Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Cytotoxic Activity of Novel Mono- and Bis-Indole Derivatives: Analogues of Marine Alkaloid Nortopsentin

Author(s): Mona Monir Kamel, Mohamed Kamal Abdel-hameid, Hala Bakr El-Nassan* and Eman Adel El-Khouly

Volume 17, Issue 7, 2021

Published on: 09 May, 2020

Page: [779 - 789] Pages: 11

DOI: 10.2174/1573406416666200509235305

Price: $65

conference banner
Abstract

Background: The oceans cover more than 70% of the earth’s surface, which represents over 95% of the biosphere. Therefore, oceans provide a wealth of marine invertebrates, especially sponges, ascidians, bryozoans and molluscs that produce structurally unique bioactive metabolites such as alkaloids. The bioactive scaffolds of marine alkaloids exhibit cytotoxic activities against human cancer cell lines.

Objective: To prepare analogues of the marine alkaloid nortopsentin [having 2,4-bis(3'- indolyl)imidazole scaffold] as cytotoxic agents via structural modification of the core imidazole ring and one of the side indole rings.

Methods: Four series of nortopsentin analogues were synthesized in which the imidazole ring was replaced by pyrazole, pyrido[2,3-d]pyrimidinone and pyridine rings. Furthermore, one of the side indole rings was replaced by substituted phenyl moiety. The target compounds were tested for their in vitro cytotoxic activity against HCT-116 cell-line and the most potent compound was subjected to further investigation on its effect on HCT-116 cell cycle progression.

Results: The cytotoxic screening of the synthesized compounds revealed that bis-indolylpyridinedicarbonitriles 8a-d exhibited the most potent cytotoxic activity with IC50=2.6-8.8 μM. Compound 8c was further tested by flow cytometry analysis to explore its effect on HCT-116 cell cycle progression that, in turn, indicated its anti-proliferative effect.

Conclusion: Marine-derived bis-indole alkaloids (nortopsentins) have emerged as a new class of indole-based antitumor agents. The design of new analogues involved several modifications in order to obtain more selective and potent cytotoxic agents. Indole derivatives bearing a pyridine core displayed more potent cytotoxic activity than those containing pyrido[2,3-d]pyrimidin-4(1H)-one moiety.

Keywords: 3-Indolyl pyrazoles, 3-indolyl pyrido[2, 3-d]pyrimidines, bis-indole derivatives, nortopsentins, anticancer activity, cell cycle analysis.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Ali, R.; Mirza, Z.; Ashraf, G.M.D.; Kamal, M.A.; Ansari, S.A.; Damanhouri, G.A.; Abuzenadah, A.M.; Chaudhary, A.G.; Sheikh, I.A. New anticancer agents: recent developments in tumor therapy. Anticancer Res., 2012, 32(7), 2999-3005.
[PMID: 22753764]
[3]
Gentile, C.; Martorana, A.; Lauria, A.; Bonsignore, R. Kinase Inhibitors in Multitargeted Cancer Therapy. Curr. Med. Chem., 2017, 24(16), 1671-1686.
[http://dx.doi.org/10.2174/0929867324666170112112734] [PMID: 28078996]
[4]
Song, X.; Xiong, Y.; Qi, X.; Tang, W.; Dai, J.; Gu, Q.; Li, J. Molecular Targets of Active Anticancer Compounds Derived from Marine Sources. Mar. Drugs, 2018, 16(5), 175.
[http://dx.doi.org/10.3390/md16050175] [PMID: 29786660]
[5]
Skropeta, D.; Pastro, N.; Zivanovic, A. Kinase inhibitors from marine sponges. Mar. Drugs, 2011, 9(10), 2131-2154.
[http://dx.doi.org/10.3390/md9102131] [PMID: 22073013]
[6]
Li, X.; Li, J-R.; Chen, K.; Zhu, H-L. A functional scaffold in marine alkaloid: an anticancer moiety for human. Curr. Med. Chem., 2013, 20(31), 3903-3922.
[http://dx.doi.org/10.2174/09298673113209990186] [PMID: 23895689]
[7]
Golantsov, N.E.; Festa, A.A.; Karchava, A.V.; Yurovskaya, M.A. Marine Indole Alkaloids Containing an 1-(Indol-3-Yl)Ethane-1,2-Diamine Fragment. Chem. Heterocycl. Compd., 2013, 49(2), 203-225.
[http://dx.doi.org/10.1007/s10593-013-1238-9]
[8]
Ruiz-Torres, V.; Encinar, J.A.; Herranz-López, M.; Pérez-Sánchez, A.; Galiano, V.; Barrajón-Catalán, E.; Micol, V. An Updated Review on Marine Anticancer Compounds: The Use of Virtual Screening for the Discovery of Small-Molecule Cancer Drugs. Molecules, 2017, 22(7), 1037.
[http://dx.doi.org/10.3390/molecules22071037] [PMID: 28644406]
[9]
Sakemi, S. Sun, H.H.; Nortopsentins, A. B, and C. Cytotoxic and Antifungal Imidazolediylbis[Indoles] from the Sponge Spongoaorites Ruetzleri. J. Org. Chem., 1991, 56(13), 4304-4307.
[http://dx.doi.org/10.1021/jo00013a044]
[10]
Sreenivasulu, R.; Durgesh, R.; Jadav, S.S.; Sujitha, P.; Kumar, C.G.; Raju, R.R. Synthesis, Anticancer Evaluation and Molecular Docking Studies of Bis (Indolyl) Triazinones, Nortopsentin Analogs. Chem. Pap., 2018, 72(6), 1369-1378.
[http://dx.doi.org/10.1007/s11696-017-0372-8]
[11]
Parrino, B.; Attanzio, A.; Spanò, V.; Cascioferro, S.; Montalbano, A.; Barraja, P.; Tesoriere, L.; Diana, P.; Cirrincione, G.; Carbone, A. Synthesis, antitumor activity and CDK1 inhibiton of new thiazole nortopsentin analogues. Eur. J. Med. Chem., 2017, 138, 371-383.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.052] [PMID: 28688277]
[12]
Ji, X.; Guo, J.; Liu, Y.; Lu, A.; Wang, Z.; Li, Y.; Yang, S.; Wang, Q. Marine-Natural-Product Development: First Discovery of Nortopsentin Alkaloids as Novel Antiviral, Anti-phytopathogenic-Fungus, and Insecticidal Agents. J. Agric. Food Chem., 2018, 66(16), 4062-4072.
[http://dx.doi.org/10.1021/acs.jafc.8b00507] [PMID: 29630371]
[13]
Kamel, M.M.; Mohamed Kamal Abdel-hameid, M.K.; El-Nassan, H.B.; El-Khouly, E.A. Recent advances in the synthesis of nortopsentin analogues and their biological applications (minireview). Chem. Heterocycl. Compd., 2020, 56, 499-502.http://hgs.osi.lv/index.php/hgs/editor/submission/5506
[14]
Carbone, A.; Pennati, M.; Barraja, P.; Montalbano, A.; Parrino, B.; Spanò, V.; Lopergolo, A.; Sbarra, S.; Doldi, V.; Zaffaroni, N.; Cirrincione, G.; Diana, P. Synthesis and antiproliferative activity of substituted 3[2-(1H-indol-3-yl)- 1,3-thiazol-4-yl]-1H-pyrrolo[3,2-b]pyridines, marine alkaloid nortopsentin analogues. Curr. Med. Chem., 2014, 21(14), 1654-1666.
[http://dx.doi.org/10.2174/09298673113206660307] [PMID: 24180279]
[15]
Spanò, V.; Attanzio, A.; Cascioferro, S.; Carbone, A.; Montalbano, A.; Barraja, P.; Tesoriere, L.; Cirrincione, G.; Diana, P.; Parrino, B. Synthesis and Antitumor Activity of New Thiazole Nortopsentin Analogs. Mar. Drugs, 2016, 14(12), 226.
[http://dx.doi.org/10.3390/md14120226] [PMID: 27983614]
[16]
Guo, J.; Hao, Y.; Ji, X.; Wang, Z.; Liu, Y.; Ma, D.; Li, Y.; Pang, H.; Ni, J.; Wang, Q. Optimization, Structure-Activity Relationship, and Mode of Action of Nortopsentin Analogues Containing Thiazole and Oxazole Moieties. J. Agric. Food Chem., 2019, 67(36), 10018-10031.
[http://dx.doi.org/10.1021/acs.jafc.9b04093] [PMID: 31448918]
[17]
Carbone, A.; Pennati, M.; Parrino, B.; Lopergolo, A.; Barraja, P.; Montalbano, A.; Spanò, V.; Sbarra, S.; Doldi, V.; De Cesare, M.; Cirrincione, G.; Diana, P.; Zaffaroni, N. Novel 1H-pyrrolo[2,3-b]pyridine derivative nortopsentin analogues: synthesis and antitumor activity in peritoneal mesothelioma experimental models. J. Med. Chem., 2013, 56(17), 7060-7072.
[http://dx.doi.org/10.1021/jm400842x] [PMID: 23919303]
[18]
Parrino, B.; Carbone, A.; Di Vita, G.; Ciancimino, C.; Attanzio, A.; Spanò, V.; Montalbano, A.; Barraja, P.; Tesoriere, L.; Livrea, M.A.; Diana, P.; Cirrincione, G. 3-[4-(1H-indol-3-yl)-1,3-thiazol-2-yl]-1H-pyrrolo[2,3-b]pyridines, nortopsentin analogues with antiproliferative activity. Mar. Drugs, 2015, 13(4), 1901-1924.
[http://dx.doi.org/10.3390/md13041901] [PMID: 25854642]
[19]
Carbone, A.; Parrino, B.; Di Vita, G.; Attanzio, A.; Spanò, V.; Montalbano, A.; Barraja, P.; Tesoriere, L.; Livrea, M.A.; Diana, P.; Cirrincione, G. Synthesis and antiproliferative activity of thiazolyl-bis-pyrrolo[2,3-b]pyridines and indolyl-thiazolyl-pyrrolo[2,3-c]pyridines, nortopsentin analogues. Mar. Drugs, 2015, 13(1), 460-492.
[http://dx.doi.org/10.3390/md13010460] [PMID: 25603343]
[20]
Carbone, A.; Parrino, B.; Cusimano, M.G.; Spanò, V.; Montalbano, A.; Barraja, P.; Schillaci, D.; Cirrincione, G.; Diana, P.; Cascioferro, S. New Thiazole Nortopsentin Analogues Inhibit Bacterial Biofilm Formation. Mar. Drugs, 2018, 16(8), 274.
[http://dx.doi.org/10.3390/md16080274] [PMID: 30081568]
[21]
Diana, P.; Carbone, A.; Barraja, P.; Montalbano, A.; Martorana, A.; Dattolo, G.; Gia, O.; Dalla Via, L.; Cirrincione, G. Synthesis and antitumor properties of 2,5-bis(3′-indolyl)thiophenes: analogues of marine alkaloid nortopsentin. Bioorg. Med. Chem. Lett., 2007, 17(8), 2342-2346.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.065] [PMID: 17306531]
[22]
Diana, P.; Carbone, A.; Barraja, P.; Martorana, A.; Gia, O. DallaVia, L.; Cirrincione, G. 3,5-bis(3′-indolyl)pyrazoles, analogues of marine alkaloid nortopsentin: synthesis and antitumor properties. Bioorg. Med. Chem. Lett., 2007, 17(22), 6134-6137.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.042] [PMID: 17911018]
[23]
Diana, P.; Carbone, A.; Barraja, P.; Kelter, G.; Fiebig, H-H.; Cirrincione, G. Synthesis and antitumor activity of 2,5-bis(3′-indolyl)-furans and 3,5-bis(3′-indolyl)-isoxazoles, nortopsentin analogues. Bioorg. Med. Chem., 2010, 18(12), 4524-4529.
[http://dx.doi.org/10.1016/j.bmc.2010.04.061] [PMID: 20472437]
[24]
Carbone, A.; Parrino, B.; Barraja, P.; Spanò, V.; Cirrincione, G.; Diana, P.; Maier, A.; Kelter, G.; Fiebig, H-H. Synthesis and antiproliferative activity of 2,5-bis(3′-indolyl)pyrroles, analogues of the marine alkaloid nortopsentin. Mar. Drugs, 2013, 11(3), 643-654.
[http://dx.doi.org/10.3390/md11030643] [PMID: 23455514]
[25]
Kumar, D.; Arun, V.; Maruthi Kumar, N.; Acosta, G.; Noel, B.; Shah, K. A facile synthesis of novel bis-(indolyl)-1,3,4-oxadiazoles as potent cytotoxic agents. ChemMedChem, 2012, 7(11), 1915-1920.
[http://dx.doi.org/10.1002/cmdc.201200363] [PMID: 22997171]
[26]
Cascioferro, S.; Attanzio, A.; Di Sarno, V.; Musella, S.; Tesoriere, L.; Cirrincione, G.; Diana, P.; Parrino, B. New 1,2,4-Oxadiazole Nortopsentin Derivatives with Cytotoxic Activity. Mar. Drugs, 2019, 17(1), 35.
[http://dx.doi.org/10.3390/md17010035] [PMID: 30626057]
[27]
Jiang, B.; Xiong, X-N.; Yang, C-G. Synthesis and antitumor evaluation of novel monoindolyl-4-trifluoromethylpyridines and bisindolyl-4-trifluoromethylpyridines. Bioorg. Med. Chem. Lett., 2001, 11(4), 475-477.
[http://dx.doi.org/10.1016/S0960-894X(00)00704-6] [PMID: 11229751]
[28]
Slaett, J.; Romero, I.; Bergman, J. Cyanoacetylation of Indoles Pyrroles and Aromatic Amines with the Combination Cyanoacetic Acid and Acetic Anhydride. Synth., 2004., No. 16, 2760-2765.
[29]
Kamel, M.M.; Abdel-Hameid, M.K.; El-Nassan, H.B.; El-Khouly, E.A. Synthesis and Cytotoxicity Evaluation of Novel Indole Derivatives as Potential Anti-Cancer Agents. Med. Chem., 2019, 15(8), 873-882.
[http://dx.doi.org/10.2174/1573406415666190408125514] [PMID: 30961505]
[30]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[31]
Moore, G.E.; Mount, D.T.; Wendt, A.C. The growth of human tumor cells in tissue culture. Surg. Forum, 1958, 9, 572-576.
[PMID: 13635452]
[32]
Mohamed, G.A.; Al-Abd, A.M.; El-Halawany, A.M.; Abdallah, H.M.; Ibrahim, S.R.M. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J. Ethnopharmacol., 2017, 198, 302-312.
[http://dx.doi.org/10.1016/j.jep.2017.01.030] [PMID: 28108382]
[33]
Alaufi, O.M.; Noorwali, A.; Zahran, F.; Al-Abd, A.M.; Al-Attas, S. Cytotoxicity of thymoquinone alone or in combination with cisplatin (CDDP) against oral squamous cell carcinoma in vitro. Sci. Rep., 2017, 7(1), 13131.
[http://dx.doi.org/10.1038/s41598-017-13357-5] [PMID: 29030590]
[34]
Allam, R.M.; Al-Abd, A.M.; Khedr, A.; Sharaf, O.A.; Nofal, S.M.; Khalifa, A.E.; Mosli, H.A.; Abdel-Naim, A.B. Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol. Lett., 2018, 291, 77-85.
[http://dx.doi.org/10.1016/j.toxlet.2018.04.008] [PMID: 29654831]
[35]
Baghdadi, M.A.; Al-Abbasi, F.A.; El-Halawany, A.M.; Aseeri, A.H.; Al-Abd, A.M. Anticancer Profiling for Coumarins and Related O-Naphthoquinones from Mansonia gagei against Solid Tumor Cells In Vitro. Molecules, 2018, 23(5), 1020.
[http://dx.doi.org/10.3390/molecules23051020] [PMID: 29701706]
[36]
Bashmail, H.A.; Alamoudi, A.A.; Noorwali, A.; Hegazy, G.A. AJabnoor, G.; Choudhry, H.; Al-Abd, A.M. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci. Rep., 2018, 8(1), 11674.
[http://dx.doi.org/10.1038/s41598-018-30046-z] [PMID: 30076320]
[37]
Fekry, M.I.; Ezzat, S.M.; Salama, M.M.; Alshehri, O.Y.; Al-Abd, A.M. Bioactive glycoalkaloides isolated from Solanum melongena fruit peels with potential anticancer properties against hepatocellular carcinoma cells. Sci. Rep., 2019, 9(1), 1746.
[http://dx.doi.org/10.1038/s41598-018-36089-6] [PMID: 30741973]
[38]
Ahmad, I.; Mishra, N.K.; Ghosh, T. 5-(1H-Indol-3-Yl)-Pyrazolyl Derivatives as Colorimetric Sensor for Anions. J. Incl. Phenom. Macrocycl. Chem., 2013, 76(1–2), 183-191.
[http://dx.doi.org/10.1007/s10847-012-0188-7]
[39]
Rangel, J.; Díaz-Uribe, C.; Rodriguez-Serrano, A.; Zarate, X.; Serge, Y.; Vallejo, W.; Nogueras, M.; Trilleras, J.; Quiroga, J.; Tatchen, J. Three-Component One-Pot Synthesis of Novel Pyrido [2, 3-d] Pyrimidine Indole Substituted Derivatives and DFT Analysis. J. Mol. Struct., 2017, 1137, 431-439.
[http://dx.doi.org/10.1016/j.molstruc.2017.02.038]
[40]
Seetham Naidu, P.; Borah, P.; Bhuyan, P.J. Synthesis of Some Novel Functionalized Dihydropyrido[2,3-d]Pyrimidines via an One-Pot Three-Component Reaction Catalysed by InCl3. Tetrahedron Lett., 2012, 53(31), 4015-4017.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.102]
[41]
Chebanov, V.A.; Saraev, V.E.; Gura, E.A.; Desenko, S.M.; Musatov, V.I. Some Aspects of Reaction of 6-Aminouracil and 6-Amino-2-Thiouracil with α, β-Unsaturated Ketones. Collect. Czech. Chem. Commun., 2005, 70(3), 350-360.
[http://dx.doi.org/10.1135/cccc20050350]
[42]
Zhu, S-L.; Ji, S-J.; Su, X-M.; Sun, C.; Liu, Y. Facile and Efficient Synthesis of a New Class of Bis (3′-Indolyl) Pyridine Derivatives via One-Pot Multicomponent Reactions. Tetrahedron Lett., 2008, 49(11), 1777-1781.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.054]
[43]
Thirumurugan, P.; Perumal, P.T. A Simple One-Pot Synthesis of Functionalised 6-(Indol-3-Yl)-2, 2′-Bipyridine Derivatives via Multi-Component Reaction under Neat Condition. Tetrahedron Lett., 2009, 50(28), 4145-4150.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.121]
[44]
Thirumurugan, P.; Nandakumar, A.; Muralidharan, D.; Perumal, P.T. Simple and convenient approach to the Kreohnke pyridine type synthesis of functionalized indol-3-yl pyridine derivatives using 3-cyanoacetyl indole. J. Comb. Chem., 2010, 12(1), 161-167.
[http://dx.doi.org/10.1021/cc9001394] [PMID: 19905001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy