Review Article

靶向雷帕霉素的哺乳动物靶点:炎症性肠病的治疗前景。

卷 28, 期 8, 2021

发表于: 04 May, 2020

页: [1605 - 1624] 页: 20

弟呕挨: 10.2174/0929867327666200504081503

价格: $65

conference banner
摘要

炎性肠病(IBD)是一组慢性和进行性疾病的总称。 IBD的发病机制涉及多种细胞和生物分子途径,但病因尚不清楚。还显示了在肠上皮细胞中雷帕霉素(mTOR)途径的哺乳动物靶标的激活可诱导炎症。这篇综述集中在抑制mTOR信号传导途径及其在治疗IBD中的潜在应用。我们还提供了植物来源的化合物的概述,这些化合物通过调节mTOR途径对IBD的管理有益。数据摘自1995年至2019年5月之间以英文发表的临床,体外和体内研究,这些研究是从PubMed,Google Scholar,Scopus和Cochrane图书馆数据库中收集的。各种研究的结果表明,mTOR信号通路的抑制下调了IBD涉及的炎症过程和细胞因子。在这种情况下,许多天然产物可能会逆转该疾病的病理特征。此外,mTOR为IBD提供了新的药物靶标。需要进行全面的临床研究,以确认mTOR抑制剂治疗IBD的功效。

关键词: 消化内科,炎症性肠病,溃疡性结肠炎,克罗恩病,雷帕霉素的哺乳动物靶标,天然产物。

[1]
Deng, L.; Zhou, J-F.; Sellers, R.S.; Li, J-F.; Nguyen, A.V.; Wang, Y.; Orlofsky, A.; Liu, Q.; Hume, D.A.; Pollard, J.W.; Augenlicht, L.; Lin, E.Y. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am. J. Pathol., 2010, 176(2), 952-967.
[http://dx.doi.org/10.2353/ajpath.2010.090622] [PMID: 20042677]
[2]
Anbazhagan, A.N.; Priyamvada, S.; Alrefai, W.A.; Dudeja, P.K. Pathophysiology of IBD associated diarrhea. Tissue Barriers, 2018, 6(2)e1463897
[http://dx.doi.org/10.1080/21688370.2018.1463897] [PMID: 29737913]
[3]
Benchimol, E.I.; Fortinsky, K.J.; Gozdyra, P.; Van den Heuvel, M.; Van Limbergen, J.; Griffiths, A.M. Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends. Inflamm. Bowel Dis., 2011, 17(1), 423-439.
[http://dx.doi.org/10.1002/ibd.21349] [PMID: 20564651]
[4]
Van Limbergen, J.; Radford-Smith, G.; Satsangi, J. Advances in IBD genetics. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(6), 372-385.
[http://dx.doi.org/10.1038/nrgastro.2014.27] [PMID: 24614343]
[5]
Graff, L.A.; Walker, J.R.; Bernstein, C.N. Depression and anxiety in inflammatory bowel disease: a review of comorbidity and management. Inflamm. Bowel Dis., 2009, 15(7), 1105-1118.
[http://dx.doi.org/10.1002/ibd.20873] [PMID: 19161177]
[6]
Gamallat, Y.; Ren, X.; Walana, W.; Meyiah, A.; Xinxiu, R.; Zhu, Y.; Li, M.; Song, S.; Xie, L.; Jamalat, Y. Probiotic Lactobacillus rhamnosus modulates the gut microbiome composition attenuates preneoplastic colorectal Aberrant crypt foci. J. Funct. Foods, 2019, 53, 146-156.
[http://dx.doi.org/10.1016/j.jff.2018.12.018]
[7]
Guan, Q.; Zhang, J. Recent advances: the imbalance of cytokines in the pathogenesis of inflammatory bowel disease. Mediators Inflamm., 2017, 20174810258
[http://dx.doi.org/10.1155/2017/4810258] [PMID: 28420941]
[8]
Wilhelm, S.M.; Love, B.L. Management of patients with inflammatory bowel disease: current and future treatments. Clin. Pharm., 2019, 9(3), 83-92.
[http://dx.doi.org/10.1211/CP.2017.20202316 ]
[9]
Farzaei, M.H.; Bahramsoltani, R.; Abdolghaffari, A.H.; Sodagari, H.R.; Esfahani, S.A.; Rezaei, N. A mechanistic review on plant-derived natural compounds as dietary supplements for prevention of inflammatory bowel disease. Expert Rev. Gastroenterol. Hepatol., 2016, 10(6), 745-758.
[http://dx.doi.org/10.1586/17474124.2016.1145546] [PMID: 26799847]
[10]
Farzaei, M.H.; El-Senduny, F.F.; Momtaz, S.; Parvizi, F.; Iranpanah, A.; Tewari, D.; Naseri, R.; Abdolghaffari, A.H.; Rezaei, N. An update on dietary consideration in inflammatory bowel disease: anthocyanins and more. Expert Rev. Gastroenterol. Hepatol., 2018, 12(10), 1007-1024.
[http://dx.doi.org/10.1080/17474124.2018.1513322] [PMID: 30136591]
[11]
Sarkar, S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem. Soc. Trans., 2013, 41(5), 1103-1130.
[http://dx.doi.org/10.1042/BST20130134] [PMID: 24059496]
[12]
Volkart, P.A.; Bitencourt-Ferreira, G.; Souto, A.A.; de Azevedo, W.F. Cyclin-dependent kinase 2 in cellular senescence and cancer. a structural and functional review. Curr. Drug Targets, 2019, 20(7), 716-726.
[http://dx.doi.org/10.2174/1389450120666181204165344] [PMID: 30516105]
[13]
Levin, N.M.B.; Pintro, V.O.; de Avila, M.B.; de Mattos, B.B.; De Azevedo, W.F. Jr. Understanding the structural basis for inhibition of cyclin-dependent kinases. new pieces in the molecular puzzle. Curr. Drug Targets, 2017, 18(9), 1104-1111.
[http://dx.doi.org/10.2174/1389450118666161116130155] [PMID: 27848884]
[14]
de Ávila, M.B.; Xavier, M.M.; Pintro, V.O.; de Azevedo, W.F. Jr. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 305-310.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.035] [PMID: 29017921]
[15]
Levin, N.M.B.; Pintro, V.O.; Bitencourt-Ferreira, G.; de Mattos, B.B.; de Castro Silvério, A.; de Azevedo, W.F. Jr Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys. Chem., 2018, 235, 1-8.
[http://dx.doi.org/10.1016/j.bpc.2018.01.004] [PMID: 29407904]
[16]
Bitencourt-Ferreira, G.; da Silva, A.D.; de Azevedo, W.F. Jr. Application of machine learning techniques to predict binding affinity for drug targets. a study of cyclin-dependent kinase 2. Curr. Med. Chem., 2021, 28(2), 253-265.
[http://dx.doi.org/10.2174/2213275912666191102162959] [PMID: 31729287]
[17]
Dos Santos Paparidis, N.F.; Canduri, F. The emerging picture of CDK11: genetic, functional and medicinal aspects. Curr. Med. Chem., 2018, 25(8), 880-888.
[http://dx.doi.org/10.2174/0929867324666170815102036] [PMID: 28814241]
[18]
Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell, 2017, 168(6), 960-976.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[19]
Yu, K.; Toral-Barza, L.; Discafani, C.; Zhang, W.G.; Skotnicki, J.; Frost, P.; Gibbons, J.J. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr. Relat. Cancer, 2001, 8(3), 249-258.
[http://dx.doi.org/10.1677/erc.0.0080249] [PMID: 11566616]
[20]
Chen, J.; Zhao, K-N.; Li, R.; Shao, R.; Chen, C. Activation of PI3K/Akt/mTOR pathway and dual inhibitors of PI3K and mTOR in endometrial cancer. Curr. Med. Chem., 2014, 21(26), 3070-3080.
[http://dx.doi.org/10.2174/0929867321666140414095605] [PMID: 24735369]
[21]
Ebrahimi, S.; Hosseini, M.; Shahidsales, S.; Maftouh, M.; Ferns, G.A.; Ghayour-Mobarhan, M.; Hassanian, S.M.; Avan, A. A Ferns G, Ghayour-Mobarhan M, Mahdi Hassanian S, Avan A. Targeting the Akt/PI3K signaling pathway as a potential therapeutic strategy for the treatment of pancreatic cancer. Curr. Med. Chem., 2017, 24(13), 1321-1331.
[http://dx.doi.org/10.2174/0929867324666170206142658] [PMID: 28176634]
[22]
Leibowitz, G.; Cerasi, E.; Ketzinel-Gilad, M. The role of mTOR in the adaptation and failure of β-cells in type 2 diabetes. Diabetes Obes. Metab., 2008, 10(Suppl. 4), 157-169.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00952.x] [PMID: 18834443]
[23]
Sciarretta, S.; Volpe, M.; Sadoshima, J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ. Res., 2014, 114(3), 549-564.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302022] [PMID: 24481845]
[24]
Wong, M. Mammalian target of rapamycin (mTOR) pathways in neurological diseases. Biomed. J., 2013, 36(2), 40-50.
[http://dx.doi.org/10.4103/2319-4170.110365] [PMID: 23644232]
[25]
Hu, S.; Chen, M.; Wang, Y.; Wang, Z.; Pei, Y.; Fan, R.; Liu, X.; Wang, L.; Zhou, J.; Zheng, S.; Zhang, T.; Lin, Y.; Zhang, M.; Tao, R.; Zhong, J. mTOR inhibition attenuates dextran sulfate sodium-induced colitis by suppressing T cell proliferation and balancing TH1/TH17/Treg profile. PLoS One, 2016, 11(4)e0154564
[http://dx.doi.org/10.1371/journal.pone.0154564] [PMID: 27128484]
[26]
Larussa, T.; Imeneo, M.; Luzza, F. Potential role of nutraceutical compounds in inflammatory bowel disease. World J. Gastroenterol., 2017, 23(14), 2483-2492.
[http://dx.doi.org/10.3748/wjg.v23.i14.2483] [PMID: 28465632]
[27]
Loewith, R.; Hall, M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics, 2011, 189(4), 1177-1201.
[http://dx.doi.org/10.1534/genetics.111.133363] [PMID: 22174183]
[28]
Hay, N.; Sonenberg, N. Upstream and downstream of mTOR. Genes Dev., 2004, 18(16), 1926-1945.
[http://dx.doi.org/10.1101/gad.1212704] [PMID: 15314020]
[29]
Laplante, M Sabatini, DM mTOR signaling in growth control and disease cell, 2012, 149, 274-293.
[30]
Feng, J.; Liao, Y.; Xu, X.; Yi, Q.; He, L.; Tang, L. hnRNP A1 promotes keratinocyte cell survival post UVB radiation through PI3K/Akt/mTOR pathway. Exp. Cell Res., 2018, 362(2), 394-399.
[http://dx.doi.org/10.1016/j.yexcr.2017.12.002] [PMID: 29229447]
[31]
Giguère, V. Canonical signaling and nuclear activity of mTOR-a teamwork effort to regulate metabolism and cell growth. FEBS J., 2018, 285(9), 1572-1588.
[http://dx.doi.org/10.1111/febs.14384] [PMID: 29337437]
[32]
Huang, J.; Manning, B.D. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J., 2008, 412(2), 179-190.
[http://dx.doi.org/10.1042/BJ20080281] [PMID: 18466115]
[33]
Zinzalla, V.; Stracka, D.; Oppliger, W.; Hall, M.N. Activation of mTORC2 by association with the ribosome. Cell, 2011, 144(5), 757-768.
[http://dx.doi.org/10.1016/j.cell.2011.02.014] [PMID: 21376236]
[34]
Garami, A.; Zwartkruis, F.J.; Nobukuni, T.; Joaquin, M.; Roccio, M.; Stocker, H.; Kozma, S.C.; Hafen, E.; Bos, J.L.; Thomas, G. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell, 2003, 11(6), 1457-1466.
[http://dx.doi.org/10.1016/S1097-2765(03)00220-X] [PMID: 12820960]
[35]
Huang, Z.; Wu, Y.; Zhou, X.; Qian, J.; Zhu, W.; Shu, Y.; Liu, P. Clinical efficacy of mTOR inhibitors in solid tumors: a systematic review. Future Oncol., 2015, 11(11), 1687-1699.
[http://dx.doi.org/10.2217/fon.15.70] [PMID: 26043220]
[36]
Bar-Peled, L.; Sabatini, D.M. Regulation of mTORC1 by amino acids. Trends Cell Biol., 2014, 24(7), 400-406.
[http://dx.doi.org/10.1016/j.tcb.2014.03.003] [PMID: 24698685]
[37]
Takahara, T.; Maeda, T. Evolutionarily conserved regulation of TOR signalling. J. Biochem., 2013, 154(1), 1-10.
[http://dx.doi.org/10.1093/jb/mvt047] [PMID: 23698095]
[38]
Albert, V.; Hall, M.N. mTOR signaling in cellular and organismal energetics. Curr. Opin. Cell Biol., 2015, 33, 55-66.
[http://dx.doi.org/10.1016/j.ceb.2014.12.001] [PMID: 25554914]
[39]
Betz, C.; Hall, M.N. Where is mTOR and what is it doing there? J. Cell Biol., 2013, 203(4), 563-574.
[http://dx.doi.org/10.1083/jcb.201306041] [PMID: 24385483]
[40]
Walker, N.M.; Belloli, E.A.; Stuckey, L.; Chan, K.M.; Lin, J.; Lynch, W.; Chang, A.; Mazzoni, S.M.; Fingar, D.C.; Lama, V.N. Mechanistic target of rapamycin complex 1 (mTORC1) and mTORC2 as key signaling intermediates in mesenchymal cell activation. J. Biol. Chem., 2016, 291(12), 6262-6271.
[http://dx.doi.org/10.1074/jbc.M115.672170] [PMID: 26755732]
[41]
Bhonde, M.R.; Gupte, R.D.; Dadarkar, S.D.; Jadhav, M.G.; Tannu, A.A.; Bhatt, P.; Bhatia, D.R.; Desai, N.K.; Deore, V.; Yewalkar, N.; Vishwakarma, R.A.; Sharma, S.; Kumar, S.; Dagia, N.M. A novel mTOR inhibitor is efficacious in a murine model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295(6), G1237-G1245.
[http://dx.doi.org/10.1152/ajpgi.90537.2008] [PMID: 18927209]
[42]
Yang, H.; Rudge, D.G.; Koos, J.D.; Vaidialingam, B.; Yang, H.J.; Pavletich, N.P. mTOR kinase structure, mechanism and regulation. Nature, 2013, 497(7448), 217-223.
[http://dx.doi.org/10.1038/nature12122] [PMID: 23636326]
[43]
Peterson, T.R.; Laplante, M.; Thoreen, C.C.; Sancak, Y.; Kang, S.A.; Kuehl, W.M.; Gray, N.S.; Sabatini, D.M. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell, 2009, 137(5), 873-886.
[http://dx.doi.org/10.1016/j.cell.2009.03.046] [PMID: 19446321]
[44]
Lawrence, J.; Nho, R. The role of the mammalian target of rapamycin (mTOR) in pulmonary fibrosis. Int. J. Mol. Sci., 2018, 19(3), 778.
[http://dx.doi.org/10.3390/ijms19030778] [PMID: 29518028]
[45]
Chen, X.; Liu, M.; Tian, Y.; Li, J.; Qi, Y.; Zhao, D.; Wu, Z.; Huang, M.; Wong, C.C.L.; Wang, H-W.; Wang, J.; Yang, H.; Xu, Y. Cryo-EM structure of human mTOR complex 2. Cell Res., 2018, 28(5), 518-528.
[http://dx.doi.org/10.1038/s41422-018-0029-3] [PMID: 29567957]
[46]
Murray, E.R.; Cameron, A.J.M. Towards specific inhibition of mTORC2. Aging (Albany NY), 2017, 9(12), 2461-2462.
[http://dx.doi.org/10.18632/aging.101346] [PMID: 29232655]
[47]
Oh, W.J.; Jacinto, E. mTOR complex 2 signaling and functions. Cell Cycle, 2011, 10(14), 2305-2316.
[http://dx.doi.org/10.4161/cc.10.14.16586] [PMID: 21670596]
[48]
Hsu, P.P.; Kang, S.A.; Rameseder, J.; Zhang, Y.; Ottina, K.A.; Lim, D.; Peterson, T.R.; Choi, Y.; Gray, N.S.; Yaffe, M.B.; Marto, J.A.; Sabatini, D.M. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science, 2011, 332(6035), 1317-1322.
[http://dx.doi.org/10.1126/science.1199498] [PMID: 21659604]
[49]
Rahimi, R.A.; Andrianifahanana, M.; Wilkes, M.C.; Edens, M.; Kottom, T.J.; Blenis, J.; Leof, E.B. Distinct roles for mammalian target of rapamycin complexes in the fibroblast response to transforming growth factor-β. Cancer Res., 2009, 69(1), 84-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2146] [PMID: 19117990]
[50]
Wang, R-H.; Kim, H-S.; Xiao, C.; Xu, X.; Gavrilova, O.; Deng, C-X. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J. Clin. Invest., 2011, 121(11), 4477-4490.
[http://dx.doi.org/10.1172/JCI46243] [PMID: 21965330]
[51]
Inoki, K.; Ouyang, H.; Zhu, T.; Lindvall, C.; Wang, Y.; Zhang, X.; Yang, Q.; Bennett, C.; Harada, Y.; Stankunas, K.; Wang, C.Y.; He, X.; MacDougald, O.A.; You, M.; Williams, B.O.; Guan, K.L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 2006, 126(5), 955-968.
[http://dx.doi.org/10.1016/j.cell.2006.06.055] [PMID: 16959574]
[52]
Sancak, Y.; Thoreen, C.C.; Peterson, T.R.; Lindquist, R.A.; Kang, S.A.; Spooner, E.; Carr, S.A.; Sabatini, D.M. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell, 2007, 25(6), 903-915.
[http://dx.doi.org/10.1016/j.molcel.2007.03.003] [PMID: 17386266]
[53]
White, M.F. IRS proteins and the common path to diabetes. Am. J. Physiol. Endocrinol. Metab., 2002, 283(3), E413-E422.
[http://dx.doi.org/10.1152/ajpendo.00514.2001] [PMID: 12169433]
[54]
Tzatsos, A.; Kandror, K.V. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol. Cell. Biol., 2006, 26(1), 63-76.
[http://dx.doi.org/10.1128/MCB.26.1.63-76.2006] [PMID: 16354680]
[55]
Hardie, D.G.; Schaffer, B.E.; Brunet, A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol., 2016, 26(3), 190-201.
[http://dx.doi.org/10.1016/j.tcb.2015.10.013] [PMID: 26616193]
[56]
Gwinn, D.M.; Shackelford, D.B.; Egan, D.F.; Mihaylova, M.M.; Mery, A.; Vasquez, D.S.; Turk, B.E.; Shaw, R.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell, 2008, 30(2), 214-226.
[http://dx.doi.org/10.1016/j.molcel.2008.03.003] [PMID: 18439900]
[57]
Brugarolas, J.; Lei, K.; Hurley, R.L.; Manning, B.D.; Reiling, J.H.; Hafen, E.; Witters, L.A.; Ellisen, L.W.; Kaelin, W.G. Jr Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev., 2004, 18(23), 2893-2904.
[http://dx.doi.org/10.1101/gad.1256804] [PMID: 15545625]
[58]
Feng, Z.; Hu, W.; de Stanchina, E.; Teresky, A.K.; Jin, S.; Lowe, S.; Levine, A.J. The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res., 2007, 67(7), 3043-3053.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4149] [PMID: 17409411]
[59]
Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell, 2013, 154(2), 274-284.
[http://dx.doi.org/10.1016/j.cell.2013.07.004] [PMID: 23870119]
[60]
Yilmaz, Ö.H.; Katajisto, P.; Lamming, D.W.; Gültekin, Y.; Bauer-Rowe, K.E.; Sengupta, S.; Birsoy, K.; Dursun, A.; Yilmaz, V.O.; Selig, M.; Nielsen, G.P.; Mino-Kenudson, M.; Zukerberg, L.R.; Bhan, A.K.; Deshpande, V.; Sabatini, D.M. mTORC1 in the paneth cell niche couples intestinal stem-cell function to calorie intake. Nature, 2012, 486(7404), 490-495.
[http://dx.doi.org/10.1038/nature11163] [PMID: 22722868]
[61]
Hong, S.; Zhao, B.; Lombard, D.B.; Fingar, D.C.; Inoki, K. Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J. Biol. Chem., 2014, 289(19), 13132-13141.
[http://dx.doi.org/10.1074/jbc.M113.520734] [PMID: 24652283]
[62]
Igarashi, M.; Guarente, L. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell, 2016, 166(2), 436-450.
[http://dx.doi.org/10.1016/j.cell.2016.05.044] [PMID: 27345368]
[63]
Zhou, Y.; Rychahou, P.; Wang, Q.; Weiss, H.L.; Evers, B.M. TSC2/mTORC1 signaling controls paneth and goblet cell differentiation in the intestinal epithelium. Cell Death Dis., 2015, 6e1631
[http://dx.doi.org/10.1038/cddis.2014.588] [PMID: 25654764]
[64]
Richmond, C.A.; Shah, M.S.; Deary, L.T.; Trotier, D.C.; Thomas, H.; Ambruzs, D.M.; Jiang, L.; Whiles, B.B.; Rickner, H.D.; Montgomery, R.K.; Tovaglieri, A.; Carlone, D.L.; Breault, D.T. Dormant intestinal stem cells are regulated by PTEN and nutritional status. Cell Rep., 2015, 13(11), 2403-2411.
[http://dx.doi.org/10.1016/j.celrep.2015.11.035] [PMID: 26686631]
[65]
Maya-Monteiro, C.M.; Bozza, P.T. Leptin and mTOR: partners in metabolism and inflammation. Cell Cycle, 2008, 7(12), 1713-1717.
[http://dx.doi.org/10.4161/cc.7.12.6157] [PMID: 18583936]
[66]
Cosin-Roger, J.; Simmen, S.; Melhem, H.; Atrott, K.; Frey-Wagner, I.; Hausmann, M.; de Vallière, C.; Spalinger, M.R.; Spielmann, P.; Wenger, R.H.; Zeitz, J.; Vavricka, S.R.; Rogler, G.; Ruiz, P.A. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat. Commun., 2017, 8(1), 98.
[http://dx.doi.org/10.1038/s41467-017-00213-3] [PMID: 28740109]
[67]
Haq, S.; Grondin, J.; Banskota, S.; Khan, W.I. Autophagy: roles in intestinal mucosal homeostasis and inflammation. J. Biomed. Sci., 2019, 26(1), 19.
[http://dx.doi.org/10.1186/s12929-019-0512-2] [PMID: 30764829]
[68]
Kim, Y.C.; Guan, K-L. mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest., 2015, 125(1), 25-32.
[http://dx.doi.org/10.1172/JCI73939] [PMID: 25654547]
[69]
Zhou, M.; Xu, W.; Wang, J.; Yan, J.; Shi, Y.; Zhang, C.; Ge, W.; Wu, J.; Du, P.; Chen, Y. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine, 2018, 35, 345-360.
[http://dx.doi.org/10.1016/j.ebiom.2018.08.035] [PMID: 30170968]
[70]
Williams, J.P.; Johnston, C.J.; Finkelstein, J.N. Treatment for radiation-induced pulmonary late effects: spoiled for choice or looking in the wrong direction? Curr. Drug Targets, 2010, 11(11), 1386-1394.
[http://dx.doi.org/10.2174/1389450111009011386] [PMID: 20583979]
[71]
Ji, Y-X.; Zhang, P.; Zhang, X-J.; Zhao, Y-C.; Deng, K-Q.; Jiang, X.; Wang, P-X.; Huang, Z.; Li, H. The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling. Nat. Commun., 2016, 7, 11267.
[http://dx.doi.org/10.1038/ncomms11267] [PMID: 27249171]
[72]
Citrin, D.E.; Mitchell, J.B. Mechanisms of normal tissue injury from irradiation. Semin. Radiat. Oncol., 2017, 27(4), 316-324.
[http://dx.doi.org/10.1016/j.semradonc.2017.04.001] [PMID: 28865514]
[73]
Citrin, D.E.; Prasanna, P.G.S.; Walker, A.J.; Freeman, M.L.; Eke, I.; Barcellos-Hoff, M.H.; Arankalayil, M.J.; Cohen, E.P.; Wilkins, R.C.; Ahmed, M.M.; Anscher, M.S.; Movsas, B.; Buchsbaum, J.C.; Mendonca, M.S.; Wynn, T.A.; Coleman, C.N. Radiation-induced fibrosis: mechanisms and opportunities to mitigate. Report of an NCI workshop, September 19, 2016. Radiat. Res., 2017, 188(1), 1-20.
[http://dx.doi.org/10.1667/RR14784.1] [PMID: 28489488]
[74]
Neuzillet, C.; Tijeras-Raballand, A.; Cohen, R.; Cros, J.; Faivre, S.; Raymond, E.; de Gramont, A. Targeting the TGFβ pathway for cancer therapy. Pharmacol. Ther., 2015, 147, 22-31.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.001] [PMID: 25444759]
[75]
Weichhart, T.; Hengstschläger, M.; Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol., 2015, 15(10), 599-614.
[http://dx.doi.org/10.1038/nri3901] [PMID: 26403194]
[76]
Bai, D.; Zhao, Y.; Zhu, Q.; Zhou, Y.; Zhao, Y.; Zhang, T.; Guo, Q.; Lu, N. LZ205, a newly synthesized flavonoid compound, exerts anti-inflammatory effect by inhibiting M1 macrophage polarization through regulating PI3K/AKT/mTOR signaling pathway. Exp. Cell Res., 2018, 364(1), 84-94.
[http://dx.doi.org/10.1016/j.yexcr.2018.01.033] [PMID: 29391152]
[77]
Noda, T.; Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem., 1998, 273(7), 3963-3966.
[http://dx.doi.org/10.1074/jbc.273.7.3963] [PMID: 9461583]
[78]
Liu, D.; Xu, J.; Qian, G.; Hamid, M.; Gan, F.; Chen, X.; Huang, K. Selenizing astragalus polysaccharide attenuates PCV2 replication promotion caused by oxidative stress through autophagy inhibition via PI3K/AKT activation. Int. J. Biol. Macromol., 2018, 108, 350-359.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.010] [PMID: 29217185]
[79]
Lu, Z-J.; Wu, J-J.; Jiang, W-L.; Xiao, J-H.; Tao, K-Z.; Ma, L.; Zheng, P.; Wan, R.; Wang, X-P. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. World J. Gastroenterol., 2017, 23(6), 976-985.
[http://dx.doi.org/10.3748/wjg.v23.i6.976] [PMID: 28246471]
[80]
Yang, X.; Cheng, Y.; Li, P.; Tao, J.; Deng, X.; Zhang, X.; Gu, M.; Lu, Q.; Yin, C. A lentiviral sponge for miRNA-21 diminishes aerobic glycolysis in bladder cancer T24 cells via the PTEN/PI3K/AKT/mTOR axis. Tumour Biol., 2015, 36(1), 383-391.
[http://dx.doi.org/10.1007/s13277-014-2617-2] [PMID: 25266796]
[81]
Wang, W-J.; Yang, W.; Ouyang, Z-H.; Xue, J-B.; Li, X-L.; Zhang, J.; He, W-S.; Chen, W-K.; Yan, Y-G.; Wang, C. MiR-21 promotes ECM degradation through inhibiting autophagy via the PTEN/akt/mTOR signaling pathway in human degenerated NP cells. Biomed. Pharmacother., 2018, 99, 725-734.
[http://dx.doi.org/10.1016/j.biopha.2018.01.154] [PMID: 29710470]
[82]
Li, N.; Miao, Y.; Shan, Y.; Liu, B.; Li, Y.; Zhao, L.; Jia, L. MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer. Cell Death Dis., 2017, 8(5)e2796
[http://dx.doi.org/10.1038/cddis.2017.119] [PMID: 28518139]
[83]
Huang, X.; Shen, Y.; Liu, M.; Bi, C.; Jiang, C.; Iqbal, J.; McKeithan, T.W.; Chan, W.C.; Ding, S-J.; Fu, K. Quantitative proteomics reveals that miR-155 regulates the PI3K-AKT pathway in diffuse large B-cell lymphoma. Am. J. Pathol., 2012, 181(1), 26-33.
[http://dx.doi.org/10.1016/j.ajpath.2012.03.013] [PMID: 22609116]
[84]
Guertin, D.A.; Sabatini, D.M. Defining the role of mTOR in cancer. Cancer Cell, 2007, 12(1), 9-22.
[http://dx.doi.org/10.1016/j.ccr.2007.05.008] [PMID: 17613433]
[85]
Gerster, R.; Eloranta, J.J.; Hausmann, M.; Ruiz, P.A.; Cosin-Roger, J.; Terhalle, A.; Ziegler, U.; Kullak-Ublick, G.A.; von Eckardstein, A.; Rogler, G. Anti-inflammatory function of high-density lipoproteins via autophagy of IκB kinase. Cell. Mol. Gastroenterol. Hepatol, 2015, 1(2), 171-187. e1.
[http://dx.doi.org/10.1016/j.jcmgh.2014.12.006] [PMID: 28247863]
[86]
Guo, W.; Sun, Y.; Liu, W.; Wu, X.; Guo, L.; Cai, P.; Wu, X.; Wu, X.; Shen, Y.; Shu, Y.; Gu, Y.; Xu, Q. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy, 2014, 10(6), 972-985.
[http://dx.doi.org/10.4161/auto.28374] [PMID: 24879148]
[87]
Hedl, M.; Abraham, C. Secretory mediators regulate Nod2-induced tolerance in human macrophages. Gastroenterology, 2011, 140(1), 231-241.
[http://dx.doi.org/10.1053/j.gastro.2010.09.009] [PMID: 20854823]
[88]
Fantini, M.C.; Pallone, F. Cytokines: from gut inflammation to colorectal cancer. Curr. Drug Targets, 2008, 9(5), 375-380.
[http://dx.doi.org/10.2174/138945008784221206] [PMID: 18473765]
[89]
Ghanaatian, N.; Lashgari, N.A.; Abdolghaffari, A.H.; Rajaee, S.M.; Panahi, Y.; Barreto, G.E.; Butler, A.E.; Sahebkar, A. Curcumin as a therapeutic candidate for multiple sclerosis: Molecular mechanisms and targets. J. Cell. Physiol., 2019, 234(8), 12237-12248.
[http://dx.doi.org/10.1002/jcp.27965] [PMID: 30536381]
[90]
Kordjazy, N.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Rohani, M.M.; Gelfand, E.W.; Rezaei, N.; Abdolghaffari, A.H. Role of toll-like receptors in inflammatory bowel disease. Pharmacol. Res., 2018, 129, 204-215.
[http://dx.doi.org/10.1016/j.phrs.2017.11.017] [PMID: 29155256]
[91]
Ke, P.; Shao, B-Z.; Xu, Z-Q.; Wei, W.; Han, B-Z.; Chen, X-W.; Su, D-F.; Liu, C. Activation of cannabinoid receptor 2 ameliorates DSS-induced colitis through inhibiting NLRP3 inflammasome in macrophages. PLoS One, 2016, 11(9)e0155076
[http://dx.doi.org/10.1371/journal.pone.0155076] [PMID: 27611972]
[92]
Sánchez-Muñoz, F.; Fonseca-Camarillo, G.C.; Villeda-Ramirez, M.A.; Barreto-Zuniga, R.; Bojalil, R.; Domínguez-Lopez, A.; Uribe, M.; Yamamoto-Furusho, J.K. TLR9 mRNA expression is upregulated in patients with active ulcerative colitis. Inflamm. Bowel Dis., 2010, 16(8), 1267-1268.
[http://dx.doi.org/10.1002/ibd.21155] [PMID: 19902548]
[93]
Qi, J.; Chen, C.; Meng, Q-X.; Wu, Y.; Wu, H.; Zhao, T-B. Crosstalk between activated microglia and neurons in the spinal dorsal horn contributes to stress-induced hyperalgesia. Sci. Rep., 2016, 6, 39442.
[http://dx.doi.org/10.1038/srep39442] [PMID: 27995982]
[94]
Sarbassov, D.D.; Ali, S.M.; Sengupta, S.; Sheen, J-H.; Hsu, P.P.; Bagley, A.F.; Markhard, A.L.; Sabatini, D.M. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell, 2006, 22(2), 159-168.
[http://dx.doi.org/10.1016/j.molcel.2006.03.029] [PMID: 16603397]
[95]
Kim, H.; Banerjee, N.; Ivanov, I.; Pfent, C.M.; Prudhomme, K.R.; Bisson, W.H.; Dashwood, R.H.; Talcott, S.T.; Mertens-Talcott, S.U. Comparison of anti-inflammatory mechanisms of mango (Mangifera Indica L.) and pomegranate (Punica granatum L.) in a preclinical model of colitis. Mol. Nutr. Food Res., 2016, 60(9), 1912-1923.
[http://dx.doi.org/10.1002/mnfr.201501008] [PMID: 27028006]
[96]
Kim, H.; Banerjee, N.; Barnes, R.C.; Pfent, C.M.; Talcott, S.T.; Dashwood, R.H.; Mertens-Talcott, S.U. Mango polyphenolics reduce inflammation in intestinal colitis-involvement of the miR-126/PI3K/AKT/mTOR axis in vitro and in vivo. Mol. Carcinog., 2017, 56(1), 197-207.
[http://dx.doi.org/10.1002/mc.22484] [PMID: 27061150]
[97]
Lee, S-Y.; Tsai, W-C.; Lin, J-C.; Ahmetaj-Shala, B.; Huang, S-F.; Chang, W-L.; Chang, T-C. Astragaloside II promotes intestinal epithelial repair by enhancing L-arginine uptake and activating the mTOR pathway. Sci. Rep., 2017, 7(1), 12302.
[http://dx.doi.org/10.1038/s41598-017-12435-y] [PMID: 28951595]
[98]
Li, L.; Wan, G.; Han, B.; Zhang, Z. Echinacoside alleviated LPS-induced cell apoptosis and inflammation in rat intestine epithelial cells by inhibiting the mTOR/STAT3 pathway. Biomed. Pharmacother., 2018, 104, 622-628.
[http://dx.doi.org/10.1016/j.biopha.2018.05.072] [PMID: 29803175]
[99]
Roudsari, N.M.; Lashgari, N-A.; Momtaz, S.; Farzaei, M.H.; Marques, A.M.; Abdolghaffari, A.H. Natural polyphenols for the prevention of irritable bowel syndrome: molecular mechanisms and targets; a comprehensive review. Daru, 2019, 27(2), 755-780.
[http://dx.doi.org/10.1007/s40199-019-00284-1] [PMID: 31273572]
[100]
Yao, J.; Wei, C.; Wang, J-Y.; Zhang, R.; Li, Y-X.; Wang, L-S. Effect of resveratrol on Treg/Th17 signaling and ulcerative colitis treatment in mice. World J. Gastroenterol., 2015, 21(21), 6572-6581.
[http://dx.doi.org/10.3748/wjg.v21.i21.6572] [PMID: 26074695]
[101]
Fu, X.; Sun, F.; Wang, F.; Zhang, J.; Zheng, B.; Zhong, J.; Yue, T; Zheng, X.; Xu, J-F.; Wang, C-Y. Aloperine protects mice against DSS-induced colitis by PP2A-mediated PI3K/Akt/mTOR signaling suppression. Mediators Inflamm., 2017, 20175706152
[http://dx.doi.org/10.1155/2017/5706152] [PMID: 29056830 ]
[102]
Lyons, J.; Ghazi, P.C.; Starchenko, A.; Tovaglieri, A.; Baldwin, K.R.; Poulin, E.J.; Gierut, J.J.; Genetti, C.; Yajnik, V.; Breault, D.T.; Lauffenburger, D.A.; Haigis, K.M. The colonic epithelium plays an active role in promoting colitis by shaping the tissue cytokine profile. PLoS Biol., 2018, 16(3)e2002417
[http://dx.doi.org/10.1371/journal.pbio.2002417] [PMID: 29596476]
[103]
Figueroa-González, G.; García-Castillo, V.; Coronel-Hernández, J.; López-Urrutia, E.; León-Cabrera, S.; Arias-Romero, L.E.; Terrazas, L.I.; Rodríguez-Sosa, M.; Campos-Parra, A.D.; Zúñiga-Calzada, E.; Lopez-Camarillo, C.; Morales-González, F.; Jacobo-Herrera, N.J.; Pérez-Plasencia, C. Anti-inflammatory and antitumor activity of a triple therapy for a colitis-related colorectal cancer. J. Cancer, 2016, 7(12), 1632-1644.
[http://dx.doi.org/10.7150/jca.13123] [PMID: 27698900]
[104]
Guan, Y.; Zhang, L.; Li, X.; Zhang, X.; Liu, S.; Gao, N.; Li, L.; Gao, G.; Wei, G.; Chen, Z.; Zheng, Y.; Ma, X.; Siwko, S.; Chen, J.L.; Liu, M.; Li, D. Repression of mammalian target of rapamycin complex 1 inhibits intestinal regeneration in acute inflammatory bowel disease models. J. Immunol., 2015, 195(1), 339-346.
[http://dx.doi.org/10.4049/jimmunol.1303356] [PMID: 26026060]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy