Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

DFT Studies of Distinct Anilines with p-Hydroxycinnamic Acids for Antioxidant Profile

Author(s): Ch. Ravi S. Kumar*, Anjali Jha and Sri Deepthi

Volume 17, Issue 1, 2021

Published on: 06 May, 2020

Page: [60 - 70] Pages: 11

DOI: 10.2174/1573406416666200506085152

Price: $65

Abstract

Background: Life style and jobs in current situations have generated increased free radicals such as hydroxyl (OH•) and superoxide (O2•) radicals, thereby increasing stress in humans. Interest in search of antioxidants that trap these free radicals has increased to relieve stress. β-carotene (provitamin A), ascorbic acid (vitamin C), tocopherol or vitamin E, Trolox; butyl hydroxy toluene and phenolic compounds are the well-known antioxidants. Several methods evaluate the antioxidant property existing in natural substances (medicinal plants and agri-food products) and synthetic compounds (2-methyl-3- (pyrrolidin-2-ylideneamino) quinazolin-4 (3H) –one and 3,3'- (1,4- phenylenebis (methanylylidene)) bis (azanylylidene) (2-methyl-quinazolin-4 (3H) -one).

Objective: The objective of this study is to focus on complexes with p-hydroxycinnamic acids to trap free radicals in a greener way.

Methods: Spectroscopic shifts and structural studies were employed to attribute electronic properties responsible for antioxidant profile. Spectroscopic shifts in wavenumbers were attributed with Fourier Transform Infrared Spectra (FTIR) and Fourier Transform Raman spectra (FT Raman Spectra). Structural studies were performed with Gaussian package, electron density method the B3LYP method, basis set 6-31(d) for attributing electronic properties responsible for antioxidant profile.

Results: Interpretation of FTIR spectra revealed spectroscopic shifts in wavenumbers in all the complexes responsible for bonding. Further, studies confirmed the formation of complex with reduced intensities in Raman spectra. Computational studies revealed enhancement in molecular and electronic properties responsible for antioxidant power.

Conclusion: Studies revealed that complex with p-nitroaniline contribute to greater acceptor and donor power responsible for antioxidant power. These higher powers suggest the best antiradicals to trap free radicals.

Keywords: Anilines, FTIR, DFT, electrophilicity index, FMO, Antioxidant profile.

Graphical Abstract

[1]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[2]
Richardson, A.G.; Schadt, E.E. The role of macromolecular damage in aging and age-related disease. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(1), S28-S32.
[3]
Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol., 2001, 54(3), 176-186.
[http://dx.doi.org/10.1136/jcp.54.3.176] [PMID: 11253127]
[4]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[5]
Rahman, T.; Hosen, I.; Islam, M.; Shekhar, H. Oxidative stress and human health. Adv. Biosci. Biotechnol., 2012, 3, 997-1019.
[6]
Caleja, C.; Barros, L.; Antonio, A.L.; Oliveira, M.B.; Ferreira, I.C. A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits. Food Chem., 2017, 216, 342-346.
[http://dx.doi.org/10.1016/j.foodchem.2016.08.075] [PMID: 27596429]
[7]
Augustyniak, A.; Bartosz, G.; Cipak, A.; Duburs, G.; Horáková, L.; Luczaj, W.; Majekova, M.; Odysseos, A.D.; Rackova, L.; Skrzydlewska, E.; Stefek, M.; Strosová, M.; Tirzitis, G.; Venskutonis, P.R.; Viskupicova, J.; Vraka, P.S.; Zarković, N. Natural and synthetic antioxidants: an updated overview. Free Radic. Res., 2010, 44(10), 1216-1262.
[http://dx.doi.org/10.3109/10715762.2010.508495] [PMID: 20836663]
[8]
Gabriele, P.; Natasha, I.; Mariapaola, C.; Giovanni, P.; Federica, M.; Vincenzo, A.; Francesco, S.; Domenica, A.; Alessandra, B. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 20178416763
[http://dx.doi.org/10.1155/2017/8416763]
[9]
Choi, S.; Liu, X.; Pan, Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol. Sin., 2018, 39(7), 1120-1132.
[http://dx.doi.org/10.1038/aps.2018.25] [PMID: 29926844]
[10]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[11]
Satyanarayana, U.; Kumar, A.N.; Naidu, J.N.; Prasad, D.K.V. Antioxidant supplementation for health – a boon or a bane. J. Dr. NTR Univ. Health Sci., 2014, 3(4), 221-230.
[http://dx.doi.org/10.4103/2277-8632.146595]
[12]
Breitenbach, M.; Eckl, P. Introduction to oxidative stress in biomedical and biological research. Biomolecules, 2015, 5(2), 1169-1177.
[http://dx.doi.org/10.3390/biom5021169] [PMID: 26117854]
[13]
Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther., 2017, 360(1), 201-205.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[14]
Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J., 2013, 21(2), 143-152.
[http://dx.doi.org/10.1016/j.jsps.2012.05.002] [PMID: 24936134]
[15]
Sudan, R.; Bhagat, M.; Gupta, S.; Singh, J.; Koul, A. Iron (FeII) chelation, ferric reducing antioxidant power, and immune modulating potential of Arisaema jacquemontii (Himalayan Cobra Lily). BioMed Res. Int., 2014, 2014179865
[http://dx.doi.org/10.1155/2014/179865] [PMID: 24895548]
[16]
Adjimani, J.P.; Asare, P. Antioxidant and free radical scavenging activity of iron chelators. Toxicol. Rep., 2015, 2, 721-728.
[http://dx.doi.org/10.1016/j.toxrep.2015.04.005] [PMID: 28962407]
[17]
Budhiyanti, A.; Sri Raharjo, S.; Marseno, W.D.; Lelana, I.Y.B. Free Radical Scavenging, Metal Chelating and Singlet Oxygen Quenching activity of fractionated brown seaweed sargassum hystrix extract. J. Biol. Sci., 2011, 11, 288-298.
[http://dx.doi.org/10.3923/jbs.2011.288.298]
[18]
Pangjit, K.; Tantiphaipunwong, P.; Sajjapong, W.; Srichairatanakool, S. Iron-chelating, free radical scavenging and anti-proliferative activities of Azadirachta indica. J. Med. Assoc. Thai., 2014, 97(Suppl. 4), S36-S43.
[PMID: 24851563]
[19]
Adeyemi, O.S.; Atolani, O.; Banerjee, P.; Arolasafe, G.; Preissner, R.; Etukudoh, P.; Omodele Ibraheem, O. Computational and experimental validation of antioxidant properties of synthesized bioactive ferulic acid derivatives. Int. J. Food Prop., 2018, 21(1), 86-98.
[http://dx.doi.org/10.1080/10942912.2018.1439958]
[20]
Yapati, H.; Subba Rao, D.; Suresh, C.; Seshaiah, K. Synthesis, characterization and studies on antioxidant and molecular docking of metal complexes of 1-(benzo[d]thiazol-2-yl)thiourea. J. Chem. Sci., 2016, 128(1), 43-51.
[http://dx.doi.org/10.1007/s12039-015-0999-3]
[21]
Balachandran, C.; Kumar, P.S.; Arun, Y.; Duraipandiyan, V.; Sundaram, R.L.; Vijayakumar, A.; Balakrishna, K.; Ignacimuthu, S.; Al-Dhabi, N.A.; Perumal, P.T. Antimicrobial, antioxidant, cytotoxic and molecular docking properties of N-benzyl-2,2,2-trifluoroacetamide. Appl. Nanosci., 2015, 5(2), 207-216.
[http://dx.doi.org/10.1007/s13204-014-0307-4]
[22]
Al-Najjar, O.B. Synthesis, molecular docking and antioxidant evaluation of benzylidene ketone derivatives. Jordan J. Biol. Sci., 2018, 11(3), 307.
[23]
Khokra, S.L.; Khan, S.A.; Thakur, P.; Chowdhary, D.; Ahmad, A.; Husain, A. Synthesis, molecular docking and potential antioxidant activity of di/trisubstituted pyridazinone derivatives. J. Chinese Chem. Soc., 2016, 63(9), 739-750.
[http://dx.doi.org/10.1002/jccs.201600051]
[24]
Rajan, V.K.; Ragi, C.; Muraleedharan, K. A computational exploration into the structure, antioxidant capacity, toxicity and drug-like activity of the anthocyanidin “Petunidin”. Heliyon, 2019, 5(7)e02115
[http://dx.doi.org/10.1016/j.heliyon.2019.e02115]
[25]
Sharopov, F.S.; Wink, M.; Setzer, W.N. Radical scavenging and antioxidant activities of essential oil components--an experimental and computational investigation. Nat. Prod. Commun., 2015, 10(1), 153-156.
[http://dx.doi.org/10.1177/1934578X1501000135] [PMID: 25920239]
[26]
Cindrić, M.; Sović, I.; Mioć, M. Experimental and computational study of the antioxidative potential of novel nitro and amino substituted benzimidazole/benzothiazole-2-carboxamides with antiproliferative activity. Antioxidants, 2019, 8(477), 22.
[27]
Zhuravlev, A.V.; Zakharov, G.A.; Shchegolev, B.F.; Savvateeva-Popova, E.V. Antioxidant properties of kynurenines: Density functional theory calculations. PLOS Comput. Biol., 2016, 12(11)e1005213
[http://dx.doi.org/10.1371/journal.pcbi.1005213] [PMID: 27861556]
[28]
Mohamed, M.E.; Elssamani, A.O. Density functional theory (DFT) B3LYP study of antioxidant activity of 6-(2,2′-bithiophen-5yl) pyridine-3-carboximidamide, new model bichalcophenes derivatives. J. Appl. Industr. Sci., 2015, 3(4), 126-132.
[29]
Boulebd, H. DFT study of the antiradical properties of some aromatic compounds derived from antioxidant essential oils: C-H bond vs. O-H bond. Free Radic. Res., 2019, 53(11-12), 1125-1134.
[http://dx.doi.org/10.1080/10715762.2019.1690652] [PMID: 31694416]
[30]
Nyobe, J.C.N.; Andiga, L.G.E.; Mama, D.B.; Amana, B.A.; Mfomo, J.Z.; Alfred, T.F.A.; Ndom, J.C. A dft analysis on antioxidant and antiradical activities from anthraquinones isolated from the cameroonian flora. J. Chem., 2019, 20197684941
[http://dx.doi.org/10.1155/2019/7684941]
[31]
Stobiecka, A. Comparative study on the free radical scavenging mechanism exerted by geraniol and geranylacetone using the combined experimental and theoretical approach. Flavour Fragrance J., 2015, 30(5), 399-409.
[http://dx.doi.org/10.1002/ffj.3256]
[32]
Jovića, B.; Nikolić, A.; Petrović, S. FTIR spectroscopic study of hydrogen bonding and solvent induced frequency shifts of N-tert-butylacetamide. J. Mol. Struct., 2013, 1044, 140-143.
[http://dx.doi.org/10.1016/j.molstruc.2012.10.009]
[33]
Habeeb, M.M.; Gohar, G.A. FTIR spectroscopic studies and AM1 semi‒empirical calculations of some hydrogen‒bonded complexes of 2,5‒dihydroxy‒3,6‒dichlorobenzoquinone and anilines. J. Spectrosc., 2003, 17841240
[http://dx.doi.org/10.1155/2003/841240]
[34]
Dinkov, Sh.; Arnaudov, M. IR-Spectral study of 2-aminopyridine and aniline complexes with palladium. (II). Spectrosc. Lett., 1999, 32(1), 165-180.
[http://dx.doi.org/10.1080/00387019909349975]
[35]
Guo, L.; Sato, H.; Hashimoto, T.; Ozaki, Y. FTIR Study on hydrogen-bonding interactions in biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(4-vinylphenol). Macromolecules, 2011, 44(7), 2229-2239.
[http://dx.doi.org/10.1021/ma102601p]
[36]
Silva, C.H.B.; Ferreira, D.C.; Ando, R.A.; Temperini, M.L.A. Aniline-1,4-benzoquinone as a model system for the characterization of products from aniline oligomerization in low acidic media. Chem. Phys. Lett., 2012, 551(1), 130-133.
[http://dx.doi.org/10.1016/j.cplett.2012.09.033]
[37]
Mahalakshmi, G.; Balachandran, V. Molecular structure, vibrational spectra (FTIR and FT Raman) and natural bond orbital analysis of 4-Aminomethylpiperidine: DFT study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 131, 587-598.
[http://dx.doi.org/10.1016/j.saa.2014.04.154] [PMID: 24853994]
[38]
Furer, V.L. Vandyukov, A.E.; Zaripov, S.R.; Solovieva, S.E.; Antipin, I.S.; Kovalenko, V.I. FT-IR and FT-Raman study of hydrogen bonding in p-alkylcalix[8]arenes. Vib. Spectrosc., 2018, 95, 38-43.
[http://dx.doi.org/10.1016/j.vibspec.2018.01.006]
[39]
Arjunan, V.; Kalaivani, M.; Ravindran, P.; Mohan, S. Structural, vibrational and quantum chemical investigations on 5-chloro-2-hydroxybenzamide and 5-chloro-2-hydroxybenzoic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(5), 1886-1895.
[http://dx.doi.org/10.1016/j.saa.2011.05.082] [PMID: 21689976]
[40]
Olalekan, T.E.; Ogunlaja, A.S.; Gareth, M. SN-Donor methylthioanilines and copper (II) complexes: Synthesis, spectral properties, and in vitro antimicrobial activity. Heteroatom Chem., 2019, 20199203435
[http://dx.doi.org/10.1155/2019/9203435]
[41]
Anouar, H. A Quantum chemical and statistical study of phenolic schiff bases with antioxidant activity against DPPH free radical. Antioxidants, 2014, 3(2), 309-322.
[http://dx.doi.org/10.3390/antiox3020309] [PMID: 26784873]
[42]
Alicja, U.; Molski, M.; Szeląg, M. Quantum-chemical calculations of the antioxidant properties of trans-p-coumaric acid and trans-sinapinic acid. comp. Methods Sci. Tech., 2012, 18(2), 1-12.
[http://dx.doi.org/10.12921/cmst.2012.18.02.117-128]
[43]
Mayara, A.T.F.; Nayara, D.S.R.D.S.; Ryan, D.S.R.; Elenilze, F.B.F.; Kelton, L.B.D.S.; Carlos, H.T.D.P.D.S.; Teles Fujishima, M.A.; Silva, N.D.S.R.D.; Ramos, R.D.S.; Batista Ferreira, E.F.; Santos, K.L.B.D.; Silva, C.H.T.P.D.; Silva, J.O.D.; Campos Rosa, J.M.; Santos, C.B.R.D. An antioxidant potential, quantum-chemical and molecular docking study of the major chemical constituents present in the leaves of Curatella americana Linn. Pharmaceuticals (Basel), 2018, 11(3), 72.
[http://dx.doi.org/10.3390/ph11030072] [PMID: 30036950]
[44]
Mikulski, D.; Eder, K.; Molski, M. Quantum-chemical study on relationship between structure and antioxidant properties of hepatoprotective compounds occurring in Cynara scolymus and Silybum marianum. J. Theor. Comput. Chem., 2014, 13(01)1450004
[http://dx.doi.org/10.1142/S0219633614500047]
[45]
Alov, P.; Tsakovska, I.; Pajeva, I. Computational studies of free radical-scavenging properties of phenolic compounds. Curr. Top. Med. Chem., 2015, 15(2), 85-104.
[http://dx.doi.org/10.2174/1568026615666141209143702] [PMID: 25547098]
[46]
Işın, D.O. Theoretical study on the investigation of antioxidant properties of some hydroxyanthraquinones. Mol. Phys., 2016, 114(24), 3578-3588.
[http://dx.doi.org/10.1080/00268976.2016.1248514]
[47]
Deepthi, S.; Jha, A. RaviShankar Kumar, C. Quantum chemical studies of cinnamic acid with anilines for electroptical activity. Infrared Phys. Technol., 2018, 92, 304-308.
[http://dx.doi.org/10.1016/j.infrared.2018.06.024]
[48]
Deepthi, S.; Jha, A. RaviShankar Kumar, C. Spectroscopic and FMO studies of cholesteryl stereate complexes for electrooptical activity. Phys. Chem. Res., 2019, 7(1), 27-36.
[http://dx.doi.org/10.22036/pcr.2018.144623.1522]
[49]
Ryu, S.R.; Noda, I.; Jung, Y.M. Positional fluctuation of IR absorption peaks: frequency shift of a single band or relative intensity changes of overlapped bands? Am. Lab., 2011, 43(3), 40-43.
[50]
Ryu, S.R.; Noda, I.; Jung, Y.M. What is the origin of positional fluctuation of spectral features: true frequency shift or relative intensity changes of two overlapped bands? Appl. Spectrosc., 2010, 64(9), 1017-1021.
[http://dx.doi.org/10.1366/000370210792434396] [PMID: 20828438]
[51]
Babu, S.K.; Reddy, R.A.; Sujayha, Ch.; Reddy, V.K.; Mallika, A.N. Synthesis and optical characterization of porous ZnO. J. Adv. Ceramics, 2013, 2(3), 260-265.
[http://dx.doi.org/10.1007/s40145-013-0069-6]
[52]
Maekawa, Y.; Sasaoka, K.; Yamamoto, T. Prediction of the infrared spectrum of water on graphene substrate using hybrid classical/quantum simulation. Jpn. J. Appl. Phys., 2019, 58(6)068008
[http://dx.doi.org/10.7567/1347-4065/ab0da4]
[53]
Abi Munajad, A.; Subroto, C. Suwarno. Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies, 2018, 11(364), 1-12.
[http://dx.doi.org/10.3390/en11020364]
[54]
Faghihzadeh, F.; Anaya, N.M.; Schifman, L.A.; Craver, V.O. Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnol. Environ. Eng., 2016, 1, 1-16.
[http://dx.doi.org/10.1007/s41204-016-0001-8]
[55]
Wei, Z.; Jiao, D.; Xu, J. Using fourier transform infrared spectroscopy to study effects of magnetic field treatment on wheat (Triticum aestivum L.) seedlings. J. Spectrosc., 2015, 2015, 6.
[http://dx.doi.org/10.1155/2015/570190]
[56]
Lewis, P.D.; Lewis, K.E.; Ghosal, R.; Bayliss, S.; Lloyd, A.J.; Wills, J.; Godfrey, R.; Kloer, P.; Mur, L.A. Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer, 2010, 10, 640.
[http://dx.doi.org/10.1186/1471-2407-10-640] [PMID: 21092279]
[57]
Lei, Y.; Hannoufa, A.; Christensen, D.; Shi, H.; Prates, L.L.; Yu, P. Molecular structural changes in alfalfa detected by atr-ftir spectroscopy in response to silencing of TT8 and HB12 genes. Int. J. Mol. Sci., 2018, 19(4), 1046.
[http://dx.doi.org/10.3390/ijms19041046.] [PMID: 29614752]
[58]
Riaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S.Z.; Rahim, A.; Rizvi, S.S.A.; Rehman, I. Ur.: FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev., 2018, 53(9), 703-746.
[http://dx.doi.org/10.1080/05704928.2018.1426595]
[59]
Robert, M.S.; Francis, W.X. Spectrometric Identification of Organic Compounds, 6th ed; Wiley: New York, 2005.
[60]
Flett, M.St.C. Characteristic Frequencies of Chemical Groups in the Infra-Red; Elsevier: Amsterdam, London, New York, 1963.
[61]
Al-Hamdani, U.J.; Gassim, T.E.; Radhy, H.H. Synthesis and characterization of azo compounds and study of the effect of substituents on their liquid crystalline behavior. Molecules, 2010, 15(8), 5620-5628.
[http://dx.doi.org/10.3390/molecules15085620] [PMID: 20714316]
[62]
Awale, A.G.; Gholse, S.B.; Utale, P.S. Synthesis, spectral properties and applications of some mordant and disperse mono azo dyes derived from 2-amino-1, 3-benzothiazole. Res. J. Chem. Sci. 2013, 3(10), 81-87.http://dx.doi.org/i10/13.ISCA-RJCS-2013-158.php
[63]
Al-Rubaie, L.A.R.; Mhessn, R.J. Synthesis and characterization of azo dye para red and new derivatives. J. Chem., 2012, 9(1), 465-470.
[http://dx.doi.org/10.1155/2012/206076]
[64]
AL-Hamdani. U.J. Synthesis, Characterization and Theortical Study For Azo mesogenic compounds. J. Chem. Pharm. Res., 2012, 4(1), 932-938.
[65]
Nakade, H.; Jordan, B.J.; Srivastava, S.; Xu, H.; Yu, X.; Pollier, M.A.; Cooke, G.; Rotello, V.M. Molecular recognition-induced liquid crystals from complementary diaminopyridine and flavin dyads. Supramol. Chem., 2010, 22(11-12), 691-696.
[http://dx.doi.org/10.1080/10610278.2010.506540]
[66]
Alazaroaie, S.; Toader, V.; Carlescu, I.; Kazmierski, K.; Scutaru, D.; Hurduc, N.; Simionescu, C.I. Synthesis and thermal behaviour of some polyethers containing azo-mesogens. Eur. Polym. J., 2003, 39, 1333-1339.
[http://dx.doi.org/10.1016/S0014-3057(03)00002-8]
[67]
Prasada, V.; Kang, S.W.; Varshney, S.K.; Nagaveni, N.G. Self-assembly of azo molecules to mesogenic phasmid-like materials through inter-molecular hydrogen bonding. Liq. Cryst., 2010, 37(2), 121-128.
[http://dx.doi.org/10.1080/02678290903402257]
[68]
Cioanca, E.R.; Carlescu, I.; Lisa, G.; Scutaru, D. Synthesis, liquid crystalline properties and thermal stability of 4-(4-alkyloxyphenylazo) benzoic acids. Analele UniversităŃii din Bucuresti 2010, 19(2), 39-46.
[69]
Dimitrić Marković, J.M.; Pejin, B.; Milenković, D.; Amić, D.; Begović, N.; Mojović, M.; Marković, Z.S. Antiradical activity of delphinidin, pelargonidin and malvin towards hydroxyl and nitric oxide radicals: The energy requirements calculations as a prediction of the possible antiradical mechanisms. Food Chem., 2017, 218, 440-446.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.106] [PMID: 27719933]
[70]
Alov, P.; Tsakovska, I.; Pajeva, I. Computational studies of free radical-scavenging properties of phenolic compounds. Curr. Top. Med. Chem., 2015, 15(2), 85-104.
[http://dx.doi.org/10.2174/1568026615666141209143702] [PMID: 25547098]
[71]
Lu, Y.; Wang, A.; Shi, P.; Zhang, H. A Theoretical study on the antioxidant activity of piceatannol and isorhapontigenin scavenging nitric oxide and nitrogen dioxide radicals. PLoS One, 2017, 12(1)e0169773
[http://dx.doi.org/10.1371/journal.pone.0169773] [PMID: 28068377]
[72]
Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep., 2020, 10(1), 2611.
[http://dx.doi.org/10.1038/s41598-020-59451-z] [PMID: 32054964]
[73]
Gázquez, J.L.; Cedillo, A.; Vela, A. Electrodonating and electroaccepting powers. J. Phys. Chem. A, 2007, 111(10), 1966-1970.
[http://dx.doi.org/10.1021/jp065459f] [PMID: 17305319]
[74]
Yusuff, O.K.; Abdul Raheem, M.A.O.; Mukadam, A.A.; Sulaimon, R.O. Kinetics and Mechanism of the Antioxidant Activities of C. olitorius and V. amygdalina by Spectrophotometric and DFT Methods. ACS Omega, 2019, 4(9), 13671-13680.
[http://dx.doi.org/10.1021/acsomega.9b00851] [PMID: 31497684]
[75]
Shahab, S.; Sheikhi, M.; Filippovich, L.; Dikusar, E.; Pazniak, A.; Rouhani, M.; Kumar, R. Molecular investigations of the newly synthesized azomethines as antioxidants: theoretical and experimental studies. Curr. Mol. Med., 2019, 19(6), 419-433.
[http://dx.doi.org/10.2174/1566524019666190509102620] [PMID: 31072290]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy