Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Impaired Cardiovascular Function in Male Rats with Hypo- and Hyperthyroidism: Involvement of Imbalanced Nitric Oxide Synthase Levels

Author(s): Nasibeh Yousefzadeh, Sajad Jeddi* and Asghar Ghasemi

Volume 21, Issue 3, 2021

Published on: 08 May, 2020

Page: [526 - 533] Pages: 8

DOI: 10.2174/1871530320666200508115543

Price: $65

Abstract

Background and Objective: All three isoforms of nitric oxide (NO) synthase (NOS) are targets for thyroid hormones in the cardiovascular system. The aim of this study was to assess the effects of hypo- and hyperthyroidism on inducible (iNOS), endothelial (eNOS), and neural (nNOS) NOS levels in aorta and heart tissues of male rats.

Methods: Rats were divided into control, hypothyroid, and hyperthyroid groups; hypo- and hyperthyroidism were induced by adding propylthiouracil (500 mg/L) and L-thyroxine (12 mg/L) to drinking water for a period of 21 days. On day 21, systolic blood pressure, heart rate, left ventricular developed pressure (LVDP), peak rate of positive and negative (±dp/dt) changes in left ventricular pressure as well as NO metabolites (NOx) and iNOS, eNOS, and nNOS protein levels in aorta and heart, were all measured.

Results: Compared to controls, LVDP and ±dp/dt were lower in both hypo- and hyperthyroid rats. Compared to controls, heart rate and systolic blood pressure were lower in hypothyroid and higher in hyperthyroid rats. NOx levels in the heart of hypothyroid rats were lower (53%), whereas that in hyperthyroid rats were higher (56% and 40%) than controls. Compared to controls, hypothyroid rats had lower levels of eNOS, iNOS, and nNOS in the aorta (16%, 34%, and 15%, respectively) and lower iNOS and higher nNOS in heart tissue (27% and 46%). In hyperthyroid rats, eNOS levels were lower (54% and 30%) and iNOS were higher (63%, and 35%) in the aorta and heart while nNOS was lower in the aorta (18%).

Conclusion: Hypothyroidism increased while hyperthyroidism decreased the ratio of eNOS/iNOS in aorta and heart; these changes of NOS levels were associated with impaired cardiovascular function.

Keywords: Hypothyroidism, hyperthyroidism, cardiovascular function, nitric oxide synthase, rat, CVD.

Graphical Abstract

[1]
Taylor, P.N.; Albrecht, D.; Scholz, A.; Gutierrez-Buey, G.; Lazarus, J.H.; Dayan, C.M.; Okosieme, O.E. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol., 2018, 14(5), 301-316.
[http://dx.doi.org/10.1038/nrendo.2018.18] [PMID: 29569622]
[2]
Ertek, S.; Cicero, A.F. Hyperthyroidism and cardiovascular complications: a narrative review on the basis of pathophysiology. Arch. Med. Sci., 2013, 9(5), 944-952.
[http://dx.doi.org/10.5114/aoms.2013.38685] [PMID: 24273583]
[3]
Cappola, A.R.; Desai, A.S.; Medici, M.; Cooper, L.S.; Egan, D.; Sopko, G.; Fishman, G.I.; Goldman, S.; Cooper, D.S.; Mora, S.; Kudenchuk, P.J.; Hollenberg, A.N.; McDonald, C.L.; Ladenson, P.W. Thyroid and cardiovascular disease research agenda for enhancing knowledge, prevention, and treatment. Circulation, 2019.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.036859] [PMID: 31081673]
[4]
Laulund, A.S.; Nybo, M.; Brix, T.H.; Abrahamsen, B.; Jørgensen, H.L.; Hegedüs, L. Duration of thyroid dysfunction correlates with all-cause mortality. The OPENTHYRO register cohort. PLoS One, 2014, 9(10), e110437-e110437.
[http://dx.doi.org/10.1371/journal.pone.0110437] [PMID: 25340819]
[5]
Gaynullina, D.K.; Schubert, R.; Tarasova, O.S. Changes in endothelial nitric oxide production in systemic vessels during early ontogenesis-a key mechanism for the perinatal adaptation of the circulatory system. Int. J. Mol. Sci., 2019, 20(6)E1421
[http://dx.doi.org/10.3390/ijms20061421] [PMID: 30901816]
[6]
Carrillo-Sepúlveda, M.A.; Ceravolo, G.S.; Fortes, Z.B.; Carvalho, M.H.; Tostes, R.C.; Laurindo, F.R.; Webb, R.C.; Barreto-Chaves, M.L. Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc. Res., 2010, 85(3), 560-570.
[http://dx.doi.org/10.1093/cvr/cvp304] [PMID: 19734167]
[7]
Tsutsui, M.; Shimokawa, H.; Otsuji, Y.; Ueta, Y.; Sasaguri, Y.; Yanagihara, N. Nitric oxide synthases and cardiovascular diseases: insights from genetically modified mice. Circ. J., 2009, 73(6), 986-993.
[http://dx.doi.org/10.1253/circj.CJ-09-0208] [PMID: 19430166]
[8]
Zaman, J.; Jeddi, S.; Daneshpour, M.S.; Zarkesh, M.; Daneshian, Z.; Ghasemi, A. Ischemic postconditioning provides cardioprotective and antiapoptotic effects against ischemia-reperfusion injury through iNOS inhibition in hyperthyroid rats. Gene, 2015, 570(2), 185-190.
[http://dx.doi.org/10.1016/j.gene.2015.06.011] [PMID: 26055090]
[9]
Jeddi, S.; Zaman, J.; Zadeh-Vakili, A.; Zarkesh, M.; Ghasemi, A. Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats. Gene, 2016, 580(2), 169-176.
[http://dx.doi.org/10.1016/j.gene.2016.01.014] [PMID: 26774797]
[10]
Burkard, N.; Rokita, A.G.; Kaufmann, S.G.; Hallhuber, M.; Wu, R.; Hu, K.; Hofmann, U.; Bonz, A.; Frantz, S.; Cartwright, E.J.; Neyses, L.; Maier, L.S.; Maier, S.K.; Renné, T.; Schuh, K.; Ritter, O. Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility. Circ. Res., 2007, 100(3), e32-e44.
[http://dx.doi.org/10.1161/01.RES.0000259042.04576.6a] [PMID: 17272813]
[11]
Mungrue, I.N.; Gros, R.; You, X.; Pirani, A.; Azad, A.; Csont, T.; Schulz, R.; Butany, J.; Stewart, D.J.; Husain, M. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J. Clin. Invest., 2002, 109(6), 735-743.
[http://dx.doi.org/10.1172/JCI0213265] [PMID: 11901182]
[12]
Besedina, A. NO-Synthase activity in patients with coronary heart disease associated with hypertension of different age groups. J. Med. Biochem., 2016, 35(1), 43-49.
[http://dx.doi.org/10.1515/jomb-2015-0008] [PMID: 28356863]
[13]
Cotton, J.M.; Kearney, M.T.; Shah, A.M. Nitric oxide and myocardial function in heart failure: friend or foe? Heart, 2002, 88(6), 564-566.
[http://dx.doi.org/10.1136/heart.88.6.564] [PMID: 12433878]
[14]
Udovcic, M.; Pena, R.H.; Patham, B.; Tabatabai, L.; Kansara, A. Hypothyroidism and the heart. Methodist DeBakey Cardiovasc. J., 2017, 13(2), 55-59.
[http://dx.doi.org/10.14797/mdcj-13-2-55] [PMID: 28740582]
[15]
Ghanbari, M.; Norouzirad, R.; Bagheripuor, F.; Jeddi, S.; Ghasemi, A. Changes in nitric oxide synthase levels are associated with impaired cardiac function and tolerance to ischemia-reperfusion injury in male rats with transient congenital hypothyroidism., 2020. 393(6), 1103-1111.
[http://dx.doi.org/10.1007/s00210-020-01812-6 ] [PMID: 31940052]
[16]
Ghanbari, M.; Jeddi, S.; Bagheripuor, F.; Ghasemi, A. The effect of maternal hypothyroidism on cardiac function and tolerance to ischemia-reperfusion injury in offspring male and female rats. J. Endocrinol. Invest., 2015, 38(8), 915-922.
[http://dx.doi.org/10.1007/s40618-015-0267-x] [PMID: 25823371]
[17]
Marti, J.; Portoles, M.; Jimenez-Nacher, I.; Cabo, J.; Jorda, A. Effect of thyroid hormones on urea biosynthesis and related processes in rat liver. Endocrinology, 1988, 123(5), 2167-2174.
[http://dx.doi.org/10.1210/endo-123-5-2167] [PMID: 2844505]
[18]
Messarah, M.; Saoudi, M.; Boumendjel, A.; Boulakoud, M.S.; Feki, A.E. Oxidative stress induced by thyroid dysfunction in rat erythrocytes and heart. Environ. Toxicol. Pharmacol., 2011, 31(1), 33-41.
[http://dx.doi.org/10.1016/j.etap.2010.09.003] [PMID: 21787667]
[19]
Hansson, P.; Nordin, G.; Nilsson-Ehle, P. Influence of nutritional state on lipoprotein lipase activities in the hypothyroid rat. Biochim. Biophys. Acta, 1983, 753(3), 364-371.
[http://dx.doi.org/10.1016/0005-2760(83)90060-7] [PMID: 6615871]
[20]
Khalawi, A.A.; Al-Robai, A.A.; Khoja, S.M.; Shaker, A. Can Nigella Sativa oil (NSO) reverse hypothyroid status induced by PTU in rat? Biochemical and histological studies. Life Sci. J., 2013, 10(2), 1-5.
[21]
Badauê-Passos, D., Jr; Ventura, R.R.; Silva, L.F.; Olivares, E.L.; Ramalho, M.J.; Antunes Rodrigues, J.; Reis, L.C. Effect of losartan on sodium appetite of hypothyroid rats subjected to water and sodium depletion and water, sodium and food deprivation. Exp. Physiol., 2001, 86(5), 621-628.
[http://dx.doi.org/10.1113/eph8602189] [PMID: 11571491]
[22]
Chanoine, J.P.; Safran, M.; Farwell, A.P.; Tranter, P.; Ekenbarger, D.M.; Dubord, S.; Alex, S.; Arthur, J.R.; Beckett, G.J.; Braverman, L.E. Selenium deficiency and type II 5′-deiodinase regulation in the euthyroid and hypothyroid rat: evidence of a direct effect of thyroxine. Endocrinology, 1992, 131(1), 479-484.
[http://dx.doi.org/10.1210/endo.131.1.1612029] [PMID: 1612029]
[23]
Alvarez-Dolado, M.; Iglesias, T.; Rodríguez-Peña, A.; Bernal, J.; Muñoz, A. Expression of neurotrophins and the trk family of neurotrophin receptors in normal and hypothyroid rat brain. Brain Res. Mol. Brain Res., 1994, 27(2), 249-257.
[http://dx.doi.org/10.1016/0169-328X(94)90007-8] [PMID: 7898308]
[24]
Jacobs, R.L.; Stead, L.M.; Brosnan, M.E.; Brosnan, J.T. Plasma homocysteine is decreased in the hypothyroid rat. Can. J. Physiol. Pharmacol., 2000, 78(7), 565-570.
[http://dx.doi.org/10.1139/y00-026] [PMID: 10926163]
[25]
Shao, Q.; Cheng, H.J.; Callahan, M.F.; Kitzman, D.W.; Li, W.M.; Cheng, C.P. Overexpression myocardial inducible nitric oxide synthase exacerbates cardiac dysfunction and beta-adrenergic desensitization in experimental hypothyroidism. Int. J. Cardiol., 2016, 204, 229-241.
[http://dx.doi.org/10.1016/j.ijcard.2015.11.040] [PMID: 26681542]
[26]
González, C.R.; Martínez de Morentin, P.B.; Martínez-Sánchez, N.; Gómez-Díaz, C.; Lage, R.; Varela, L.; Diéguez, C.; Nogueiras, R.; Castaño, J.P.; López, M. Hyperthyroidism differentially regulates neuropeptide S system in the rat brain. Brain Res., 2012, 1450, 40-48.
[http://dx.doi.org/10.1016/j.brainres.2012.02.024] [PMID: 22425186]
[27]
Calvino, C.; Souza, L.L.; Costa-e-Sousa, R.H.; Almeida, N.A.; Trevenzoli, I.H.; Pazos-Moura, C.C. Hypothyroidism reduces ObRb-STAT3 leptin signalling in the hypothalamus and pituitary of rats associated with resistance to leptin acute anorectic action. J. Endocrinol., 2012, 215(1), 129-135.
[http://dx.doi.org/10.1530/JOE-11-0476] [PMID: 22875962]
[28]
Soukup, T.; Zacharová, G.; Smerdu, V.; Jirmanová, I. Body, heart, thyroid gland and skeletal muscle weight changes in rats with altered thyroid status. Physiol. Res., 2001, 50(6), 619-626.
[PMID: 11829324]
[29]
Alva-Sánchez, C.; Pacheco-Rosado, J.; Fregoso-Aguilar, T.; Villanueva, I. The long-term regulation of food intake and body weight depends on the availability of thyroid hormones in the brain. Neuroendocrinol. Lett., 2012, 33(7), 703-708.
[PMID: 23391881]
[30]
Amin, A.; Dhillo, W.S.; Murphy, K.G. The central effects of thyroid hormones on appetite. J. Thyroid Res., 2011.2011306510
[http://dx.doi.org/10.4061/2011/306510] [PMID: 21687648]
[31]
Kong, W.M.; Martin, N.M.; Smith, K.L.; Gardiner, J.V.; Connoley, I.P.; Stephens, D.A.; Dhillo, W.S.; Ghatei, M.A.; Small, C.J.; Bloom, S.R. Triiodothyronine stimulates food intake via the hypothalamic ventromedial nucleus independent of changes in energy expenditure. Endocrinology, 2004, 145(11), 5252-5258.
[http://dx.doi.org/10.1210/en.2004-0545] [PMID: 15297436]
[32]
Feldt-Rasmussen, U. Thyroid and leptin. Thyroid, 2007, 17(5), 413-419.
[http://dx.doi.org/10.1089/thy.2007.0032] [PMID: 17542671]
[33]
Dale, J.; Daykin, J.; Holder, R.; Sheppard, M.C.; Franklyn, J.A. Weight gain following treatment of hyperthyroidism. Clin. Endocrinol. (Oxf.), 2001, 55(2), 233-239.
[http://dx.doi.org/10.1046/j.1365-2265.2001.01329.x] [PMID: 11531931]
[34]
Kyriacou, A.; Kyriacou, A.; Makris, K.C.; Syed, A.A.; Perros, P. Weight gain following treatment of hyperthyroidism-A forgotten tale. Clin. Obes., 2019, 9(5)e12328
[http://dx.doi.org/10.1111/cob.12328] [PMID: 31267667]
[35]
Pantos, C.; Malliopoulou, V.; Mourouzis, I.; Sfakianoudis, K.; Tzeis, S.; Doumba, P.; Xinaris, C.; Cokkinos, A.D.; Carageorgiou, H.; Varonos, D.D.; Cokkinos, D.V. Propylthiouracil-induced hypothyroidism is associated with increased tolerance of the isolated rat heart to ischaemia-reperfusion. J. Endocrinol., 2003, 178(3), 427-435.
[http://dx.doi.org/10.1677/joe.0.1780427] [PMID: 12967335]
[36]
Ohga, Y.; Sakata, S.; Takenaka, C.; Abe, T.; Tsuji, T.; Taniguchi, S.; Takaki, M. Cardiac dysfunction in terms of left ventricular mechanical work and energetics in hypothyroid rats. Am. J. Physiol. Heart Circ. Physiol., 2002, 283(2), H631-H641.
[http://dx.doi.org/10.1152/ajpheart.00046.2002] [PMID: 12124210]
[37]
Shenoy, R.; Klein, I.; Ojamaa, K. Differential regulation of SR calcium transporters by thyroid hormone in rat atria and ventricles. Am. J. Physiol. Heart Circ. Physiol., 2001, 281(4), H1690-H1696.
[http://dx.doi.org/10.1152/ajpheart.2001.281.4.H1690] [PMID: 11557559]
[38]
Mourouzis, I.; Dimopoulos, A.; Saranteas, T.; Tsinarakis, N.; Livadarou, E.; Spanou, D.; Kokkinos, A.D.; Xinaris, C.; Pantos, C.; Cokkinos, D.V. Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart. Physiol. Res., 2009, 58(1), 29-38.
[PMID: 18198989]
[39]
Venditti, P.; Masullo, P.; Agnisola, C.; Di Meo, S. Effect of vitamin E on the response to ischemia-reperfusion of Langendorff heart preparations from hyperthyroid rats. Life Sci., 2000, 66(8), 697-708.
[http://dx.doi.org/10.1016/S0024-3205(99)00641-4] [PMID: 10680578]
[40]
Venditti, P.; De Rosa, R.; Cigliano, L.; Agnisola, C.; Di Meo, S. Role of nitric oxide in the functional response to ischemia-reperfusion of heart mitochondria from hyperthyroid rats. Cell. Mol. Life Sci., 2004, 61(17), 2244-2252.
[http://dx.doi.org/10.1007/s00018-004-4125-9] [PMID: 15338054]
[41]
Kiss, E.; Jakab, G.; Kranias, E.G.; Edes, I. Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ. Res., 1994, 75(2), 245-251.
[http://dx.doi.org/10.1161/01.RES.75.2.245] [PMID: 8033338]
[42]
Pantos, C.; Malliopoulou, V.; Mourouzis, I.; Thempeyioti, A.; Paizis, I.; Dimopoulos, A.; Saranteas, T.; Xinaris, C.; Cokkinos, D.V. Hyperthyroid hearts display a phenotype of cardioprotection against ischemic stress: a possible involvement of heat shock protein 70. Horm. Metab. Res., 2006, 38(5), 308-313.
[http://dx.doi.org/10.1055/s-2006-925404] [PMID: 16718626]
[43]
Rodríguez-Gómez, I.; Moliz, J.N.; Quesada, A.; Montoro-Molina, S.; Vargas-Tendero, P.; Osuna, A.; Wangensteen, R.; Vargas, F. L-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats. Exp. Biol. Med. (Maywood), 2016, 241(5), 550-556.
[http://dx.doi.org/10.1177/1535370215619042] [PMID: 26674221]
[44]
Yen, P.M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev., 2001, 81(3), 1097-1142.
[http://dx.doi.org/10.1152/physrev.2001.81.3.1097] [PMID: 11427693]
[45]
Zaman, J.; Jeddi, S.; Ghasemi, A. The effects of ischemic postconditioning on myocardial function and nitric oxide metabolites following ischemia-reperfusion in hyperthyroid rats. Korean J. Physiol. Pharmacol., 2014, 18(6), 481-487.
[http://dx.doi.org/10.4196/kjpp.2014.18.6.481] [PMID: 25598662]
[46]
McAllister, R.M.; Albarracin, I.; Price, E.M.; Smith, T.K.; Turk, J.R.; Wyatt, K.D. Thyroid status and nitric oxide in rat arterial vessels. J. Endocrinol., 2005, 185(1), 111-119.
[http://dx.doi.org/10.1677/joe.1.06022] [PMID: 15817832]
[47]
Virdis, A.; Colucci, R.; Fornai, M.; Polini, A.; Daghini, E.; Duranti, E.; Ghisu, N.; Versari, D.; Dardano, A.; Blandizzi, C.; Taddei, S.; Del Tacca, M.; Monzani, F. Inducible nitric oxide synthase is involved in endothelial dysfunction of mesenteric small arteries from hypothyroid rats. Endocrinology, 2009, 150(2), 1033-1042.
[http://dx.doi.org/10.1210/en.2008-1112] [PMID: 18927216]
[48]
Jiang, F.; Wang, H.; Bao, S.; Zhou, H.; Zhang, Y.; Yan, Y.; Lai, Y.; Teng, W.; Shan, Z. Thyrotropin regulates eNOS expression in the endothelium by PGRN through Akt pathway. Front. Endocrinol. (Lausanne), 2018, 9(353), 353.
[http://dx.doi.org/10.3389/fendo.2018.00353] [PMID: 30026730]
[49]
Zhou, J.; Cheng, G.; Pang, H.; Liu, Q.; Liu, Y. The effect of 131I-induced hypothyroidism on the levels of nitric oxide (NO), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), total nitric oxide synthase (NOS) activity, and expression of NOS isoforms in rats. Bosn. J. Basic Med. Sci., 2018, 18(4), 305-312.
[http://dx.doi.org/10.17305/bjbms.2018.2350] [PMID: 29579409]
[50]
Quesada, A.; Sainz, J.; Wangensteen, R.; Rodriguez-Gomez, I.; Vargas, F.; Osuna, A. Nitric oxide synthase activity in hyperthyroid and hypothyroid rats. Eur. J. Endocrinol., 2002, 147(1), 117-122.
[http://dx.doi.org/10.1530/eje.0.1470117] [PMID: 12088928]
[51]
Büssemaker, E.; Popp, R.; Fisslthaler, B.; Larson, C.M.; Fleming, I.; Busse, R.; Brandes, R.P. Hyperthyroidism enhances endothelium-dependent relaxation in the rat renal artery. Cardiovasc. Res., 2003, 59(1), 181-188.
[http://dx.doi.org/10.1016/S0008-6363(03)00326-2] [PMID: 12829189]
[52]
Jeddi, S.; Zaman, J.; Ghasemi, A. Effects of ischemic postconditioning on the hemodynamic parameters and heart nitric oxide levels of hypothyroid rats. Arq. Bras. Cardiol., 2015, 104(2), 136-143.
[PMID: 25424164]
[53]
Rodríguez-Gómez, I.; Sainz, J.; Wangensteen, R.; Moreno, J.M.; Duarte, J.; Osuna, A.; Vargas, F. Increased pressor sensitivity to chronic nitric oxide deficiency in hyperthyroid rats. Hypertension, 2003, 42(2), 220-225.
[http://dx.doi.org/10.1161/01.HYP.0000081944.47230.69] [PMID: 12821601]
[54]
Verma, M.; Dahiya, K.; Ghalaut, V.S.; Seth, S.; Saha, P. Thyroid disorders and nitric oxide levels. J. Sci., 2015.
[55]
Arikan, E.; Karadag, C.H.; Guldiken, S. Asymmetric dimethylarginine levels in thyroid diseases. J. Endocrinol. Invest., 2007, 30(3), 186-191.
[http://dx.doi.org/10.1007/BF03347423] [PMID: 17505150]
[56]
Andreadou, I.; Iliodromitis, E.K.; Rassaf, T.; Schulz, R.; Papapetropoulos, A.; Ferdinandy, P. The role of gasotransmitters NO, H2S and CO in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br. J. Pharmacol., 2015, 172(6), 1587-1606.
[http://dx.doi.org/10.1111/bph.12811] [PMID: 24923364]
[57]
Rassaf, T.; Ferdinandy, P.; Schulz, R. Nitrite in organ protection. Br. J. Pharmacol., 2014, 171(1), 1-11.
[http://dx.doi.org/10.1111/bph.12291] [PMID: 23826831]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy