Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

p-Nonylphenol Impairment of Osteogenic Differentiation of Mesenchymal Stem Cells was Found to be Due to Oxidative Stress and Down-Regulation of RUNX2 and BMP

Author(s): Abnosi M. Hussein* and Masoomi Sina

Volume 20, Issue 8, 2020

Page: [1336 - 1346] Pages: 11

DOI: 10.2174/1871530320666200505114058

Price: $65

Abstract

Objectives: Previously, it was found that the para-nonylphenol (p-NP) impairs the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs); thus the aim of the present study was to evaluate the mechanism of the impairment.

Methods: rBMSCs after 3rd passage cultured in osteogenic media in the presence of 0, 0.5 and 2.5 μM p-NP for 5, 10, 15 and 20 days. The study investigated the viability of the cells using MTT assays. The mineralization was studied using Alizarin red quantification analysis. Using a flame-photometer, the electrolytes (sodium and potassium) were measured, and the level of calcium as well as ALT, AST, ALP and LDH was determined by commercial kits. The level of total-antioxidant, MDA and the activity of SOD and CAT were estimated with the help of a spectrophotometer. Gene expression was studied using rt-PCR.

Results: The p-NP treatment of osteogenic differentiated MSCs showed intracellular electrolyte imbalance and variation of cellular metabolism. In addition, we observed oxidative stress due to the reduction of total antioxidant capacity and the imbalance of antioxidant enzymes activity. Investigating the genes involved in the osteogenic differentiation of MSCs to osteoblast showed that the 2.5 μM of p-NP reduced the expression of the ALP, SMAD, BMP and RUNX2 genes.

Conclusion: The study concludes that this pollutant via influencing the genomics and metabolic imbalance, as well as oxidative induction, caused a reduction of mineralization and differentiation of MSCs. This environmental pollutant might cause osteoporosis, which necessitates raising public awareness, especially to those who live in the industrial area to prevent its drastic effect.

Keywords: Bone marrow mesenchymal stem cells, para-nonylphenol, osteoblast, biochemical and antioxidant factors, gene expression, viability.

Graphical Abstract

[1]
Vivacqua, A.; Recchia, A.G.; Fasanella, G.; Gabriele, S.; Carpino, A.; Rago, V.; Di Gioia, M.L.; Leggio, A.; Bonofiglio, D.; Liguori, A.; Maggiolini, M. The food contaminants bisphenol A and 4-nonylphenol act as agonists for estrogen receptor alpha in MCF7 breast cancer cells. Endocrine, 2003, 22(3), 275-284.
[http://dx.doi.org/10.1385/ENDO:22:3:275] [PMID: 14709801]
[2]
Yao, G.; Hu, Y.; Liang, J.; Hou, Y. Nonylphenol-induced thymocyte apoptosis is related to Fas/FasL pathway. Life Sci., 2005, 77(26), 3306-3320.
[http://dx.doi.org/10.1016/j.lfs.2005.05.035] [PMID: 16023679]
[3]
Bechi, N.; Ietta, F.; Romagnoli, R.; Jantra, S.; Cencini, M.; Galassi, G.; Serchi, T.; Corsi, I.; Focardi, S.; Paulesu, L. Environmental levels of para-nonylphenol are able to affect cytokine secretion in human placenta. Environ. Health Perspect., 2010, 118(3), 427-431.
[http://dx.doi.org/10.1289/ehp.0900882] [PMID: 20194071]
[4]
Michelangeli, F.; Ogunbayo, O.A.; Wootton, L.L.; Lai, P.F.; Al-Mousa, F.; Harris, R.M.; Waring, R.H.; Kirk, C.J. Endocrine disrupting alkylphenols: structural requirements for their adverse effects on Ca2+ pumps, Ca2+ homeostasis & Sertoli TM4 cell viability. Chem. Biol. Interact., 2008, 176(2-3), 220-226.
[http://dx.doi.org/10.1016/j.cbi.2008.08.005] [PMID: 18773882]
[5]
Abnosi, M.H.; Soleimani Mehranjani, M.; Shariatzadeh, M.A.; Dehdehi, L. Para-nonylphenol impairs osteogenic differentiation of rat bone marrow mesenchymal stem cells by influencing the osteoblasts mineralization. Iran. J. Basic Med. Sci., 2012, 15(6), 1131-1139.
[PMID: 23653841]
[6]
Travlos, G.S. Normal structure, function, and histology of the bone marrow. Toxicol. Pathol., 2006, 34(5), 548-565.
[http://dx.doi.org/10.1080/01926230600939856] [PMID: 17067943]
[7]
Wilkins, B.S. Histology of normal haemopoiesis: Bone marrow histology. I. J. Clin. Pathol., 1992, 45(8), 645-649.
[http://dx.doi.org/10.1136/jcp.45.8.645] [PMID: 1383280]
[8]
Kim, S.K.; Kim, B.K.; Shim, J.H.; Gil, J.E.; Yoon, Y.D.; Kim, J.H. Nonylphenol and octylphenol-induced apoptosis in human embryonic stem cells is related to Fas-Fas ligand pathway. Toxicol. Sci., 2006, 94(2), 310-321.
[http://dx.doi.org/10.1093/toxsci/kfl114] [PMID: 16984955]
[9]
Gong, Y.; Han, X.D. Nonylphenol-induced oxidative stress and cytotoxicity in testicular Sertoli cells. Reprod. Toxicol., 2006, 22(4), 623-630.
[http://dx.doi.org/10.1016/j.reprotox.2006.04.019] [PMID: 16777376]
[10]
Kudo, C.; Wada, K.; Masuda, T.; Yonemura, T.; Shibuya, A.; Fujimoto, Y.; Nakajima, A.; Niwa, H.; Kamisaki, Y. Nonylphenol induces the death of neural stem cells due to activation of the caspase cascade and regulation of the cell cycle. J. Neurochem., 2004, 88(6), 1416-1423.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02270.x] [PMID: 15009642]
[11]
Yao, G.; Ling, L.; Luan, J.; Ye, D.; Zhu, P. Nonylphenol induces apoptosis of Jurkat cells by a caspase-8 dependent mechanism. Int. Immunopharmacol., 2007, 7(4), 444-453.
[http://dx.doi.org/10.1016/j.intimp.2006.11.013] [PMID: 17321467]
[12]
Baksh, D.; Song, L.; Tuan, R.S. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med., 2004, 8(3), 301-316.
[http://dx.doi.org/10.1111/j.1582-4934.2004.tb00320.x] [PMID: 15491506]
[13]
Abnosi, M.H.; Soleimani Mehranjani, M.; Momeni, H.R.; Mahdiyeh Najafabadi, M.; Barati, M.; Shojafar, E. The induction of apoptosis and autophagy in rats bone Marrow mesenchymal stem cells following in vitro treatment with p-Nonylphenol. Indian J. Sci. Technol., 2012, 8, 301-316.
[14]
Abnosi, M.H.; Soleimani Mehranjani, M.; Shariatzadeh, M.A.; Mahdiyeh Najafabadi, M.; Dehdehi, L. The effect of long term treatment of lowest effective dose of paranonylphenol on viability, morphology and proliferation of rat bone marrow mesenchymal stem cells. Physiol. Pharmacol., 2011, 15(3), 308-317.
[15]
Abnosi, M.H.; Shojafar, E. Biochemical and morphological changes in bone marrow mesenchymal stem cells induced by treatment of rats with p-Nonylphenol. Iran. J. Basic Med. Sci., 2015, 18(4), 317-324.
[PMID: 26019793]
[16]
Abnosi, M.H.; Soleimani Mehranjani, M.; Momeni, H.R.; Mahdiyeh Najafabadi, M.; Barati, M.; Shojafar, E. The effect of para-nonylphenol on the viability and morphology of rat bone marrow mesenchymal stem cells. J. Arak Univ. Med. Sci., 2011, 14(45), 1-11.
[17]
Miyawaki, J.; Kamei, S.; Sakayama, K.; Yamamoto, H.; Masuno, H. 4-tert-octylphenol regulates the differentiation of C3H10T1/2 cells into osteoblast and adipocyte lineages. Toxicol. Sci., 2008, 102(1), 82-88.
[http://dx.doi.org/10.1093/toxsci/kfm296] [PMID: 18065773]
[18]
Abnosi, M.H.; Masoomi, S. Para-nonylphenol toxicity induces oxidative stress and arrests the cell cycle in mesenchymal stem cells of bone marrow. Iran J Toxicol., 2019, 13(3), 1-8.
[19]
Stockert, J.C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R.W.; Villanueva, A. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem., 2012, 114(8), 785-796.
[http://dx.doi.org/10.1016/j.acthis.2012.01.006] [PMID: 22341561]
[20]
Rich, P.R. The molecular machinery of Keilin’s respiratory chain. Biochem. Soc. Trans., 2003, 31(Pt 6), 1095-1105.
[http://dx.doi.org/10.1042/bst0311095] [PMID: 14641005]
[21]
Stryer, L. Citric acid cycle.Biochemistry, 4th ed; W. H. Freeman and Company: New York, 1995, pp. 509-527. 569-579, 614-616, 638-641, 732-735, 739-748, 770-773
[22]
Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014, 2014360438
[http://dx.doi.org/10.1155/2014/360438]] [PMID: 24999379]
[23]
Yin, H.; Xu, L.; Porter, N.A. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev., 2011, 111(10), 5944-5972.
[http://dx.doi.org/10.1021/cr200084z] [PMID: 21861450]
[24]
Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandr. J. Med., 2018, 54(4), 287-293.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[25]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[26]
Choi, M.H.; Noh, W.C.; Park, J.W.; Lee, J.M.; Suh, J.Y. Gene expression pattern during osteogenic differentiation of human periodontal ligament cells in vitro. J. Periodontal Implant Sci., 2011, 41(4), 167-175.
[http://dx.doi.org/10.5051/jpis.2011.41.4.167] [PMID: 21954421]
[27]
Golub, E.E.; Boesze-Battaglia, K. The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop., 2007, 18, 444-448.
[http://dx.doi.org/10.1097/BCO.0b013e3282630851]
[28]
Wang, L.; Li, Z.Y.; Wang, Y.P.; Wu, Z.H.; Yu, B. Dynamic expression profiles of marker genes in osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Chin. Med. Sci. J., 2015, 30(2), 108-113.
[http://dx.doi.org/10.1016/S1001-9294(15)30021-3] [PMID: 26149002]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy