Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

General Review Article

Rosetta and the Journey to Predict Proteins’ Structures, 20 Years on

Author(s): Jad Abbass* and Jean-Christophe Nebel

Volume 15, Issue 6, 2020

Page: [611 - 628] Pages: 18

DOI: 10.2174/1574893615999200504103643

Price: $65

Abstract

For two decades, Rosetta has consistently been at the forefront of protein structure prediction. While it has become a very large package comprising programs, scripts, and tools, for different types of macromolecular modelling such as ligand docking, protein-protein docking, protein design, and loop modelling, it started as the implementation of an algorithm for ab initio protein structure prediction. The term ’Rosetta’ appeared for the first time twenty years ago in the literature to describe that algorithm and its contribution to the third edition of the community wide Critical Assessment of techniques for protein Structure Prediction (CASP3). Similar to the Rosetta stone that allowed deciphering the ancient Egyptian civilisation, David Baker and his co-workers have been contributing to deciphering ’the second half of the genetic code’. Although the focus of Baker’s team has expended to de novo protein design in the past few years, Rosetta’s ‘fame’ is associated with its fragment-assembly protein structure prediction approach. Following a presentation of the main concepts underpinning its foundation, especially sequence-structure correlation and usage of fragments, we review the main stages of its developments and highlight the milestones it has achieved in terms of protein structure prediction, particularly in CASP.

Keywords: Rosetta, protein structure prediction, fragment assembly, CASP, ligand docking, algorithm.

Graphical Abstract

[1]
Lemmon G, Meiler J. Rosetta ligand docking with flexible XML protocols. Methods Mol Biol 2012; 819: 143-55.
[http://dx.doi.org/10.1007/978-1-61779-465-0_10]
[2]
Sircar A, Chaudhury S, Kilambi KP, Berrondo M, Gray JJ. A generalized approach to sampling backbone conformations with RosettaDock for CAPRI rounds 13-19. Proteins Struct Funct Bioinforma 2010; 78(15): 3115-23.
[3]
Guntas G, Purbeck C, Kuhlman B. Engineering a protein–protein interface using a computationally designed library. Proc Natl Acad Sci 2010; 107(45): 19296-301.
[4]
Mandell DJ, Coutsias EA, Kortemme T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 2009; 6(8): 551-2.
[http://dx.doi.org/10.1038/nmeth0809-551]
[5]
Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 1997; 268(1): 209-25.
[http://dx.doi.org/10.1006/jmbi.1997.0959] [PMID: 9149153]
[6]
Leaver-Fay A, Tyka M, Lewis SM, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 2011; 487: 545-74.
[7]
Langan RA, Boyken SE, Ng AH, et al. De novo design of bioactive protein switches. Nature 2019; 572(7768): 205-10.
[http://dx.doi.org/10.1038/s41586-019-1432-8] [PMID: 31341284]
[8]
Baker D. What has de novo protein design taught us about protein folding and biophysics? Protein Sci 2019; 28(4): 678-83.
[http://dx.doi.org/10.1002/pro.3588]
[9]
Marcos E, Chidyausiku TM, McShan AC, et al. De novo design of a non-local β-sheet protein with high stability and accuracy. Nat Struct Mol Biol 2018; 25(11): 1028-34.
[http://dx.doi.org/10.1038/s41594-018-0141-6] [PMID: 30374087]
[10]
Lu P, Min D, DiMaio F, et al. Accurate computational design of multipass transmembrane proteins. Science 2018; 2359(6379): 1042-6.
[http://dx.doi.org/10.1126/science.aaq1739]
[11]
Silva D, Stewart L, Lam K, Jin R, Baker D. Structures and disulfide cross‐linking of de novo designed therapeutic mini‐proteins. FEBS J 2018; 285(10): 1783-5.
[12]
Chevalier A, Silva DA, Rocklin GJ, et al. Massively parallel de novo protein design for targeted therapeutics. Nature 2017; 550(7674): 74-9.
[http://dx.doi.org/10.1038/nature23912] [PMID: 28953867]
[13]
Huang PS, Boyken SE, Baker D. The coming of age of de novo protein design. Nature 2016; 537(7620): 320-7.
[http://dx.doi.org/10.1038/nature19946] [PMID: 27629638]
[14]
Simons KT, Bonneau R, Ruczinski I, Baker D. Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins 1999; 37(Suppl. 3): 171-6.
[http://dx.doi.org/10.1002/(SICI)1097-0134(1999)37:3+<171:AID-PROT21>3.0.CO;2-Z] [PMID: 10526365]
[15]
Orengo CA, Bray JE, Hubbard T, LoConte L, Sillitoe I. Analysis and assessment of ab initio three-dimensional prediction, secondary structure, and contacts prediction. Proteins 1999; 37(Suppl. 3): 149-70.
[http://dx.doi.org/10.1002/(SICI)1097-0134(1999)37:3+<149:AID-PROT20>3.0.CO;2-H]
[16]
Kuhlman B, Bradley P. Advances in protein structure prediction and design. Nat Rev Mol Cell Biol 2019; 20(11): 681-97.
[17]
Dill KA, Ozkan SB, Shell MS, Weikl TR. The protein folding problem. Annu Rev Biophys 2008; 37(1): 289-316.
[http://dx.doi.org/10.1146/annurev.biophys.37.092707.153558]
[18]
Perez A, Yang Z, Bahar I, Dill KA, MacCallum JL, Flex E. Using Elastic network models to compare models of protein structure. J Chem Theory Comput 2012; 8(10): 3985-91.
[19]
Scheraga HA. My 65 years in protein chemistry. Q Rev Biophys 2015; 48(02): 117-77.
[20]
Karplus M. The Levinthal paradox: yesterday and today. Fold Des 1997; 2(4): S69-75.
[http://dx.doi.org/10.1016/S1359-0278(97)00067-9] [PMID: 9269572]
[21]
Dill KA. Dominant forces in protein folding. Biochemistry 1990; 29(31): 7133-55.
[http://dx.doi.org/10.1021/bi00483a001]
[22]
Lam SD, Das S, Sillitoe I, Orengo C. An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences. Acta Crystallogr D Struct Biol 2017; 73(Pt 8): 628-40.
[http://dx.doi.org/10.1107/S2059798317008920] [PMID: 28777078]
[23]
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. Coarse-grained protein models and their applications. Chem Rev 2016; 116: 7898-936.
[http://dx.doi.org/10.1021/acs.chemrev.6b00163]
[24]
Dukka BK. Recent advances in sequence-based protein structure prediction. Brief Bioinform 2017; 18(6): 1021-32.
[25]
Deng H, Jia Y, Zhang Y. Protein structure prediction. Int J Mod Phys B 2018; 32(18)1840009
[http://dx.doi.org/10.1142/S021797921840009X] [PMID: 30853739]
[26]
Bowie JU, Eisenberg D. An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function. Proc Natl Acad Sci USA 1994; 91(10): 4436-40.
[http://dx.doi.org/10.1073/pnas.91.10.4436]] [PMID: 8183927]
[27]
Song Y, Tyka MD, Leaver-fay A, et al. Toward High-Resolution de Novo Structure Prediction for Small Proteins. Science 2005; 309(1): 1868-71.
[28]
Subramani A, Wei Y, Floudas CA. ASTRO-FOLD 2.0: an enhanced framework for protein structure prediction. AIChE J 2012; 58(5): 1619-37.
[29]
Kosciolek T, Jones DT. De novo structure prediction of globular proteins aided by sequence variation-derived contacts ASTRO-FOLD 2.0: an enhanced framework for protein structure prediction. AIChE J 2012; 58(5): 1619-37.
[http://dx.doi.org/10.1371/journal.pone.0092197]
[30]
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods 2015; 12(1): 7-8.
[http://dx.doi.org/10.1038/nmeth.3213]
[31]
Xu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 2012; 80(7): 1715-35.
[http://dx.doi.org/10.1002/prot.24065]
[32]
Abbass J, Nebel JC. Reduced fragment diversity for alpha and alpha-beta protein structure prediction using Rosetta. Protein Pept Lett 2017; 24(3): 215-22.
[http://dx.doi.org/10.2174/0929866523666161216124019 PMID: 27993124]
[33]
Han KF, Baker D. Global properties of the mapping between local amino acid sequence and local structure in proteins. Proc Natl Acad Sci USA 1996; 93(12): 5814-8.
[http://dx.doi.org/10.1073/pnas.93.12.5814]
[34]
Rohl CA, Strauss CEM, Misura KMS, Baker D. Protein structure prediction using Rosetta. Methods Enzymol 2004; 383: 66-93.
[http://dx.doi.org/10.1016/S0076-6879(04)83004-0 PMID: 15063647]
[35]
Han KF, Baker D. Global properties of the mapping between local amino acid sequence and local structure in proteins. Proc Natl Acad Sci USA 1996; 93: 5814-8.
[http://dx.doi.org/10.1073/pnas.93.12.5814]
[36]
Han KF, Baker D. Recurring local sequence motifs in proteins. J Mol Biol 1995; 251(1): 176-87.
[http://dx.doi.org/10.1006/jmbi.1995.0424] [PMID: 7643386]
[37]
Bystroff C, Simons KT, Han KF, Baker D. Local sequence-structure correlations in proteins. Curr Opin Biotechnol 1996; 7(4): 417-21.
[http://dx.doi.org/10.1016/S0958-1669(96)80117-0] [PMID: 8768900]
[38]
Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 1997; 268(1): 209-25.
[39]
Simons KT, Ruczinski I, Kooperberg C, Fox BA, Bystroff C, Baker D. Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 1999; 34(1): 82-95.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19990101)34:1<82:AID-PROT7>3.0.CO;2-A PMID: 10336385]
[40]
Bystroff C, Baker D. Blind predictions of local protein structure in CASP2 targets using the I-sites library. Proteins Struct Funct Genet 1997; 29(Suppl. 1): 167-71.
[41]
Leaver-Fay A, O’Meara MJ, Tyka M, et al. Scientific benchmarks for guiding macromolecular energy function improvement. Methods Enzymol 2013; 523: 109-43.
[http://dx.doi.org/10.1016/B978-0-12-394292-0.00006-0]
[42]
O’Meara MJ, Leaver-Fay A, Tyka MD, et al. Combined covalent-electrostatic model of hydrogen bonding improves structure prediction with Rosetta. J Chem Theory Comput 2015; 11(2): 609-22.
[43]
Alford RF, Leaver-Fay A, Jeliazkov JR, et al. the rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput 2017; 13(6): 3031-48.
[http://dx.doi.org/10.1021/acs.jctc.7b00125] [PMID: 28430426]
[44]
Bradley P, Malmström L, Qian B, et al. Free modeling with Rosetta in CASP6. Proteins 2005; 61(Suppl. 7): 128-34.
[http://dx.doi.org/10.1002/prot.20729] [PMID: 16187354]
[45]
Chivian D, Kim DE, Malmström L, Schonbrun J, Rohl CA, Baker D. Prediction of CASP6 structures using automated Robetta protocols. Proteins Struct Func Bioinform 2005; 61(7): 157-66.
[http://dx.doi.org/10.1002/prot.20733]
[46]
Das R, Qian B, Raman S, et al. Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins 2007; 69(Suppl. 8): 118-28.
[47]
Raman S, Vernon R, Thompson J, et al. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 2009; 77: 89-99.
[http://dx.doi.org/10.1002/prot.22540]
[48]
Lazaridis T, Karplus M. Effective energy function for proteins in solution. Proteins 1999; 35(2): 133-52.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19990501)35:2<133:AID-PROT1>3.0.CO;2-N]
[49]
Lyskov S, Chou FC, Conchúir SÓ, et al. Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE). PLoS One 2013; 8(5)e63906
[http://dx.doi.org/10.1371/journal.pone.0063906] [PMID: 23717507]
[50]
Dunbrack RL. Rotamer libraries in the 21st century. Curr Opin Struct Biol 2002; 12: 431-40.
[51]
Dunbrack RL, Cohen FE. Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci 1997; 6(8): 1661-81.
[http://dx.doi.org/10.1002/pro.5560060807]
[52]
Shapovalov MV, Dunbrack RL. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 2011; 19(6): 844-58.
[http://dx.doi.org/10.1016/j.str.2011.03.019]
[53]
Gront D, Kulp DW, Vernon RM, Strauss CEM, Baker D. Generalized fragment picking in Rosetta: design, protocols and applications. PLoS One 2011; 6(8)e23294
[54]
McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000; 16(4): 404-5.
[http://dx.doi.org/10.1093/bioinformatics/16.4.404 PMID: 10869041]
[55]
Leman JK, Mueller R, Karakas M, Woetzel N, Meiler J. Simultaneous prediction of protein secondary structure and transmembrane spans. Proteins 2013; 81(7): 1127-40.
[http://dx.doi.org/10.1002/prot.24258]
[56]
Karplus K. SAM-T08, HMM-based protein structure prediction. Nucleic Acids Res 2009; 37: W492-7.
[57]
Mirabello C, Pollastri G. Porter, PaleAle 4.0: high-accuracy prediction of protein secondary structure and relative solvent accessibility. Bioinformatics 2013; 29: 2056-8.
[58]
Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25(17): 3389-402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[59]
Kirkpatrick S, Gelatt CD Jr, Vecchi MP. Optimization by simulated annealing. Science 1983; 220(4598): 671-80.
[http://dx.doi.org/10.1126/science.220.4598.671] [PMID: 17813860]
[60]
Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E. Equation of State Calculations by Fast Computing Machines. J Chem Phys 1953; 21: 1087.
[http://dx.doi.org/10.1063/1.1699114]
[61]
Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 2004; 32W526-31
[http://dx.doi.org/10.1093/nar/gkh468] [PMID: 15215442]
[62]
Song Y, DiMaio F, Wang RYR, et al. High-resolution comparative modeling with RosettaCM. Structure 2013; 21(10): 1735-42.
[http://dx.doi.org/10.1016/j.str.2013.08.005] [PMID: 24035711]
[63]
Wollacott AM, Zanghellini A, Murphy P, Baker D. Prediction of structures of multidomain proteins from structures of the individual domains. Protein Sci 2007; 16(2): 165-75.
[http://dx.doi.org/10.1110/ps.062270707] [PMID: 17189483]
[64]
Söding J. Protein homology detection by HMM-HMM comparison. Bioinformatics 2005; 21(7): 951-60.
[http://dx.doi.org/10.1093/bioinformatics/bti125] [PMID: 15531603]
[65]
Yang Y, Faraggi E, Zhao H, Zhou Y. Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics 2011; 27(15): 2076-82.
[http://dx.doi.org/10.1093/bioinformatics/btr350]
[66]
Peng J, Xu J. Raptorx: exploiting structure information for protein alignment by statistical inference. Proteins 2011; 79: 161-71.
[67]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215(3): 403-10.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[68]
Jaroszewski L, Godzik A, Rychlewski L. Improving the quality of twilight-zone alignments. Protein Sci 2000; 9(8): 1487-96.
[http://dx.doi.org/10.1110/ps.9.8.1487]
[69]
Rychlewski L, Li W, Jaroszewski L, Godzik A. Comparison of sequence profiles. Bioinformatics 2011; 27(15): 2076-82.http://www.ncbi.nlm.nih.gov/pubmed/10716175
[70]
Ginalski K, Rychlewski L. Detection of reliable and unexpected protein fold predictions using 3D-Jury. Nucleic Acids Res 2003; 31(13): 3291-2.
[71]
Kamisetty H, Ovchinnikov S, Baker D. Detection of reliable and unexpected protein fold predictions using 3D-Jury. Nucleic Acids Res 2003; 31(13): 3291-2.
[72]
Ovchinnikov S, Park H, Varghese N, et al. Protein structure determination using metagenome sequence data. Science 2017; 355(6322): 294-8.
[http://dx.doi.org/10.1126/science.aah4043]
[73]
Uziela K, Wallner B. ProQ2: estimation of model accuracy implemented in Rosetta. Bioinformatics 2016; 32(9): 1411-3.
[http://dx.doi.org/10.1093/bioinformatics/btv767] [PMID: 26733453]
[74]
Baker D. Centenary Award and Sir Frederick Gowland Hopkins Memorial Lecture. Protein Sci 2000; 9(8): 1487-96.
[75]
Tyka MD, Keedy DA, André I, et al. Alternate states of proteins revealed by detailed energy landscape mapping. J Mol Biol 2011; 405: 607-18.
[76]
Cooper S, Khatib F, Treuille A, et al. Predicting protein structures with a multiplayer online game. Nature 2010; 466(7307): 756-60.
[http://dx.doi.org/10.1038/nature09304] [PMID: 20686574]
[77]
Cooper S, Baker D, Popović Z, et al. The challenge of designing scientific discovery games.Proceedings of the Fifth International Conference on the Foundations of Digital Games - FDG ’10 New York, New York, USA: ACM Press 2010; 40-7.
[http://dx.doi.org/10.1145/1822348.1822354]
[78]
Eiben CB, Siegel JB, Bale JB, et al. Increased Diels-Alderase activity through backbone remodeling guided by Foldit players. Nat Biotechnol 2012; 30(2): 190-2.
[http://dx.doi.org/10.1038/nbt.2109] [PMID: 22267011]
[79]
Gilski M, Kazmierczyk M, Krzywda S, et al. High-resolution structure of a retroviral protease folded as a monomer. Acta Crystallogr D Biol Crystallogr 2011; 67(Pt 11): 907-14.
[http://dx.doi.org/10.1107/S0907444911035943] [PMID: 22101816]
[80]
Khatib F, Cooper S, Tyka MD, et al. Algorithm discovery by protein folding game players. Proc Natl Acad Sci USA 2011; 108(47): 18949-53.
[http://dx.doi.org/10.1073/pnas.1115898108] [PMID: 22065763]
[81]
Kleffner R, Flatten J, Leaver-Fay A, et al. Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta. Bioinformatics 2017; 33(17): 2765-7.
[http://dx.doi.org/10.1093/bioinformatics/btx283]
[82]
Zhang Y, Skolnick J. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 2004; 101(20): 7594-9.
[http://dx.doi.org/10.1073/pnas.0305695101] [PMID: 15126668]
[83]
Zhou H, Skolnick J. Ab initio protein structure prediction using chunk-TASSER. Biophys J 2007; 93(5): 1510-8.
[http://dx.doi.org/10.1529/biophysj.107.109959] [PMID: 17496016]
[84]
Wu S, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 2007; 5: 17.
[http://dx.doi.org/10.1186/1741-7007-5-17]
[85]
Abbass J, Nebel J-C, Mansour N. Ab Initio Protein Structure Prediction: Methods and challengesBiological Knowledge Discovery Handbook. Hoboken, New Jersey: John Wiley & Sons, Inc. 2013; pp. 703-24.
[http://dx.doi.org/10.1002/9781118617151.ch32]
[86]
Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5(4): 725-38.
[http://dx.doi.org/10.1038/nprot.2010.5]
[87]
Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins 2002; 48(2): 192-201.
[http://dx.doi.org/10.1002/prot.10141] [PMID: 12112688]
[88]
Xu D, Zhang Y. Toward optimal fragment generations for ab initio protein structure assembly. Nat Protoc 2010; 5(4): 725-38.
[89]
Andersen CAF, Palmer AG, Brunak S, Rost B. Continuum secondary structure captures protein flexibility. Structure 2002; 10(2): 175-84.
[http://dx.doi.org/10.1016/S0969-2126(02)00700-1]
[90]
Kinch LN, Shi S, Cheng H, et al. CASP9 target classification. Proteins Struct Funct Bioinforma 2011; 79(S10): 21-36.
[http://dx.doi.org/10.1002/prot.23190]
[91]
Kinch LN, Li W, Schaeffer RD, et al. CASP 11 target classi-fication. Proteins 2016; 84: 21-36.
[92]
Tress ML, Ezkurdia I, Richardson JS. Target domain definition and classification in CASP8. Proteins 2009; 77: 10-7.
[93]
Clarke ND, Ezkurdia I, Kopp J, Read RJ, Schwede T, Tress M. Domain definition and target classification for CASP7. Proteins 2007; 69(Suppl. 8): 10-8.
[http://dx.doi.org/10.1002/prot.21686] [PMID: 17654725]
[94]
Kinch LN, Kryshtafovych A, Monastyrskyy B, Grishin NV. CASP13 target classification into tertiary structure prediction categories arget domain definition and classification in CASP8. Proteins 2009; 87(12): 1021-36.
[http://dx.doi.org/10.1002/prot.25775]
[95]
Zemla A. LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 2003; 31(13): 3370-4.
[96]
Aloy P, Stark A, Hadley C, Russell RB. Predictions without templates: new folds, secondary structure, and contacts in CASP5. Proteins 2003; 53(Suppl. 6): 436-56.
[http://dx.doi.org/10.1002/prot.10546] [PMID: 14579333]
[97]
Schrödinger LLC. The PyMOL Molecular Graphics System, Version~18 2015 Nov;
[98]
Cozzetto D, Kryshtafovych A, Ceriani M, Tramontano A. Assessment of predictions in the model quality assessment category. Proteins 2007; 69: 175-83.
[http://dx.doi.org/10.1002/prot.21669]
[99]
Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. Critical assessment of methods of protein structure prediction: Progress and new directions in round XI. Proteins 2016; 84: 4-14.
[http://dx.doi.org/10.1002/prot.25064] [PMID: 27171127]
[100]
Lesk AM. CASP2: report on ab initio predictions. Proteins 1997; 29: 151-66.
[http://dx.doi.org/10.1002/(SICI)1097-0134(1997)1+<151:AID-PROT20>3.0.CO;2-M] [PMID: 9485507]
[101]
Lesk AM, Lo Conte L, Hubbard TJP. Assessment of novel fold targets in CASP4: predictions of three-dimensional structures, secondary structures, and interresidue contacts. Proteins 2001; 45(Suppl. 5): 98-118.
[http://dx.doi.org/10.1002/prot.10056] [PMID: 11835487]
[102]
Bonneau R, Tsai J, Ruczinski I, et al. Rosetta in CASP4: progress in ab initio protein structure prediction. Proteins 2001; 45(Suppl. 5): 119-26.
[http://dx.doi.org/10.1002/prot.1170] [PMID: 11835488]
[103]
Bradley P, Chivian D, Meiler J, et al. Rosetta predictions in CASP5: Successes, failures, and prospects for complete automation. Proteins Struct Funct Genet 2003; 53(S6): 457-68.
[104]
Vincent JJ, Tai C-H, Sathyanarayana BK, Lee B. Assessment of CASP6 predictions for new and nearly new fold targets. Proteins 2005; 61: 67-83.
[http://dx.doi.org/10.1002/prot.20722]
[105]
Jauch R, Yeo HC, Kolatkar PR, Clarke ND. Assessment of CASP7 structure predictions for template free targets Rosetta predictions in CASP5: Successes, failures, and prospects for complete automation. Proteins Struct Funct Genet 2003; 53(S6): 457-68.
[http://dx.doi.org/10.1002/prot.21771]
[106]
Ben-David M, Noivirt-Brik O, Paz A, Prilusky J, Sussman JL, Levy Y. Assessment of CASP8 structure predictions for template free targets. Proteins 2009; 77(Suppl. 9): 50-65.
[http://dx.doi.org/10.1002/prot.22591] [PMID: 19774550]
[107]
Zhang J, Wang Q, Barz B, et al. Rosetta predictions in CASP5: Successes, failures, and prospects for complete automation. Proteins Struct Funct Genet 2003; 53(S6): 457-68.
[108]
Kinch L, Yong Shi S, Cong Q, Cheng H, Liao Y. Grishin NV. CASP9 assessment of free modeling target predictions. Proteins 2011; 79(Suppl. 10): 59-73.
[http://dx.doi.org/10.1002/prot.23181] [PMID: 21997521]
[109]
Tai CH, Bai H, Taylor TJ, Lee B. Assessment of template-free modeling in CASP10 and ROLL. Proteins 2014; 82(Suppl. 2): 57-83.
[http://dx.doi.org/10.1002/prot.24470] [PMID: 24343678]
[110]
Kinch LN, Li W, Monastyrskyy B, Kryshtafovych A, Grishin NV. Evaluation of free modeling targets in CASP11 and ROLL. Proteins 2016; 84(Suppl. 1): 51-66.
[http://dx.doi.org/10.1002/prot.24973] [PMID: 26677002]
[111]
Mabrouk M, Putz I, Werner T, et al. RBO Aleph: leveraging novel information sources for protein structure prediction. Nucleic Acids Res 2015; 43(W1)W343-8
[http://dx.doi.org/10.1093/nar/gkv357]
[112]
Zhang Y. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Proteins 2014; 82: 175-87.
[http://dx.doi.org/10.1002/prot.24341]
[113]
Ovchinnikov S, Kim DE, Wang RYR, Liu Y, Dimaio F, Baker D. Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta. Proteins Struct Funct Bioinforma 2016; 84: 67-75.
[http://dx.doi.org/10.1002/prot.24974]]
[114]
Joo K, Joung I, Cheng Q, Lee SJ, Lee J. Contact-assisted protein structure modeling by global optimization in CASP11. Proteins 2016; 84(Suppl. 1): 189-99.
[http://dx.doi.org/10.1002/prot.24975] [PMID: 26677100]
[115]
Ovchinnikov S, Kamisetty H, Baker DSO. Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information. eLife 2014; 3e02030
[http://dx.doi.org/10.7554/eLife.02030] [PMID: 24842992]
[116]
Park I-H, Gangupomu V, Wagner J, Jain A, Vaidehi N. Structure refinement of protein low resolution models using the gneimo constrained dynamics method. J Phys Chem B 2012; 116(8): 2365-75.
[117]
Li SC, Bu D, Xu J, Li M. Fragment-HMM: a new approach to protein structure prediction. Protein Sci 2008; 17(11): 1925-34.
[http://dx.doi.org/10.1110/ps.036442.108]
[118]
Khoury GA, Smadbeck J, Kieslich CA, et al. Princeton_TIGRESS 2.0: High refinement consistency and net gains through support vector machines and molecular dynamics in double-blind predictions during the CASP11 experiment. Proteins 2017; 85(6): 1078-98.
[http://dx.doi.org/10.1002/prot.25274] [PMID: 28241391]
[119]
Kandathil SM, Handl J, Lovell SC. Toward a detailed understanding of search trajectories in fragment assembly approaches to protein structure prediction. Proteins Struct Funct Bioinforma 2016; 84(4): 411-26.
[http://dx.doi.org/10.1002/prot.24987]
[120]
Karakaş M, Woetzel N, Staritzbichler R, Alexander N, Weiner BE, Meiler J. BCL:Fold--de novo prediction of complex and large protein topologies by assembly of secondary structure elements. PLoS One 2012; 7(11)e49240
[http://dx.doi.org/10.1371/journal.pone.0049240] [PMID: 23173050]
[121]
Li J, Deng X, Eickholt J, Cheng J. Designing and benchmarking the MULTICOM protein structure prediction system. BMC Struct Biol 2013; 13(1): 2.
[http://dx.doi.org/10.1186/1472-6807-13-2] [PMID: 23442819]
[122]
Shrestha R, Zhang KYJ. Improving fragment quality for de novo structure prediction. Proteins Struct Funct Bioinforma 2016; 84(4): 411-26.
[http://dx.doi.org/10.1002/prot.24587]]
[123]
Li Y, Liu H, Rata I, Jakobsson E. Building a knowledge-based statistical potential by capturing high-order inter-residue interactions and its applications in protein secondary structure assessment. J Chem Inf Model 2013; 53(2): 500-8.
[124]
Simoncini D, Zhang KYJ. Efficient sampling in fragment-based protein structure prediction using an estimation of distribution algorithm. PLoS One 2013; 8(7)e68954
[http://dx.doi.org/10.1371/journal.pone.0068954] [PMID: 23935913]
[125]
Abbass J, Nebel J-C. Customised fragments libraries for protein structure prediction based on structural class annotations. BMC Bioinformatics 2015; 16(1): 136.
[http://dx.doi.org/10.1186/s12859-015-0576-2]
[126]
Abbass J, Nebel J-C. SCOP-Aided Fragment Assembly Protein Structure Prediction. 2019; Fourth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) 1-5.
[127]
Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. Critical assessment of methods of protein structure prediction (CASP)-Round XII. Proteins 2018; 86: 7-15.
[http://dx.doi.org/10.1002/prot.25415] [PMID: 29082672]
[128]
Ovchinnikov S, Park H, Kim DE, DiMaio F, Baker D. Protein structure prediction using Rosetta in CASP12. Proteins 2018; 86: 113-21.
[http://dx.doi.org/10.1002/prot.25390] [PMID: 28940798]
[129]
Trevizani R, Custódio FL, Dos Santos KB, Dardenne LE. Critical features of fragment libraries for protein structure prediction. PLoS One 2017; 12(1)e0170131
[130]
Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Critical assessment of methods of protein structure prediction (CASP)-Round XIII. Proteins 2019; 87(12): 1011-20.
[131]
Kandathil SM, Greener JG, Jones DT. Recent developments in deep learning applied to protein structure prediction. Proteins 2019; 87(12): 1179-89.
[http://dx.doi.org/10.1002/prot.25824] [PMID: 31589782]
[132]
Senior AW, Evans R, Jumper J, et al. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins 2019; 87(12): 1141-8.
[http://dx.doi.org/10.1002/prot.25834] [PMID: 31602685]
[133]
Conway P, Tyka MD, DiMaio F, Konerding DE, Baker D. Relaxation of backbone bond geometry improves protein energy landscape modeling. Protein Sci 2014; 23(1): 47-55.
[http://dx.doi.org/10.1002/pro.2389] [PMID: 24265211]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy