3961-3964.
[http://dx.doi.org/10.1021/ol051446t] [PMID: 16119942]
[52]
Alhalib, A.; Kamouka, S.; Moran, W.J. Iodoarene-catalyzed cyclizations of unsaturated amides. Org. Lett., 2015, 17(6), 1453-1456.
[http://dx.doi.org/10.1021/acs.orglett.5b00333] [PMID: 25742052]
[53]
(a)Molnar, I.G.; Gilmour, R. Catalytic difluorination of olefins. J. Am. Chem. Soc., 2016, 138(15), 5004-5007.
[http://dx.doi.org/10.1021/jacs.6b01183] [PMID: 26978593]
(b)Scheidt, F.; Neufeld, J.; Schafer, M.; Thiehoff, C.; Gilmour, R. Catalytic geminal difluorination of styrenes for the construction of fluorine-rich bioisosteres. Org. Lett., 2018, 20(24), 8073-8076.
[http://dx.doi.org/10.1021/acs.orglett.8b03794] [PMID: 30525706]
(c)Scheidt, F.; Schafer, M.; Sarie, J.C.; Daniliuc, C.G.; Molloy, J.J.; Gilmour, R. Enantioselective, catalytic vicinal difluorination of alkenes. Angew. Chem. Int. Ed. Engl., 2018, 57(50), 16431-16435.
[http://dx.doi.org/10.1002/anie.201810328] [PMID: 30255972]
(d)Scheidt, F.; Thiehoff, C.; Yilmaz, G.; Meyer, S.; Daniliuc, C.G.; Kehr, G.; Gilmour, R. Fluorocyclisation via I(I)/I(III) catalysis: a concise route to fluorinated oxazolines. Beilstein J. Org. Chem., 2018, 14, 1021-1027.
[http://dx.doi.org/10.3762/bjoc.14.88] [PMID: 29977374]
[54]
Ochiai, M.; Kitagawa, Y.; Toyonari, M.; Uemura, K.; Oshima, K.; Shiro, M. Nucleophilic vinylic substitutions of (Z)-(β-Haloalkenyl)phenyliodonium salts with sodium benzenesulfinate: First evidence of a Michael addition of nucleophiles to alkenyliodonium salts at the Cβ atom. J. Org. Chem., 1997, 62(23), 8001-8008.
[http://dx.doi.org/10.1021/jo970735v] [PMID: 11671903]
[55]
(a)Kamijo, S.; Yamamoto, Y. Recent progress in the catalytic synthesis of imidazoles. Chem. Asian J., 2007, 2(5), 568-578.
[http://dx.doi.org/10.1002/asia.200600418] [PMID: 17465403]
(b)Riley, N.K.D.; Jackson, Y.A. Recent advances in the synthesis of 1,3-azoles. Curr. Top. Med. Chem., 2016, 16(30), 3617-3626.
[http://dx.doi.org/10.2174/1568026616666160414122349] [PMID: 27086792]
(c)Daraji, D.G.; Prajapati, N.P.; Patel, H.D. Synthesis and applications of 2-substituted imidazole and its derivatives: A review. J. Heterocycl. Chem., 2019, 56, 2299-2316.
[http://dx.doi.org/10.1002/jhet.3641]
(d)Rossi, R.; Ciofalo, M. Current advances in the synthesis and biological evaluation of pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives Cur. Org. Chem., 2019, 23, 2016-2101.
[http://dx.doi.org/10.2174/1385272823666191014154129]
[56]
(a)Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V.V. Rhodium-catalyzed transannulation of 1,2,3-triazoles with nitriles. J. Am. Chem. Soc., 2008, 130(45), 14972-14974.
[http://dx.doi.org/10.1021/ja805079v] [PMID: 18855475]
(b)Lee, E.; Ryu, T.; Shin, E.; Son, J-Y.; Choi, W.; Lee, P.H. Synthesis of 2-bromoimidazoles from alkynes, N-sulfonylazides, and bromocyanides. Org. Lett., 2015, 17(10), 2470-2473.
[http://dx.doi.org/10.1021/acs.orglett.5b00977] [PMID: 25928050]
(c) sXiao, Y.; Zhang, L. Synthesis of bicyclic imidazoles via [2 + 3] cycloaddition between nitriles and regioselectively generated α-imino gold carbene intermediates. Org. Lett., 2012, 14(17), 4662-4665.
[http://dx.doi.org/10.1021/ol302102h] [PMID: 22917160]
[57]
Suenaga, K.; Shimogawa, H.; Nakagawa, S.; Uemura, D. Catharsitoxins from the Chinese remedy qiung laug. Tetrahedron Lett., 2001, 42, 7079-7081.
[http://dx.doi.org/10.1016/S0040-4039(01)01468-X]
[58]
Moriarty, R.M.; Penmasta, R.; Prakash, I. Novel pentafluorophenyl hypervalent iodine reagents. Tetrahedron Lett., 1987, 28, 877-880.
[http://dx.doi.org/10.1016/S0040-4039(01)81012-1]
[59]
(a)Zhdankin, V.V.; Protasiewicz, J.D. Development of new hypervalent iodine reagents with improved properties and reactivity by redirecting secondary bonds at iodine center. Coord. Chem. Rev., 2014, 275, 54-62.
[http://dx.doi.org/10.1016/j.ccr.2014.04.007]
(b)Macikenas, D.; Jankun, E.S.; Protasiewicz, J.D. A new class of iodonium ylides engineered as soluble primary oxo and nitrene sources. J. Am. Chem. Soc., 1999, 121, 7164-7165.
[http://dx.doi.org/10.1021/ja991094j]
(c)Meprathu, B.V.; Protasiewicz, J.D. Synthesis and characterization of novel polyvalent organoiodine compounds. ARKIVOC, 2003, 2003(6), 83-90.
[http://dx.doi.org/10.3998/ark.5550190.0004.610]
(d)Meprathu, B.V.; Protasiewicz, J.D. Enhancing the solubility for hypervalent ortho-sulfonyl iodine compounds. Tetrahedron, 2010, 66, 5768-5774.
[http://dx.doi.org/10.1016/j.tet.2010.04.087]
(e)Blake, A.J.; Novak, A.; Davies, M.; Robinson, R.I.; Woodward, S. Preparation of 1,1ƒβ-oxy-bis(3,3- bis(trifluoromethyl)-3(1H)-1,2-benziodoxole) and 2-(N-(p-toluenesulfonyl)imino)iodobenzylmethyl ether. Synth. Commun., 2009, 39(6), 1065-1075.
[http://dx.doi.org/10.1080/00397910802474990]
(f)Yoshimura, A.J.; Nemykin, V.N.; Zhdankin, V.V. o-Alkoxyphenyliminoiodanes: highly efficient reagents for the catalytic aziridination of alkenes and the metal-free amination of organic substrates. Chemistry, 2011, 17, 10538-10541.
[http://dx.doi.org/10.1002/chem.201102265]
[60]
(a)Ito, M.; Kubo, H.; Itani, I.; Morimoto, K.; Dohi, T.; Kita, Y. Organocatalytic C-H/C-H- cross-biaryl coupling: C-selective arylation of sulfonanilides with aromatic hydrocarbons. J. Am. Chem. Soc., 2013, 135(38), 14078-14081.
[http://dx.doi.org/10.1021/ja407944p] [PMID: 24028674]
(b)Morimoto, K.; Sakamoto, K.; Ohshika, T.; Dohi, T.; Kita, Y. Organo-Iodine(III)-Catalyzed Oxidative Phenol-Arene and Phenol-Phenol Cross-Coupling Reaction. Angew. Chem. Int. Ed. Engl., 2016, 55(11), 3652-3656.
[http://dx.doi.org/10.1002/anie.201511007] [PMID: 26879796]
(c)Morimoto, K.; Dohi, T.; Kita, Y. Metal- free Oxidative Cross-Coupling Reaction of Aromatic Compounds Containing Heteroatoms. Synlett, 2017, 28, 1680-1694.
[http://dx.doi.org/10.1055/s-0036-1588455]
(d)Dohi, T.; Kita, Y. Metal-Free Oxidative Biaryl Coupling by Hypervalent Iodine Reagents. Curr. Org. Chem., 2016, 20, 580-615.
[http://dx.doi.org/10.2174/1385272819666150716173142]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy