Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Progress in Microwave-assisted Modification of Vegetable Oils or Their Derivatives

Author(s): Jinshuai Zhang, Yun Hu, Fei Zhang, Jianyu Lu, Jia Huang, Chengguo Liu*, Puyou Jia, Lihong Hu, Rongrong An* and Yonghong Zhou*

Volume 24, Issue 8, 2020

Page: [870 - 884] Pages: 15

DOI: 10.2174/1385272824999200510231702

Price: $65

Abstract

Vegetable oils have been widely used in food, surfactants, lubricants, biodiesel, coatings, and other fields due to their advantages such as renewable, abundant, suitable for further processing, and biodegradable. On the other hand, microwave technology has attracted extensive attention in organic and polymeric chemistry because the technology can greatly shorten the reaction time, improve the yield of products, reduce side reactions, etc. This paper summarized recent advances on the microwave-assisted modification of vegetable oils or their derivatives, such as esterification of free fatty acids, transesterification of triglycerides, epoxidation, and polymerization.

Keywords: Vegetable oils, microwave-assisted modification, transesterification, esterification, epoxidation, polymerization.

Graphical Abstract

[1]
Zhang, C.; Garrison, T.F.; Madbouly, S.A.; Kessler, M.R. Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci., 2017, 71, 91-143.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.12.009]
[2]
Guo, Y.; Chen, J.Q.; Su, M.; Hong, J.G. Bio-based plastics by highly efficient esterification of lignocellolusic biomass in 1-methylimidazole under mild conditions. J. Wood Chem. Technol., 2018, 38, 338-349.
[http://dx.doi.org/10.1080/02773813.2018.1488876]
[3]
Huang, C.X.; He, J.; Du, L.T.; Min, D.Y.; Yong, Q. Structural characterization of the lignins from the green and yellow bamboo of bamboo culm (Phyllostachys pubescens). J. Wood Chem. Technol., 2016, 36, 157-172.
[http://dx.doi.org/10.1080/02773813.2015.1104544]
[4]
Feng, Y.C.; Liang, H.Y.; Yang, Z.M.; Yuan, T.; Luo, Y.; Li, P.W.; Yang, Z.H.; Zhang, C.Q. A solvent-free and scalable method to prepare soybean oil based polyols by thiol-ene photo-click reaction and biobased polyurethanes therefrom. ACS Sustain. Chem. Eng., 2017, 5(8), 7365-7373.
[http://dx.doi.org/10.1021/acssuschemeng.7b01672]
[5]
Chen, J.Q.; Tang, C.Q.; Yue, Y.Y.; Qiao, W.C.; Hong, J.G.; Kitaoka, T.; Yang, Z. Highly translucent all wood plastics via heterogeneous esterification in ionic liquid/dimethyl sulfoxide. Ind. Crops Prod., 2017, 108, 286-294.
[http://dx.doi.org/10.1016/j.indcrop.2017.06.054]
[6]
Huang, C.; He, J.; Wang, Y.; Min, D.; Yong, Q. Associating cooking additives with sodium hydroxide to pretreat bamboo residues for improving the enzymatic saccharification and monosaccharides production. Bioresour. Technol., 2015, 193, 142-149.
[http://dx.doi.org/10.1016/j.biortech.2015.06.073] [PMID: 26133470]
[7]
Zhang, C.; Madbouly, S.A.; Kessler, M.R. Biobased polyurethanes prepared from different vegetable oils. ACS Appl. Mater. Interfaces, 2015, 7(2), 1226-1233.
[http://dx.doi.org/10.1021/am5071333] [PMID: 25541678]
[8]
Biermann, U.; Bornscheuer, U.; Meier, M.A.R.; Metzger, J.O.; Schäfer, H.J. Oils and fats as renewable raw materials in chemistry. Angew. Chem. Int. Ed. Engl., 2011, 50(17), 3854-3871.
[http://dx.doi.org/10.1002/anie.201002767] [PMID: 21472903]
[9]
Vegetable oils:, global consumption by oil type 2013/14 to 2018/2019 [EB/OL].. https://www.statista.com/statistics/263937/vegetable-oils-global-consumption (Accessed May 22, 2019).
[10]
Liang, B.; Kuang, S.; Huang, J.; Man, L.; Yang, Z.; Yuan, T. Synthesis and characterization of novel renewable tung oil-based UV-curable active monomers and bio-based copolymers. Prog. Org. Coat., 2019, 129, 116-124.
[http://dx.doi.org/10.1016/j.porgcoat.2019.01.007]
[11]
Liang, B.; Zhao, J.; Li, G.; Huang, Y.; Yang, Z.; Yuan, T. Facile synthesis and characterization of novel multi-functional bio-based acrylate prepolymers derived from tung oil and its application in UV-curable coatings. Ind. Crops Prod., 2019, 138 111585
[http://dx.doi.org/10.1016/j.indcrop.2019.111585]
[12]
Huang, Y.; Ye, G.; Yang, J. Synthesis and properties of UV-curable acrylate functionalized tung oil based resins via Diels-Alder reaction. Prog. Org. Coat., 2015, 78, 28-34.
[http://dx.doi.org/10.1016/j.porgcoat.2014.10.011]
[13]
Liu, J.; Liu, R.; Zhang, X.; Li, Z.; Tang, H.; Liu, X. Preparation and properties of UV-curable multi-arms cardanol-based acrylates. Prog. Org. Coat., 2016, 90, 126-131.
[http://dx.doi.org/10.1016/j.porgcoat.2015.10.012]
[14]
Wang, Q.; Chen, G.; Cui, Y.; Tian, J.; He, M.; Yang, J. Castor oil based biothiol as a highly stable and self-initiated oligomer for photoinitiator-free UV coatings. ACS Sustain. Chem. Eng., 2016, 5(1), 376-381.
[http://dx.doi.org/10.1021/acssuschemeng.6b01756]
[15]
Li, P.; Ma, S.Q.; Dai, J.Y.; Liu, X.Q.; Jiang, Y.H.; Wang, S.; Wei, J.J.; Chen, J.; Zhu, J. Itaconic acid as a green alternative to acrylic acid for producing a soybean oil-based thermoset: synthesis and properties. ACS Sustain. Chem. Eng., 2016, 5(1), 1228-1236.
[http://dx.doi.org/10.1021/acssuschemeng.6b02654]
[16]
Liu, R.; Zhang, X.; Zhu, J.J.; Liu, X.Y.; Wang, Z.; Yan, J.J. UV-curable coatings from multiarmed cardanol-based acrylate oligomers. ACS Sustain. Chem. Eng., 2015, 3(7), 1313-1320.
[http://dx.doi.org/10.1021/acssuschemeng.5b00029]
[17]
Wu, Q.; Hu, Y.; Tang, J.J.; Zhang, J.; Wang, C.N.; Shang, Q.Q.; Feng, G.D.; Liu, C.G.; Zhou, Y.H.; Lei, W. High-performance soybean-oil-based epoxy acrylate resins: “green” synthesis and application in uv-curable coatings. ACS Sustain. Chem. Eng., 2018, 6(7), 8340-8349.
[http://dx.doi.org/10.1021/acssuschemeng.8b00388]
[18]
Zhang, P.; Zhang, J. One-step acrylation of soybean oil (SO) for the preparation of SO-based macromonomers. Green Chem., 2013, 15(3), 641-645.
[http://dx.doi.org/10.1039/c3gc36961g]
[19]
Sharmin, E.; Zafar, F.; Akram, D.; Alam, M.; Ahmad, S. Recent advances in vegetable oils based environment friendly coatings: a review. Ind. Crops Prod., 2015, 76(15), 215-229.
[http://dx.doi.org/10.1016/j.indcrop.2015.06.022]
[20]
Fertier, L.; Koleilat, H.; Stemmelen, M.; Giani, O.; Duhamel, C.J.; Lapinte, V.; Robin, J.J. The use of renewable feedstock in UV-curable materials - A new age for polymers and green chemistry. Prog. Polym. Sci., 2013, 38(6), 932-962.
[http://dx.doi.org/10.1016/j.progpolymsci.2012.12.002]
[21]
Kiss, N.Z.; Bálint, E.; Keglevich, G. Milestones in Microwave Chemistry-SpringerBriefs in Molecular Science; Springer International Publishing, 2016.
[http://dx.doi.org/10.1007/978-3-319-30632-2_2]
[22]
Tierney, J.P.; Lidström, P. Microwave Assisted Organic Synthesis; Blackwell Publishing: Oxford, 2005.
[http://dx.doi.org/10.1002/9781444305548]
[23]
Ortiz, A.D.; Prieto, P.; de la Hoz, A. A critical overview on the effect of microwave irradiation in organic synthesis. Chem. Rec., 2019, 19(1), 85-97.
[http://dx.doi.org/10.1002/tcr.201800059] [PMID: 30035361]
[24]
Wathey, B.; Tierney, J.; Lidström, P.; Westman, J. The impact of microwave-assisted organic chemistry on drug discovery. Drug Discov. Today, 2002, 7(6), 373-380.
[http://dx.doi.org/10.1016/S1359-6446(02)02178-5] [PMID: 11893546]
[25]
Sinnwell, S.; Ritter, H. Recent advances in microwave-assisted polymer synthesis. Aust. J. Chem., 2007, 60(10), 729-743.
[http://dx.doi.org/10.1071/CH07219]
[26]
Hoogenboom, R.; Schubert, U.S. Microwave‐assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromol. Rapid Commun., 2007, 28(4), 368-386.
[http://dx.doi.org/10.1002/marc.200600749]
[27]
Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41(5), 629-639.
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[28]
Sosnik, A.; Gotelli, G.; Abraham, G.A. Microwave-assisted Polymer Synthesis (MAPS) as a tool in biomaterials science: how new and how powerful. Prog. Polym. Sci., 2011, 36(8), 1050-1078.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.12.001]
[29]
Kempe, K.; Becer, C.R.; Schubert, U.S. Microwave-assisted polymerizations: recent status and future perspectives. Macromolecules, 2011, 44(15), 5825-5842.
[http://dx.doi.org/10.1021/ma2004794]
[30]
Ebner, C.; Bodner, T.; Stelzer, F.; Wiesbrock, F. One decade of microwave-assisted polymerizations: quo vadis? Macromol. Rapid Commun., 2011, 32(3), 254-288.
[http://dx.doi.org/10.1002/marc.201000539] [PMID: 21433172]
[31]
Muley, P.D.; Boldor, D. Investigation of microwave dielectric properties of biodiesel components. Bioresour. Technol., 2013, 127, 165-174.
[http://dx.doi.org/10.1016/j.biortech.2012.10.008] [PMID: 23131637]
[32]
Sinnwell, S.; Ritter, H. Recent advances in microwave-assisted polymer synthesis. Aust. J. Chem., 2007, 60(10), 729-743.
[http://dx.doi.org/10.1071/CH07219]
[33]
de la Hoz, A.; Ortiz, A.D.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[34]
Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis - a critical technology overview. Green Chem., 2004, 6(3), 128-141.
[http://dx.doi.org/10.1039/B310502D]
[35]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. Engl., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[36]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[37]
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Duncan, S.M. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27(41), 4945-4948.
[http://dx.doi.org/10.1016/S0040-4039(00)85103-5]
[38]
Keglevich, G.; Kiss, N.Z.; Mucsi, Z.; Körtvélyesi, T. Insights into a surprising reaction: the microwave-assisted direct esterification of phosphinic acids. Org. Biomol. Chem., 2012, 10(10), 2011-2018.
[http://dx.doi.org/10.1039/c2ob06972e] [PMID: 22293944]
[39]
Mucsi, Z. A quantum chemical study on the mechanism and energetics of the direct esterification, thioesterification and amidation of 1-hydroxy-3-methyl-3-phospholene 1-oxide. RSC Advances, 2014, 4, 11948-11954.
[http://dx.doi.org/10.1039/c3ra47456a]
[40]
Keglevich, G.; Greiner, I. An interpretation of the rate enhancing effect of microwaves-modelling the distribution and effect of local overheating - a case study. Curr. Org. Chem., 2015, 19(14), 1436-1440.
[http://dx.doi.org/10.2174/1385272819666150528004505]
[41]
Kiss, N.Z. A comparative study on the thermal and microwave-assisted direct esterification of phenyl-H-phosphinic acid-modeling the rate enhancing effect of MWs. Curr. Org. Chem., 2016, 6(4), 307-311.
[42]
Keglevich, G.; Mucsi, Z. Interpretation of the rate enhancing effect of microwaves. In: Microwave Chemistry; De Gruyter: Berlin, 2017.
[http://dx.doi.org/10.1515/9783110479935-004]
[43]
Laurent, R.; Laporterie, A.; Dubac, J.; Berlan, J.; Lefeuvre, S.; Audhuy, M. Specific activation by microwaves: myth or reality? J. Org. Chem., 1992, 57(26), 7099-7102.
[http://dx.doi.org/10.1021/jo00052a022]
[44]
Chemat, F.; Esveld, E. Microwave super‐heated boiling of organic liquids: origin, effect and application. Chem. Eng. Technol., 2001, 24(7), 735-744.
[http://dx.doi.org/10.1002/1521-4125(200107)24:7<735:AID-CEAT735>3.0.CO;2-H]
[45]
Kuhnert, N. Microwave-assisted reactions in organic synthesis--are there any nonthermal microwave effects? Angew. Chem. Int. Ed. Engl., 2002, 41(11), 1863-1866.
[http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1863:AID-ANIE1863>3.0.CO;2-L] [PMID: 19750616]
[46]
Mishra, V.K.; Goswami, R. A review of production, properties and advantages of biodiesel. Biofuels, 2018, 9(2), 273-289.
[http://dx.doi.org/10.1080/17597269.2017.1336350]
[47]
Shahid, E.M.; Jamal, Y. Production of biodiesel: a technical review. Renew. Sustain. Energy Rev., 2011, 15(9), 4732-4745.
[http://dx.doi.org/10.1016/j.rser.2011.07.079]
[48]
Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev., 2012, 16(4), 2070-2093.
[http://dx.doi.org/10.1016/j.rser.2012.01.003]
[49]
Ahmad, A.L.; Yasin, N.H.M.; Derek, C.J.C.; Lim, J.K. Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sustain. Energy Rev., 2011, 15(1), 584-593.
[http://dx.doi.org/10.1016/j.rser.2010.09.018]
[50]
Liu, X.; He, H.; Wang, Y. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 2008, 87(2), 216-221.
[http://dx.doi.org/10.1016/j.fuel.2007.04.013]
[51]
Kim, D.; Choi, J.; Kim, G.J.; Seol, S.K.; Ha, Y.C.; Vijayan, M.; Jung, S.; Kim, B.H.; Lee, G.D.; Park, S.S. Microwave-accelerated energy-efficient esterification of free fatty acid with a heterogeneous catalyst. Bioresour. Technol., 2011, 102(3), 3639-3641.
[http://dx.doi.org/10.1016/j.biortech.2010.11.067] [PMID: 21144741]
[52]
Gole, V.L.; Gogate, P.R. Intensification of glycerolysis reaction of higher free fatty acid containing sustainable feedstock using microwave irradiation. Fuel Process. Technol., 2014, 118, 110-116.
[http://dx.doi.org/10.1016/j.fuproc.2013.08.018]
[53]
Lieu, T.; Yusup, S.; Moniruzzaman, M. Kinetic study on microwave-assisted esterification of free fatty acids derived from Ceiba pentandra Seed Oil. Bioresour. Technol., 2016, 211, 248-256.
[http://dx.doi.org/10.1016/j.biortech.2016.03.105] [PMID: 27019128]
[54]
Zhang, H.; Ding, J.; Zhao, Z. Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production. Bioresour. Technol., 2012, 123, 72-77.
[http://dx.doi.org/10.1016/j.biortech.2012.06.082] [PMID: 22940301]
[55]
Liu, W.; Yin, P.; Liu, X.G.; Chen, W.; Chen, H.; Liu, C.P.; Qu, R.G.; Xu, Q. Microwave assisted esterification of free fatty acid over a heterogeneous catalyst for biodiesel production. Energy Convers. Manage., 2013, 76, 1009-1014.
[http://dx.doi.org/10.1016/j.enconman.2013.08.051]
[56]
Mazo, P.; Rios, L.; Estenoz, D.; Sponton, M. Self-esterification of partially maleated castor oil using conventional and microwave heating. Chem. Eng. J., 2012, 185, 347-351.
[http://dx.doi.org/10.1016/j.cej.2012.01.099]
[57]
Azcan, N.; Danisman, A. Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel, 2007, 86(17-18), 2639-2644.
[http://dx.doi.org/10.1016/j.fuel.2007.05.021]
[58]
Azcan, N.; Danisman, A. Microwave assisted transesterification of rapeseed oil. Fuel, 2008, 87(10-11), 1781-1788.
[http://dx.doi.org/10.1016/j.fuel.2007.12.004]
[59]
Hernando, J.; Leton, P.; Matia, M.P.; Novella, J.L.; Builla, J.A. Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes. Fuel, 2007, 86(10-11), 1641-1644.
[http://dx.doi.org/10.1016/j.fuel.2006.11.003]
[60]
Hsiao, M.C.; Lin, C.C.; Chang, Y.H.; Chen, L.C. Ultrasonic mixing and closed microwave irradiation-assisted transesterification of soybean oil. Fuel, 2010, 89(12), 3618-3622.
[http://dx.doi.org/10.1016/j.fuel.2010.07.044]
[61]
Manco, I.; Giordani, L.; Vaccari, V.; Oddone, M. Microwave technology for the biodiesel production: Analytical assessments. Fuel, 2012, 95, 108-112.
[http://dx.doi.org/10.1016/j.fuel.2011.09.047]
[62]
Ardebili, S.M.S.; Ge, X.; Cravotto, G. Flow-mode biodiesel production from palm oil using a pressurized microwave reactor. Green Process. Synth., 2019, 8(1), 8-14.
[http://dx.doi.org/10.1515/gps-2017-0116]
[63]
Refaat, A.A.; Sheltawy, S.T.E.; Sadek, K.U. Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation. Int. J. Environ. Sci. Technol., 2008, 5(3), 315-322.
[http://dx.doi.org/10.1007/BF03326026]
[64]
Selvaraj, R.; Moorthy, G.; Kumar, R.V.; Sivasubramanian, V. Microwave mediated production of FAME from waste cooking oil: modelling and optimization of process parameters by RSM and ANN approach. Fuel, 2019, 237, 40-49.
[http://dx.doi.org/10.1016/j.fuel.2018.09.147]
[65]
Hsiao, M.C.; Lin, C.C.; Chang, Y.H. Microwave irradiation-assisted transesterification of soybean oil to biodiesel catalyzed by nanopowder calcium oxide. Fuel, 2011, 90(5), 1963-1967.
[http://dx.doi.org/10.1016/j.fuel.2011.01.004]
[66]
Patil, P.; Gude, V.G.; Pinappu, S.; Deng, S.G. Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions. Chem. Eng. J., 2011, 168(3), 1296-1300.
[http://dx.doi.org/10.1016/j.cej.2011.02.030]
[67]
Mahfud, M.; Suryanto, A.; Qadariyah, L.; Suprapto, S.; Kusuma, H.S. Production of methyl ester from coconut oil using microwave: kinetic of transesterification reaction using heterogeneous CaO catalyst. Kor. Chem. Eng. Res., 2018, 56(2), 275-280.
[http://dx.doi.org/10.9713/kcer.2018.56.2.275]
[68]
Zhang, S.; Zu, Y.G.; Fu, Y.J.; Luo, M.; Zhang, D.Y.; Efferth, T. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresour. Technol., 2010, 101(3), 931-936.
[http://dx.doi.org/10.1016/j.biortech.2009.08.069] [PMID: 19793648]
[69]
Liu, J.Z.; Cui, Q.; Kang, Y.F.; Meng, Y.; Gao, M.Z.; Efferth, T.; Fu, Y.J. Euonymus maackii Rupr. Seed oil as a new potential non-edible feedstock for biodiesel. Renew. Energy, 2019, 133, 261-267.
[http://dx.doi.org/10.1016/j.renene.2018.10.035]
[70]
Yu, D.H.; Tian, L.; Ma, D.X.; Wu, H.; Wang, Z.; Wang, L.; Fang, X.X. Microwave-assisted fatty acid methyl ester production from soybean oil by Novozym 435. Green Chem., 2010, 12(5), 844-850.
[http://dx.doi.org/10.1039/b927073f]
[71]
Ding, H.; Ye, W.; Wang, Y.; Wang, X.Q.; Li, L.J.; Liu, D.; Gui, J.Z.; Song, C.F.; Ji, N. Process intensification of transesterification for biodiesel production from palm oil: microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids. Energy, 2018, 144, 957-967.
[http://dx.doi.org/10.1016/j.energy.2017.12.072]
[72]
Mazzocchia, C.; Modica, G.; Kaddouri, A.; Nannicini, R. Fatty acid methyl esters synthesis from triglycerides over heterogeneous catalysts in the presence of microwaves. C. R. Chim., 2004, 7(6-7), 601-605.
[http://dx.doi.org/10.1016/j.crci.2003.12.004]
[73]
Perin, G.; Álvaro, G.; Westphal, E.; Viana, L.; Jacob, R.G.; Lenardão, E.J.; D’Oca, M.G.M. Transesterification of castor oil assisted by microwave irradiation. Fuel, 2008, 87(12), 2838-2841.
[http://dx.doi.org/10.1016/j.fuel.2008.01.018]
[74]
Yuan, H.; Yang, B.L.; Zhu, G.L. Synthesis of biodiesel using microwave absorption catalysts. Energy Fuels, 2008, 23(1), 548-552.
[http://dx.doi.org/10.1021/ef800577j]
[75]
Meechai, T.; Kongchamdee, S.; Mar, W.W.; Somsook, E. Hydrogel-templated solid base catalysts for transesterification of soybean oil. J. Oleo Sci., 2018, 67(3), 355-367.
[http://dx.doi.org/10.5650/jos.ess17174] [PMID: 29459513]
[76]
Coral, N.; Brasil, H.; Rodrigues, E.; Costa, C.E.F.D.; Rumjanek, V. Microwave-modified hydrotalcites for the transesterification of soybean oil. Sustain. Chem. Pharm., 2019, 11, 49-53.
[http://dx.doi.org/10.1016/j.scp.2019.01.002]
[77]
Mazo, P.; Estenoz, D.; Sponton, M.; Rios, L. Kinetics of the transesterification of castor oil with maleic anhydride using conventional and microwave heating. J. Am. Oil Chem. Soc., 2012, 89(7), 1355-1361.
[http://dx.doi.org/10.1007/s11746-012-2020-3]
[78]
Suppalakpanya, K.; Ratanawilai, S.B.; Tongurai, C. Production of ethyl ester from crude palm oil by two-step reaction with a microwave system. Fuel, 2010, 89(8), 2140-2144.
[http://dx.doi.org/10.1016/j.fuel.2010.04.003]
[79]
Kamath, H.V.; Regupathi, I.; Saidutta, M.B. Optimization of two step karanja biodiesel synthesis under microwave irradiation. Fuel Process. Technol., 2011, 92(1), 100-105.
[http://dx.doi.org/10.1016/j.fuproc.2010.09.003]
[80]
Li, T.F.; Shen, C.; Zhang, H.X.; Wang, X.Q.; Jiao, J.; Wang, W.; Gai, Q.Y.; Liu, J.Z.; Liu, T.S.; Fu, Y.J. Transesterification of Pistacia chinensis seed oil using a porous cellulose-based magnetic heterogeneous catalyst. Int. J. Green Energy, 2019, 16(3), 228-235.
[http://dx.doi.org/10.1080/15435075.2018.1555759]
[81]
Loupy, A.; Petit, A.; Ramdani, M.; Yvanaeff, C. The synthesis of esters under microwave irradiation using dry-media conditions. Can. J. Chem., 1993, 71(1), 90-95.
[http://dx.doi.org/10.1139/v93-013]
[82]
Xing, C.; Tan, R.; Hao, P.; Gao, M.; Yin, D.; Yin, D. Graphene oxide supported chlorostannate (IV) ionic liquid: Brønsted-Lewis acidic combined catalyst for highly efficient Baeyer-Villiger oxidation in water. Mol. Catal., 2017, 433, 37-47.
[http://dx.doi.org/10.1016/j.mcat.2016.12.003]
[83]
Yang, H.; Jiang, B.; Sun, Y.; Hao, L.; Huang, Z.; Zhang, L. Synthesis and oxidative desulfurization of novel lactam-based Brønsted-Lewis acidic ionic liquids. Chem. Eng. J., 2016, 306, 131-138.
[http://dx.doi.org/10.1016/j.cej.2016.07.044]
[84]
Li, H.; Qiao, Y.; Hua, L.; Hou, Z.; Feng, B.; Pan, Z. Imidazolium polyoxometalate: an ionic liquid catalyst for esterification and oxidative esterification. ChemCatChem, 2010, 2(9), 1165-1170.
[http://dx.doi.org/10.1002/cctc.201000021]
[85]
Wang, S.; Yang, Z.; Peng, N.; Zhou, J.; Yong, X.; Yuan, H.; Zheng, T. Optimization of ionic liquids-based microwave-assisted hydrolysis of puerarin and daidzein derivatives from Radix Puerariae Lobatae extract. Food Chem., 2018, 256, 149-155.
[http://dx.doi.org/10.1016/j.foodchem.2017.12.080] [PMID: 29606431]
[86]
Mallakpour, S.; Dinari, M. A study of the ionic liquid mediated microwave heating for the synthesis of new thermally stable and optically active aromatic polyamides under green procedure. Macromol. Res., 2010, 18(2), 129-136.
[http://dx.doi.org/10.1007/s13233-009-0085-0]
[87]
Shi, H.; Zhu, W.; Li, H.; Liu, H.; Zhang, M.; Yan, Y.S.; Wang, Z.G. Microwave-accelerated esterification of salicylic acid using Brönsted acidic ionic liquids as catalysts. Catal. Commun., 2010, 11(7), 588-591.
[http://dx.doi.org/10.1016/j.catcom.2009.12.025]
[88]
Guerrero-Sanchez, C.; Hoogenboom, R.; Schubert, U.S. Fast and “green” living cationic ring opening polymerization of 2-ethyl-2-oxazoline in ionic liquids under microwave irradiation. Chem. Commun. (Camb.), 2006, (36), 3797-3799.
[http://dx.doi.org/10.1039/B608364A] [PMID: 16969461]
[89]
Hoffmann, J.; Nüchter, M.; Ondruschka, B.; Wasserscheid, P. Ionic liquids and their heating behaviour during microwave irradiation - a state of the art report and challenge to assessment. Green Chem., 2003, 5(3), 296-299.
[http://dx.doi.org/10.1039/B212533A]
[90]
Aguilera, A.F.; Tolvanen, P.; Eränen, K.; Leveneur, S.; Salmi, T. Epoxidation of oleic acid under conventional heating and microwave radiation. Chem. Eng. Process., 2016, 102, 70-87.
[http://dx.doi.org/10.1016/j.cep.2016.01.011]
[91]
Aguilera, A.F.; Tolvanen, P.; Heredia, S.; Samson, T.; Oger, A.; Verove, A.; Leveneur, S.; Mikkola, J.P.; Slami, T. Epoxidation of fatty acids and vegetable oils assisted by microwaves catalyzed by a cation exchange resin. Ind. Eng. Chem. Res., 2018, 57(11), 3876-3886.
[http://dx.doi.org/10.1021/acs.iecr.7b05293]
[92]
Aguilera, A.F.; Tolvanen, P.; Oger, A.; Eränen, K.; Leveneur, S.; Mikkola, J.P.; Salmi, T. Screening of ion exchange resin catalysts for epoxidation of oleic acid under the influence of conventional and microwave heating. J. Chem. Technol. Biotechnol., 2019, 94(9), 3020-3031.
[http://dx.doi.org/10.1002/jctb.6112]
[93]
Aguilera, A.F.; Tolvanen, P.; Eränen, K.; Wärnå, J.; Leveneur, S.; Marchant, T.; Salmi, T. Kinetic modelling of Prileschajew epoxidation of oleic acid under conventional heating and microwave irradiation. Chem. Eng. Sci., 2019, 199(18), 426-438.
[http://dx.doi.org/10.1016/j.ces.2019.01.035]
[94]
Pillai, U.R.; Demessie, E.S.; Varma, R.S. Microwave-expedited olefin epoxidation over hydrotalcites using hydrogen peroxide and acetonitrile. Tetrahedron Lett., 2002, 43(16), 2909-2911.
[http://dx.doi.org/10.1016/S0040-4039(02)00426-4]
[95]
Leveneur, S.; Ledoux, A.; Estel, L.; Taouk, B.; Salmi, T. Epoxidation of vegetable oils under microwave irradiation. Chem. Eng. Res. Des., 2014, 92(8), 1495-1502.
[http://dx.doi.org/10.1016/j.cherd.2014.04.010]
[96]
Piccolo, D.; Vianello, C.; Lorenzetti, A.; Maschio, G. Epoxidation of soybean oil enhanced by microwave radiation. Chem. Eng. J., 2018, 377 120113
[http://dx.doi.org/10.1016/j.cej.2018.10.050]
[97]
Liu, C.G.; Liu, Z.S.; Tisserat, B.H.; Wang, R.P.; Schuman, T.P.; Zhou, Y.H.; Hu, L.H. Microwave-assisted maleation of tung oil for bio-based products with versatile applications. Ind. Crops Prod., 2015, 71, 185-196.
[http://dx.doi.org/10.1016/j.indcrop.2015.02.066]
[98]
Sacristán, M.; Ronda, J.C.; Galià, M.; Cádiz, V. Rapid soybean oil copolymers synthesis by microwave‐assisted cationic polymerization. Macromol. Chem. Phys., 2010, 211(7), 801-808.
[http://dx.doi.org/10.1002/macp.200900571]
[99]
Alam, M.; Alandis, N.M. Microwave assisted synthesis of urethane modified polyesteramide coatings from Jatropha seed oil. J. Polym. Environ., 2011, 19(3), 784-792.
[http://dx.doi.org/10.1007/s10924-011-0328-y]
[100]
Alam, M.; Alandis, N.M. Microwave-assisted preparation of urethane-modified polyetheramide coatings from Jatropha seed oil. High Perform. Polym., 2012, 24(6), 538-545.
[http://dx.doi.org/10.1177/0954008312445227]
[101]
Dworakowska, S.; Bogdal, D.; Prociak, A. Microwave-assisted synthesis of polyols from rapeseed oil and properties of flexible polyurethane foams. Polymers (Basel), 2012, 4(3), 1462-1477.
[http://dx.doi.org/10.3390/polym4031462]
[102]
Ahmadi, R.; Ullah, A. Microwave-assisted rapid synthesis of a polyether from a plant oil derived monomer and its optimization by Box-Behnken design. RSC Advances, 2017, 7(45), 27946-27959.
[http://dx.doi.org/10.1039/C7RA03278A]
[103]
Shemy, N.E.; Haggag, K.; Kharady, E.E.; Sayed, H.E. Synthesis and applications of nano binder based on plant oils. J. Nat. Fibers, 2017, 14(1), 10-25.
[http://dx.doi.org/10.1080/15440478.2015.1133364]
[104]
Smith, M.; Payne, A.; Edwards, K.; Morris, S.; Beckler, B.; Quirino, R.L. Effect of microwave cure on the thermo-mechanical properties of tung oil-based/carbon nanotube composites. Coatings, 2015, 5(3), 557-575.
[http://dx.doi.org/10.3390/coatings5030557]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy