Review Article

营养支持和益生菌对炎症性肠病(IBD)的潜在治疗

卷 21, 期 14, 2020

页: [1417 - 1427] 页: 11

弟呕挨: 10.2174/1389450121666200504075519

价格: $65

摘要

炎症性肠病(IBD)的发病机制尚不清楚。然而,越来越多的证据表明,IBD总发病率的增加与社会卫生和卫生条件的改善有关,从而降低了接触细菌和寄生虫感染的机会。IBD是不可治愈的,其特点是症状恶化和缓解的交替期。因此,IBD患者治疗策略的主要目标是最有效地维持临床和内窥镜缓解,使患者在很大程度上能够正常生活。考虑到来自不同领域的证据,有一个强有力的理论支持这样一个概念:细菌在肠道炎症中很重要,益生菌可能调节宿主-微生物的相互作用,从而在营养支持的同时直接对IBD患者有益。本文就胃肠道微生物群在IBD发病机制中的潜在作用以及益生菌、益生元、共生菌以及营养支持在IBD治疗中的可能价值作一综述。

关键词: 炎症性肠病,克罗恩病,溃疡性结肠炎,营养支持,益生菌,益生元,共生菌

图形摘要

[1]
Abraham BP, Ahmed T, Ali T. Inflammatory bowel disease: pathophysiology and current therapeutic approaches. Handb Exp Pharmacol 2017; 239: 115-46.
[http://dx.doi.org/10.1007/164_2016_122 ] [PMID: 28233184]
[2]
Adams SM, Bornemann PH. Ulcerative colitis. Am Fam Physician 2013; 87(10): 699-705.
[PMID: 23939448]
[3]
Mak JWY, Tang W, Yip TCF, et al. Stopping anti-tumour necrosis factor therapy in patients with perianal Crohn’s disease. Aliment Pharmacol Ther 2019; 50(11-12): 1195-203.
[http://dx.doi.org/10.1111/apt.15547 ] [PMID: 31638274]
[4]
de Souza HSP. Etiopathogenesis of inflammatory bowel disease: today and tomorrow. Curr Opin Gastroenterol 2017; 33(4): 222-9.
[http://dx.doi.org/10.1097/MOG.0000000000000364 ] [PMID: 28402995]
[5]
Saha S, Wald A. Safety and efficacy of immunomodulators and biologics during pregnancy and lactation for the treatment of inflammatory bowel disease. Expert Opin Drug Saf 2012; 11(6): 947-57.
[http://dx.doi.org/10.1517/14740338.2012.720970 ] [PMID: 22954378]
[6]
Cohn HM, Dave M, Loftus EV Jr. Understanding the cautions and contraindications of immunomodulator and biologic therapies for use in inflammatory bowel disease. Inflamm Bowel Dis 2017; 23(8): 1301-15.
[http://dx.doi.org/10.1097/MIB.0000000000001199 ] [PMID: 28708806]
[7]
Waljee AK, Wiitala WL, Govani S, et al. Corticosteroid use and complications in a US inflammatory bowel disease cohort. PLoS One 2016; 11(6)e0158017
[http://dx.doi.org/10.1371/journal.pone.0158017 ] [PMID: 27336296]
[8]
Pithadia AB, Jain S. Treatment of inflammatory bowel disease (IBD). Pharmacol Rep 2011; 63(3): 629-42.
[http://dx.doi.org/10.1016/S1734-1140(11)70575-8 ] [PMID: 21857074]
[9]
Nielsen OH, Munck LK. Drug insight: aminosalicylates for the treatment of IBD. Nat Clin Pract Gastroenterol Hepatol 2007; 4(3): 160-70.
[http://dx.doi.org/10.1038/ncpgasthep0696 ] [PMID: 17339853]
[10]
McDowell C, Haseeb M. Bowel, Inflammatory Disease (IBD). StatPearls 2018.
[11]
Steed H, Macfarlane GT, Macfarlane S. Prebiotics, synbiotics and inflammatory bowel disease. Mol Nutr Food Res 2008; 52(8): 898-905.
[http://dx.doi.org/10.1002/mnfr.200700139 ] [PMID: 18383235]
[12]
Zuo T, Ng SC. The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol 2018; 9: 2247.
[http://dx.doi.org/10.3389/fmicb.2018.02247 ] [PMID: 30319571]
[13]
Shamoon M, Martin NM, O’Brien CL. Recent advances in gut Microbiota mediated therapeutic targets in inflammatory bowel diseases: Emerging modalities for future pharmacological implications. Pharmacol Res 2019.148104344
[http://dx.doi.org/10.1016/j.phrs.2019.104344 ] [PMID: 31400403]
[14]
Ding RX, Goh WR, Wu RN, et al. Revisit gut microbiota and its impact on human health and disease. Yao Wu Shi Pin Fen Xi 2019; 27(3): 623-31.
[http://dx.doi.org/10.1016/j.jfda.2018.12.012 ] [PMID: 31324279]
[15]
Basso PJ, Câmara NOS, Sales-Campos H. Microbial-based therapies in the treatment of inflammatory bowel disease – An overview of human studies. Front Pharmacol 2019; 9: 1571.
[http://dx.doi.org/10.3389/fphar.2018.01571 ] [PMID: 30687107]
[16]
Dong L-N, Wang M, Guo J, Wang J-P. Role of intestinal microbiota and metabolites in inflammatory bowel disease. Chin Med J (Engl) 2019; 132(13): 1610-4.
[http://dx.doi.org/10.1097/CM9.0000000000000290 ] [PMID: 31090547]
[17]
Imhann F, Vich Vila A, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 2018; 67(1): 108-19.
[http://dx.doi.org/10.1136/gutjnl-2016-312135 ] [PMID: 27802154]
[18]
Nguyen TLA, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis Model Mech 2015; 8(1): 1-16.
[http://dx.doi.org/10.1242/dmm.017400 ] [PMID: 25561744]
[19]
Ward NL, Phillips CD, Nguyen DD, et al. Antibiotic treatment induces long-lasting changes in the fecal microbiota that protect against colitis. Inflamm Bowel Dis 2016; 22(10): 2328-40.
[http://dx.doi.org/10.1097/MIB.0000000000000914 ] [PMID: 27607336]
[20]
Ahlmann M, Hempel G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol 2016; 78(4): 661-71.
[http://dx.doi.org/10.1007/s00280-016-3152-1 ] [PMID: 27646791]
[21]
Zhou F, Hamza T, Fleur AS, et al. Mice with inflammatory bowel disease are susceptible to clostridium difficile infection with severe disease outcomes. Inflamm Bowel Dis 2018; 24(3): 573-82.
[http://dx.doi.org/10.1093/ibd/izx059 ] [PMID: 29462386]
[22]
Nelson RL, Suda KJ, Evans CT. Antibiotic treatment for Clostridium difficile-associated diarrhoea in adults. Cochrane Database Syst Rev 2017. 3CD004610
[PMID: 28257555]
[23]
Zamani S, Hesam Shariati S, Zali MR, et al. Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. Gut Pathog 2017; 9: 53.
[http://dx.doi.org/10.1186/s13099-017-0202-0 ] [PMID: 28924454]
[24]
D’Aoust J, Battat R, Bessissow T. Management of inflammatory bowel disease with Clostridium difficile infection. World J Gastroenterol 2017; 23(27): 4986-5003.
[http://dx.doi.org/10.3748/wjg.v23.i27.4986 ] [PMID: 28785153]
[25]
Le Baut G, O’Brien C, Pavli P, et al. REMIND GROUP. Prevalence of Yersinia Species in the Ileum of Crohn’s Disease Patients and Controls. Front Cell Infect Microbiol 2018; 8: 336.
[http://dx.doi.org/10.3389/fcimb.2018.00336 ] [PMID: 30298122]
[26]
Lee JG, Han DS, Jo SV, et al. Characteristics and pathogenic role of adherent-invasive escherichia coli in inflammatory bowel disease: potential impact on clinical outcomes. PLoS One 2019; 14(4)e0216165
[http://dx.doi.org/10.1371/journal.pone.0216165 ] [PMID: 31034508]
[27]
Koboziev I, Karlsson F, Grisham MB. Gut-associated lymphoid tissue, T cell trafficking, and chronic intestinal inflammation. Ann N Y Acad Sci 2010; 1207(Suppl. 1): E86-93.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05711.x ] [PMID: 20961311]
[28]
Lee SH, Kwon JE, Cho ML. Immunological pathogenesis of inflammatory bowel disease. Intest Res 2018; 16(1): 26-42.
[http://dx.doi.org/10.5217/ir.2018.16.1.26 ] [PMID: 29422795]
[29]
de Mattos BRR, Garcia MP, Nogueira JB, et al. Inflammatory bowel disease: An overview of immune mechanisms and biological treatments. Mediators Inflamm 2015.2015493012
[http://dx.doi.org/10.1155/2015/493012 ] [PMID: 26339135]
[30]
Guan Q. A Comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res 2019.20197247238
[http://dx.doi.org/10.1155/2019/7247238 ] [PMID: 31886308]
[31]
Sugihara K, Morhardt TL, Kamada N. The role of dietary nutrients in inflammatory bowel disease. Front Immunol 2019; 9: 3183.
[http://dx.doi.org/10.3389/fimmu.2018.03183 ] [PMID: 30697218]
[32]
Sokol H, Leducq V, Aschard H, et al. Fungal microbiota dysbiosis in IBD. Gut 2017; 66(6): 1039-48.
[http://dx.doi.org/10.1136/gutjnl-2015-310746 ] [PMID: 26843508]
[33]
Marion-Letellier R, Savoye G, Ghosh S. IBD: In food we trust. J Crohn’s Colitis 2016; 10(11): 1351-61.
[http://dx.doi.org/10.1093/ecco-jcc/jjw106 ] [PMID: 27194533]
[34]
Greenwood-Van Meerveld B, Johnson AC, Grundy D. Gastrointestinal Physiology and Function. In: Gastrointestinal Physiology and Function. 2017; 239: pp. 1-16.
[35]
Boirivant M, Strober W. The mechanism of action of probiotics. Curr Opin Gastroenterol 2007; 23(6): 679-92.
[http://dx.doi.org/10.1097/MOG.0b013e3282f0cffc ] [PMID: 17906447]
[36]
Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. Probiotic mechanisms of action. Ann Nutr Metab 2012; 61(2): 160-74.
[http://dx.doi.org/10.1159/000342079 ] [PMID: 23037511]
[37]
Hemaiswarya S, Raja R, Ravikumar R, Carvalho IS. Mechanism of action of probiotics. Braz Arch Biol Technol 2013; 56: 113-9.
[http://dx.doi.org/10.1590/S1516-89132013000100015]
[38]
Vanderpool C, Yan F, Polk DB. Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 2008; 14(11): 1585-96.
[http://dx.doi.org/10.1002/ibd.20525 ] [PMID: 18623173]
[39]
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of action of probiotics. Adv Nutr 2019; 10(suppl_1): S49-66.
[http://dx.doi.org/10.1093/advances/nmy063] [PMID: 30721959]
[40]
Schultz M, Timmer A, Herfarth HH, Sartor RB, Vanderhoof JA, Rath HC. Lactobacillus GG in inducing and maintaining remission of Crohn’s disease. BMC Gastroenterol 2004; 4: 5.
[http://dx.doi.org/10.1186/1471-230X-4-5 ] [PMID: 15113451]
[41]
Bousvaros A, Guandalini S, Baldassano RN, et al. A randomized, double-blind trial of Lactobacillus GG versus placebo in addition to standard maintenance therapy for children with Crohn’s disease. Inflamm Bowel Dis 2005; 11(9): 833-9.
[http://dx.doi.org/10.1097/01.MIB.0000175905.00212.2c] [PMID: 16116318]
[42]
Hayashi A, Sato T, Kamada N, et al. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe 2013; 13(6): 711-22.
[http://dx.doi.org/10.1016/j.chom.2013.05.013 ] [PMID: 23768495]
[43]
Soo I, Madsen KL, Tejpar Q, et al. VSL#3 probiotic upregulates intestinal mucosal alkaline sphingomyelinase and reduces inflammation. Can J Gastroenterol 2008; 22(3): 237-42.
[http://dx.doi.org/10.1155/2008/520383 ] [PMID: 18354751]
[44]
Tursi A, Brandimarte G, Papa A, et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol 2010; 105(10): 2218-27.
[http://dx.doi.org/10.1038/ajg.2010.218 ] [PMID: 20517305]
[45]
Sood A, et al. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin Gastroenterol Hepatol 2009; 7: 1202-9., 1209.e1.
[46]
Gionchetti P, Rizzello F, Venturi A, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 2000; 119(2): 305-9.
[http://dx.doi.org/10.1053/gast.2000.9370 ] [PMID: 10930365]
[47]
Mimura T, Rizzello F, Helwig U, et al. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut 2004; 53(1): 108-14.
[http://dx.doi.org/10.1136/gut.53.1.108 ] [PMID: 14684584]
[48]
Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol 2015; 37(1): 47-55.
[http://dx.doi.org/10.1007/s00281-014-0454-4 ] [PMID: 25420450]
[49]
Zocco MA, dal Verme LZ, Cremonini F, et al. Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 2006; 23(11): 1567-74.
[http://dx.doi.org/10.1111/j.1365-2036.2006.02927.x ] [PMID: 16696804]
[50]
Kamada N, Maeda K, Inoue N, et al. Nonpathogenic Escherichia coli strain Nissle 1917 inhibits signal transduction in intestinal epithelial cells. Infect Immun 2008; 76(1): 214-20.
[http://dx.doi.org/10.1128/IAI.01193-07 ] [PMID: 17967864]
[51]
Kruis W, Fric P, Pokrotnieks J, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 2004; 53(11): 1617-23.
[http://dx.doi.org/10.1136/gut.2003.037747 ] [PMID: 15479682]
[52]
Kruis W, Schütz E, Fric P, Fixa B, Judmaier G, Stolte M. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 1997; 11(5): 853-8.
[http://dx.doi.org/10.1046/j.1365-2036.1997.00225.x ] [PMID: 9354192]
[53]
Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon ATR. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet 1999; 354(9179): 635-9.
[http://dx.doi.org/10.1016/S0140-6736(98)06343-0 ] [PMID: 10466665]
[54]
Miele E, Pascarella F, Giannetti E, Quaglietta L, Baldassano RN, Staiano A. Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol 2009; 104(2): 437-43.
[http://dx.doi.org/10.1038/ajg.2008.118 ] [PMID: 19174792]
[55]
Kato K, Mizuno S, Umesaki Y, et al. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther 2004; 20(10): 1133-41.
[http://dx.doi.org/10.1111/j.1365-2036.2004.02268.x ] [PMID: 15569116]
[56]
Ishikawa H, Akedo I, Umesaki Y, Tanaka R, Imaoka A, Otani T. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr 2003; 22(1): 56-63.
[http://dx.doi.org/10.1080/07315724.2003.10719276 ] [PMID: 12569115]
[57]
Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006; 40(3): 235-43.
[http://dx.doi.org/10.1097/00004836-200603000-00015 ] [PMID: 16633129]
[58]
Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 2008; 59(Suppl. 2): 251-62.
[PMID: 18812643]
[59]
Czajkowska A, Szponar B. Krótkołańcuchowe kwasy tłuszczowe (SCFA) jako produkty metabolizmu bakterii jelitowych oraz ich znaczenie dla organizmu gospodarza Short chain fatty acids (SCFA), the products of gut bacteria metabolism and their role in the host.
[http://dx.doi.org/10.5604/01.3001.0011.6468]
[60]
Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 2001; 81(3): 1031-64.
[http://dx.doi.org/10.1152/physrev.2001.81.3.1031 ] [PMID: 11427691]
[61]
Glitsø LV, Brunsgaard G, Højsgaard S, Sandström B, Bach Knudsen KE. Intestinal degradation in pigs of rye dietary fibre with different structural characteristics. Br J Nutr 1998; 80(5): 457-68.
[http://dx.doi.org/10.1017/S0007114598001536 ] [PMID: 9924268]
[62]
Borycka-Kiciak K, Banasiewicz T, Rydzewska G. Butyric acid - a well-known molecule revisited. Prz Gastroenterol 2017; 12(2): 83-9.
[http://dx.doi.org/10.5114/pg.2017.68342 ] [PMID: 28702095]
[63]
Akram W, Garud N, Joshi R. Role of inulin as prebiotics on inflammatory bowel disease. Drug Discov Ther 2019; 13(1): 1-8.
[http://dx.doi.org/10.5582/ddt.2019.01000 ] [PMID: 30880316]
[64]
Furrie E, Macfarlane S, Kennedy A, et al. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 2005; 54(2): 242-9.
[http://dx.doi.org/10.1136/gut.2004.044834 ] [PMID: 15647189]
[65]
Khangwal I, Shukla P. Potential prebiotics and their transmission mechanisms: Recent approaches. Yao Wu Shi Pin Fen Xi 2019; 27(3): 649-56.
[http://dx.doi.org/10.1016/j.jfda.2019.02.003 ] [PMID: 31324281]
[66]
Kanauchi O, Serizawa I, Araki Y, et al. Germinated barley foodstuff, a prebiotic product, ameliorates inflammation of colitis through modulation of the enteric environment. J Gastroenterol 2003; 38(2): 134-41.
[http://dx.doi.org/10.1007/s005350300022 ] [PMID: 12640526]
[67]
Hallert C, Björck I, Nyman M, Pousette A, Grännö C, Svensson H. Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflamm Bowel Dis 2003; 9(2): 116-21.
[http://dx.doi.org/10.1097/00054725-200303000-00005 ] [PMID: 12769445]
[68]
Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 2004; 126(6): 1620-33.
[http://dx.doi.org/10.1053/j.gastro.2004.03.024 ] [PMID: 15168372]
[69]
Hansen R, Mahdi G, McIntyre K, Macfarlane GT, Macfarlane S, Wilson DC. Synbiotics for inflammatory bowel disease: useful in adults but problematic in paediatrics. Arch Dis Child 2011; 96: A18-9.
[http://dx.doi.org/10.1136/adc.2011.212563.34]
[70]
Sinagra E, Tomasello G, Cappello F, et al. Probiotics, prebiotics and symbiotics in inflammatory bowel diseases: state-of-the-art and new insights. J Biol Regul Homeost Agents 2013; 27(4): 919-33.
[PMID: 24382173]
[71]
Lucendo AJ, De Rezende LC. Importance of nutrition in inflammatory bowel disease. World J Gastroenterol 2009; 15(17): 2081-8.
[http://dx.doi.org/10.3748/wjg.15.2081 ] [PMID: 19418580]
[72]
Gearry RB, Irving PM, Barrett JS, Nathan DM, Shepherd SJ, Gibson PR. Reduction of dietary poorly absorbed short-chain carbohydrates (FODMAPs) improves abdominal symptoms in patients with inflammatory bowel disease-a pilot study. J Crohn’s Colitis 2009; 3(1): 8-14.
[http://dx.doi.org/10.1016/j.crohns.2008.09.004 ] [PMID: 21172242]
[73]
Gibson PR. Use of the low-FODMAP diet in inflammatory bowel disease. J Gastroenterol Hepatol 2017; 32(Suppl. 1): 40-2.
[http://dx.doi.org/10.1111/jgh.13695 ] [PMID: 28244679]
[74]
Kakodkar S, Mutlu EA. Diet as a therapeutic option for adult inflammatory bowel disease. Gastroenterol Clin North Am 2017; 46(4): 745-67.
[http://dx.doi.org/10.1016/j.gtc.2017.08.016 ] [PMID: 29173519]
[75]
Halmos EP, Gibson PR. Dietary management of IBD--insights and advice. Nat Rev Gastroenterol Hepatol 2015; 12(3): 133-46.
[http://dx.doi.org/10.1038/nrgastro.2015.11 ] [PMID: 25645969]
[76]
Hunter J. Elemental diet and the nutritional treatment of Crohn’s disease. Gastroenterol Hepatol Bed Bench 2015; 8(1): 4-5.
[PMID: 25584170]
[77]
Weisshof R, Chermesh I. Micronutrient deficiencies in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care 2015; 18(6): 576-81.
[http://dx.doi.org/10.1097/MCO.0000000000000226 ] [PMID: 26418823]
[78]
Ghishan FK, Kiela PR. Vitamins and Minerals in Inflammatory Bowel Disease. Gastroenterol Clin North Am 2017; 46(4): 797-808.
[http://dx.doi.org/10.1016/j.gtc.2017.08.011 ] [PMID: 29173522]
[79]
Kim SY, Mun EC, Chung JW, et al. Increased genomic damage and vitamin B status in inflammatory bowel disease patients: A case-control, prospective, pilot study. Mutat Res Genet Toxicol Environ Mutagen 2019; 837: 42-7.
[http://dx.doi.org/10.1016/j.mrgentox.2018.10.002 ] [PMID: 30595208]
[80]
Nielsen OH, Hansen TI, Gubatan JM, Jensen KB, Rejnmark L. Managing vitamin D deficiency in inflammatory bowel disease. Frontline Gastroenterol 2019; 10(4): 394-400.
[http://dx.doi.org/10.1136/flgastro-2018-101055 ] [PMID: 31656565]
[81]
Gubatan J, Moss AC. Vitamin D in inflammatory bowel disease: more than just a supplement. Curr Opin Gastroenterol 2018; 34(4): 217-25.
[http://dx.doi.org/10.1097/MOG.0000000000000449 ] [PMID: 29762159]
[82]
Silva JPB, Navegantes-Lima KC, Oliveira ALB, et al. Protective mechanisms of butyrate on inflammatory bowel disease. Curr Pharm Des 2018; 24(35): 4154-66.
[http://dx.doi.org/10.2174/1381612824666181001153605] [PMID: 30277149]
[83]
Ferrer-Picón E, et al. Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease. Inflamm Bowel Dis 2019.
[http://dx.doi.org/10.1093/ibd/izz119 ] [PMID: 31211831]
[84]
Geirnaert A, Calatayud M, Grootaert C, et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep 2017; 7(1): 11450.
[http://dx.doi.org/10.1038/s41598-017-11734-8 ] [PMID: 28904372]
[85]
Ukil A, Maity S, Karmakar S, Datta N, Vedasiromoni JR, Das PK. Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br J Pharmacol 2003; 139(2): 209-18.
[http://dx.doi.org/10.1038/sj.bjp.0705241 ] [PMID: 12770926]
[86]
Billerey-Larmonier C, Uno JK, Larmonier N, et al. Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent. Inflamm Bowel Dis 2008; 14(6): 780-93.
[http://dx.doi.org/10.1002/ibd.20348 ] [PMID: 18200517]
[87]
Samba-Mondonga M, Constante M, Fragoso G, Calvé A, Santos MM. Curcumin induces mild anemia in a DSS-induced colitis mouse model maintained on an iron-sufficient diet. PLoS One 2019; 14(4)e0208677
[http://dx.doi.org/10.1371/journal.pone.0208677 ] [PMID: 31026259]
[88]
Hanai H, Sugimoto K. Curcumin has bright prospects for the treatment of inflammatory bowel disease. Curr Pharm Des 2009; 15(18): 2087-94.
[http://dx.doi.org/10.2174/138161209788489177 ] [PMID: 19519446]
[89]
Paramsothy S, Nielsen S, Kamm MA, et al. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology 2019; 156(5): 1440-1454.e2.
[http://dx.doi.org/10.1053/j.gastro.2018.12.001 ] [PMID: 30529583]
[90]
Canny GO, McCormick BA. Bacteria in the intestine, helpful residents or enemies from within? Infect Immun 2008; 76(8): 3360-73.
[http://dx.doi.org/10.1128/IAI.00187-08 ] [PMID: 18474643]
[91]
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474(11): 1823-36.
[http://dx.doi.org/10.1042/BCJ20160510 ] [PMID: 28512250]
[92]
Durchschein F, Petritsch W, Hammer HF. Diet therapy for inflammatory bowel diseases: The established and the new. World J Gastroenterol 2016; 22(7): 2179-94.
[http://dx.doi.org/10.3748/wjg.v22.i7.2179 ] [PMID: 26900283]
[93]
Rahimi R, Nikfar S, Rahimi F, et al. A meta-analysis on the efficacy of probiotics for maintenance of remission and prevention of clinical and endoscopic relapse in Crohn’s disease. Dig Dis Sci 2008; 53(9): 2524-31.
[http://dx.doi.org/10.1007/s10620-007-0171-0 ] [PMID: 18270836]
[94]
Elahi B, Nikfar S, Derakhshani S, Vafaie M, Abdollahi M. On the benefit of probiotics in the management of pouchitis in patients underwent ileal pouch anal anastomosis: a meta-analysis of controlled clinical trials. Dig Dis Sci 2008; 53(5): 1278-84.
[http://dx.doi.org/10.1007/s10620-007-0006-z ] [PMID: 17940902]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy