Review Article

生化标志物在造影剂诱导急性肾损伤预测中的作用

卷 28, 期 6, 2021

发表于: 01 May, 2020

页: [1234 - 1250] 页: 17

弟呕挨: 10.2174/0929867327666200502015749

价格: $65

摘要

多年来,临床医生一直在寻找“肾肌钙蛋白”——一种评估急性肾损伤(AKI)风险的简单诊断工具。近来,造影剂相关手术(造影剂计算机断层扫描(CT),经皮冠状动脉介入(PCI)和血管造影剂)的增多导致造影剂引起的急性肾损伤(CI-AKI)的增加。CIAKI仍然是总体死亡率、住院时间延长和增加治疗总费用的一个重要原因。肾功能不全的后果影响生活质量,并可能导致残疾。目前国内外对CI-AKI的预测研究较多,但还没有敏感可靠的方法。肾损伤分子1 (KIM-1)和中性粒细胞明胶酶脂蛋白(NGAL)被认为是肾特异性分子。在实施与对比相关的程序之前,这些物质的高浓度被建议用于评估肾脏对CI-AKI的易感性,它们似乎具有心血管事件和总体死亡率的预测潜力。根据其他作者,常规测定已知的炎症因子(如CRP, WBC和中性粒细胞计数)可能有助于预测CIAKI。然而,临床试验的结果提供了截然不同的结果。造影剂肾病的病理机制尚不清楚。由于其流行,急性肾损伤的风险评估仍然是一个严重的问题有待解决。本文回顾了病理生理学,并提出了促进造影剂诱导急性肾损伤预测的最佳标记物。

关键词: 造影剂诱导的急性肾损伤,造影剂CT,经皮冠状动脉成形术,肾损伤分子1 (KIM-1),中性粒细胞明胶酶脂蛋白(NGAL),经皮冠状动脉介入治疗(PCI)

[1]
Makris, K.; Spanou, L. Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin. Biochem. Rev., 2016, 37(2), 85-98.
[PMID: 28303073]
[2]
Kumar, S.; Nair, R.K.; Aggarwal, N.; Abbot, A.K.; Muthukrishnan, J.; Kumar, K.V. Risk factors for contrast-induced nephropathy after coronary angiography. Saudi J. Kidney Dis. Transpl., 2017, 28(2), 318-324.
[http://dx.doi.org/10.4103/1319-2442.202758] [PMID: 28352014]
[3]
KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl., 2012, 2, 1.
[http://dx.doi.org/10.1038/kisup.2012.1]
[4]
Hiremath, S.; Vijayan, A.; Dave, N.; Raghavan, R. Contrast is nephrotoxic vs contrast is not nephrotoxic. #NephMadness 2018. Available at: https://ajkdblog.org/2018/03/15/nephmadness-2018-contrast-region/ (Accessed date: 17 September,2020
[5]
Barbero, U.; Iannaccone, M.; De Benedictis, M.; Doronzo, B. Contrast induced acute kidney injury and the role of beta-blockers in its prevention. J. Thorac. Dis., 2019, 11(7), 2689-2694.
[http://dx.doi.org/10.21037/jtd.2019.06.53] [PMID: 31463094]
[6]
Fuhrman, D.Y.; Kane-Gill, S.; Goldstein, S.L.; Priyanka, P.; Kellum, J.A. Acute kidney injury epidemiology, risk factors, and outcomes in critically ill patients 16-25 years of age treated in an adult intensive care unit. Ann. Intensive Care, 2018, 8(1), 26.
[http://dx.doi.org/10.1186/s13613-018-0373-y] [PMID: 29445884]
[7]
Ozkok, S.; Ozkok, A. Contrast-induced acute kidney injury: a review of practical points. World J. Nephrol., 2017, 6(3), 86-99.
[http://dx.doi.org/10.5527/wjn.v6.i3.86] [PMID: 28540198]
[8]
Seeliger, E.; Sendeski, M.; Rihal, C.S.; Persson, P.B. Contrast-induced kidney injury: mechanisms, risk factors, and prevention. Eur. Heart J., 2012, 33(16), 2007-2015.
[http://dx.doi.org/10.1093/eurheartj/ehr494] [PMID: 22267241]
[9]
Barbero, U.; D’Ascenzo, F.; Campo, G.; Kleczyński, P.; Dziewierz, A.; Menozzi, M.; Jiménez Díaz, V.A.; Cerrato, E.; Raposeiras-Roubín, S.; Ielasi, A.; Rognoni, A.; Fineschi, M.; Kanji, R.; Jaguszewski, M.J.; Picchi, A.; Andò, G.; Soraci, E.; Mancone, M.; Sardella, G.; Calcagno, S.; Gallo, F.; Huczek, Z.; Krakowian, M.; Verardi, R.; Montefusco, A.; Omedè, P.; Lococo, M.; Moretti, C.; D’Amico, M.; Rigattieri, S.; Gaita, F.; Rinaldi, M.; Escaned, J. Safety of FFR-guided revascularisation deferral in Anatomically prognostiC diseasE (FACE: CARDIOGROUP V STUDY): a prospective multicentre study. Int. J. Cardiol., 2018, 270, 107-112.
[http://dx.doi.org/10.1016/j.ijcard.2018.06.013] [PMID: 29937300]
[10]
Iannaccone, M.; Barbero, U.; D’ascenzo, F.; Latib, A.; Pennacchi, M.; Rossi, M.L.; Ugo, F.; Meliga, E.; Kawamoto, H.; Moretti, C.; Ielasi, A.; Garbo, R.; Colombo, A.; Sardella, G.; Boccuzzi, G.G. Rotational atherectomy in very long lesions: results for the ROTATE registry. Catheter. Cardiovasc. Interv., 2016, 88(6), E164-E172.
[http://dx.doi.org/10.1002/ccd.26548] [PMID: 27083771]
[11]
Weisbord, S.D.; Mor, M.K.; Resnick, A.L.; Hartwig, K.C.; Palevsky, P.M.; Fine, M.J. Incidence and outcomes of contrast-induced AKI following computed tomography. Clin. J. Am. Soc. Nephrol., 2008, 3(5), 1274-1281.
[http://dx.doi.org/10.2215/CJN.01260308] [PMID: 18463172]
[12]
Barrett, B.J.; Katzberg, R.W.; Thomsen, H.S.; Chen, N.; Sahani, D.; Soulez, G.; Heiken, J.P.; Lepanto, L.; Ni, Z.H.; Ni, Z.H.; Nelson, R. Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double-blind comparison of iodixanol and iopamidol. Invest. Radiol., 2006, 41(11), 815-821.
[http://dx.doi.org/10.1097/01.rli.0000242807.01818.24] [PMID: 17035872]
[13]
Seeliger, E.; Lenhard, D.C.; Persson, P.B. Contrast media viscosity versus osmolality in kidney injury: lessons from animal studies. BioMed Res. Int., 2014, 2014358136
[http://dx.doi.org/10.1155/2014/358136] [PMID: 24707482]
[14]
Andreucci, M.; Faga, T.; Pisani, A.; Sabbatini, M.; Michael, A. Acute kidney injury by radiographic contrast media: pathogenesis and prevention. BioMed Res. Int., 2014, 2014362725
[http://dx.doi.org/10.1155/2014/362725] [PMID: 25197639]
[15]
Myers, S.I.; Wang, L.; Liu, F.; Bartula, L.L. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis. J. Vasc. Surg., 2006, 44(2), 383-391.
[http://dx.doi.org/10.1016/j.jvs.2006.04.036] [PMID: 16890873]
[16]
Zhang, Y.; Wang, J.; Yang, X.; Wang, X.; Zhang, J.; Fang, J.; Jiang, X. The serial effect of iodinated contrast media on renal hemodynamics and oxygenation as evaluated by ASL and BOLD MRI. Contrast Media Mol. Imaging, 2012, 7(4), 418-425.
[http://dx.doi.org/10.1002/cmmi.1468] [PMID: 22649048]
[17]
Tan, X.; Zheng, X.; Huang, Z.; Lin, J.; Xie, C.; Lin, Y. Involvement of S100A8/A9-TLR4-NLRP3 inflammasome pathway in contrast-induced acute kidney injury. Cell. Physiol. Biochem., 2017, 43(1), 209-222.
[http://dx.doi.org/10.1159/000480340] [PMID: 28854431]
[18]
Andreucci, M.; Fuiano, G.; Presta, P.; Esposito, P.; Faga, T.; Bisesti, V.; Procino, A.; Altieri, V.; Tozzo, C.; Memoli, B.; Michael, A. Radiocontrast media cause dephosphorylation of Akt and downstream signaling targets in human renal proximal tubular cells. Biochem. Pharmacol., 2006, 72(10), 1334-1342.
[http://dx.doi.org/10.1016/j.bcp.2006.08.008] [PMID: 16989777]
[19]
Heyman, S.N.; Khamaisi, M.; Rosen, S.; Rosenberger, C. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am. J. Nephrol., 2008, 28(6), 998-1006.
[http://dx.doi.org/10.1159/000146075] [PMID: 18635927]
[20]
Kelly, K.J. Acute renal failure: much more than a kidney disease. Semin. Nephrol., 2006, 26(2), 105-113.
[http://dx.doi.org/10.1016/j.semnephrol.2005.09.003] [PMID: 16530603]
[21]
Giacoppo, D.; Madhavan, M.V.; Baber, U.; Warren, J.; Bansilal, S.; Witzenbichler, B.; Dangas, G.D.; Kirtane, A.J.; Xu, K.; Kornowski, R.; Brener, S.J.; Généreux, P.; Stone, G.W.; Mehran, R. Impact of contrast-induced acute kidney injury after percutaneous coronary intervention on short- and long-term outcomes: pooled analysis from the HORIZONS-AMI and ACUITY trials. Circ. Cardiovasc. Interv., 2015, 8(8)e002475
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.114.002475] [PMID: 26198286]
[22]
Caspi, O.; Habib, M.; Cohen, Y.; Kerner, A.; Roguin, A.; Abergel, E.; Boulos, M.; Kapeliovich, M.R.; Beyar, R.; Nikolsky, E.; Aronson, D. Acute kidney injury after primary angioplasty: is contrast-induced nephropathy the culprit? J. Am. Heart Assoc., 2017, 6(6)e005715
[http://dx.doi.org/10.1161/JAHA.117.005715] [PMID: 28647690]
[23]
Azzalini, L.; Vilca, L.M.; Lombardo, F.; Poletti, E.; Laricchia, A.; Beneduce, A.; Maccagni, D.; Demir, O.M.; Slavich, M.; Giannini, F.; Carlino, M.; Margonato, A.; Cappelletti, A.; Colombo, A. Incidence of contrast-induced acute kidney injury in a large cohort of all-comers undergoing percutaneous coronary intervention: comparison of five contrast media. Int. J. Cardiol., 2018, 273, 69-73.
[http://dx.doi.org/10.1016/j.ijcard.2018.08.097] [PMID: 30196995]
[24]
Kooiman, J.; van de Peppel, W.R.; Sijpkens, Y.W.; Brulez, H.F.; de Vries, P.M.; Nicolaie, M.A.; Putter, H.; Huisman, M.V.; van der Kooij, W.; van Kooten, C.; Rabelink, T.J. No increase in kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin excretion following intravenous contrast enhanced-CT. Eur. Radiol., 2015, 25(7), 1926-1934.
[http://dx.doi.org/10.1007/s00330-015-3624-4] [PMID: 25773936]
[25]
Newhouse, J.H.; Kho, D.; Rao, Q.A.; Starren, J. Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am. J. Roentgenol., 2008, 191(2), 376-382.
[http://dx.doi.org/10.2214/AJR.07.3280] [PMID: 18647905]
[26]
Cowland, J.B.; Borregaard, N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics, 1997, 45(1), 17-23.
[http://dx.doi.org/10.1006/geno.1997.4896] [PMID: 9339356]
[27]
Nickolas, T.L.; Schmidt-Ott, K.M.; Canetta, P.; Forster, C.; Singer, E.; Sise, M.; Elger, A.; Maarouf, O.; Sola-Del Valle, D.A.; O’Rourke, M.; Sherman, E.; Lee, P.; Geara, A.; Imus, P.; Guddati, A.; Polland, A.; Rahman, W.; Elitok, S.; Malik, N.; Giglio, J.; El-Sayegh, S.; Devarajan, P.; Hebbar, S.; Saggi, S.J.; Hahn, B.; Kettritz, R.; Luft, F.C.; Barasch, J. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J. Am. Coll. Cardiol., 2012, 59(3), 246-255.
[http://dx.doi.org/10.1016/j.jacc.2011.10.854] [PMID: 22240130]
[28]
Haase, M.; Devarajan, P.; Haase-Fielitz, A.; Bellomo, R.; Cruz, D.N.; Wagener, G.; Krawczeski, C.D.; Koyner, J.L.; Murray, P.; Zappitelli, M.; Goldstein, S.L.; Makris, K.; Ronco, C.; Martensson, J.; Martling, C.R.; Venge, P.; Siew, E.; Ware, L.B.; Ikizler, T.A.; Mertens, P.R. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J. Am. Coll. Cardiol., 2011, 57(17), 1752-1761.
[http://dx.doi.org/10.1016/j.jacc.2010.11.051] [PMID: 21511111]
[29]
Paragas, N.; Qiu, A.; Zhang, Q.; Samstein, B.; Deng, S.X.; Schmidt-Ott, K.M.; Viltard, M.; Yu, W.; Forster, C.S.; Gong, G.; Liu, Y.; Kulkarni, R.; Mori, K.; Kalandadze, A.; Ratner, A.J.; Devarajan, P.; Landry, D.W.; D’Agati, V.; Lin, C.S.; Barasch, J. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat. Med., 2011, 17(2), 216-222.
[http://dx.doi.org/10.1038/nm.2290] [PMID: 21240264]
[30]
McCullough, P.A. Contrast-induced acute kidney injury. J. Am. Coll. Cardiol., 2008, 51(15), 1419-1428.
[http://dx.doi.org/10.1016/j.jacc.2007.12.035] [PMID: 18402894]
[31]
Romano, G.; Briguori, C.; Quintavalle, C.; Zanca, C.; Rivera, N.V.; Colombo, A.; Condorelli, G. Contrast agents and renal cell apoptosis. Eur. Heart J., 2008, 29(20), 2569-2576.
[http://dx.doi.org/10.1093/eurheartj/ehn197] [PMID: 18468994]
[32]
Quintavalle, C.; Anselmi, C.V.; De Micco, F.; Roscigno, G.; Visconti, G.; Golia, B.; Focaccio, A.; Ricciardelli, B.; Perna, E.; Papa, L.; Donnarumma, E.; Condorelli, G.; Briguori, C. Neutrophil gelatinase-associated lipocalin and contrast-induced acute kidney injury. Circ. Cardiovasc. Interv., 2015, 8(9)e002673
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.115.002673] [PMID: 26333343]
[33]
Nusca, A.; Miglionico, M.; Proscia, C.; Ragni, L.; Carassiti, M.; Lassandro Pepe, F.; Di Sciascio, G. Early prediction of contrast-induced acute kidney injury by a “bedside” assessment of neutrophil gelatinase-associated lipocalin during elective percutaneous coronary interventions. PLoS One, 2018, 13(5)e0197833
[http://dx.doi.org/10.1371/journal.pone.0197833] [PMID: 29791495]
[34]
Tasanarong, A.; Hutayanon, P.; Piyayotai, D. Urinary neutrophil gelatinase-associated lipocalin predicts the severity of contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures. BMC Nephrol., 2013, 14, 270.
[http://dx.doi.org/10.1186/1471-2369-14-270] [PMID: 24305547]
[35]
Kafkas, N.; Liakos, C.; Zoubouloglou, F.; Dagadaki, O.; Dragasis, S.; Makris, K. Neutrophil gelatinase-associated lipocalin as an early marker of contrast-induced nephropathy after elective invasive cardiac procedures. Clin. Cardiol., 2016, 39(8), 464-470.
[http://dx.doi.org/10.1002/clc.22551] [PMID: 27175937]
[36]
Ribitsch, W.; Schilcher, G.; Quehenberger, F.; Pilz, S.; Portugaller, R.H.; Truschnig-Wilders, M.; Zweiker, R.; Brodmann, M.; Stiegler, P.; Rosenkranz, A.R.; Pickering, J.W.; Horina, J.H. Neutrophil gelatinase-associated lipocalin (NGAL) fails as an early predictor of contrast induced nephropathy in chronic kidney disease (ANTI-CI-AKI study). Sci. Rep., 2017, 7, 41300.
[http://dx.doi.org/10.1038/srep41300] [PMID: 28128223]
[37]
Andreucci, M.; Faga, T.; Riccio, E.; Sabbatini, M.; Pisani, A.; Michael, A. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int. J. Nephrol. Renovasc. Dis., 2016, 9, 205-221.
[http://dx.doi.org/10.2147/IJNRD.S105124] [PMID: 27672338]
[38]
Ichimura, T.; Asseldonk, E.J.; Humphreys, B.D.; Gunaratnam, L.; Duffield, J.S.; Bonventre, J.V. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest., 2008, 118(5), 1657-1668.
[http://dx.doi.org/10.1172/JCI34487] [PMID: 18414680]
[39]
Bonventre, J.V. Kidney injury molecule-1: a translational journey. Trans. Am. Clin. Climatol. Assoc., 2014, 125, 293-299.
[PMID: 25125746]
[40]
Kooiman, J.; Sijpkens, Y.W.; de Vries, J.P.; Brulez, H.F.; Hamming, J.F.; van der Molen, A.J.; Aarts, N.J.; Cannegieter, S.C.; Putter, H.; Swarts, R.; van den Hout, W.B.; Rabelink, T.J.; Huisman, M.V. A randomized comparison of 1-h sodium bicarbonate hydration versus standard peri-procedural saline hydration in patients with chronic kidney disease undergoing intravenous contrast-enhanced computerized tomography. Nephrol. Dial. Transplant., 2014, 29(5), 1029-1036.
[http://dx.doi.org/10.1093/ndt/gfu025] [PMID: 24578471]
[41]
Bonventre, J.V. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol. Dial. Transplant., 2009, 24(11), 3265-3268.
[http://dx.doi.org/10.1093/ndt/gfp010] [PMID: 19318357]
[42]
Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int., 2002, 62(1), 237-244.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00433.x] [PMID: 12081583]
[43]
Li, W.; Yu, Y.; He, H.; Chen, J.; Zhang, D. Urinary kidney injury molecule-1 as an early indicator to predict contrast-induced acute kidney injury in patients with diabetes mellitus undergoing percutaneous coronary intervention. Biomed. Rep., 2015, 3(4), 509-512.
[http://dx.doi.org/10.3892/br.2015.449] [PMID: 26171157]
[44]
Vijayasimha, M.; Vijaya Padma, V.; Mujumdar, S.K.D.; Satyanarayana, P.V.V. Kidney injury molecule-1: a urinary biomarker for contrast induced acute kidney injury. Adv Life Sci Technol, 2013, 15, 33-40.
[45]
Sabbisetti, V.S.; Waikar, S.S.; Antoine, D.J.; Smiles, A.; Wang, C.; Ravisankar, A.; Ito, K.; Sharma, S.; Ramadesikan, S.; Lee, M.; Briskin, R.; De Jager, P.L.; Ngo, T.T.; Radlinski, M.; Dear, J.W.; Park, K.B.; Betensky, R.; Krolewski, A.S.; Bonventre, J.V. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol., 2014, 25(10), 2177-2186.
[http://dx.doi.org/10.1681/ASN.2013070758] [PMID: 24904085]
[46]
Liangos, O.; Perianayagam, M.C.; Vaidya, V.S.; Han, W.K.; Wald, R.; Tighiouart, H.; MacKinnon, R.W.; Li, L.; Balakrishnan, V.S.; Pereira, B.J.; Bonventre, J.V.; Jaber, B.L. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J. Am. Soc. Nephrol., 2007, 18(3), 904-912.
[http://dx.doi.org/10.1681/ASN.2006030221] [PMID: 17267747]
[47]
Han, W.K.; Wagener, G.; Zhu, Y.; Wang, S.; Lee, H.T. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin. J. Am. Soc. Nephrol., 2009, 4(5), 873-882.
[http://dx.doi.org/10.2215/CJN.04810908] [PMID: 19406962]
[48]
Al-Tu’ma, F.J.; Dheyauldeen, M.H.; Al-Saeghb, R.M. Measurement of urinary kidney injury molecule-1 as a predictive biomarker of contrast-induced acute kidney injury. J. Contemp. Med. Sci., 2017, 3(9), 178-181.
[49]
Kaplanski, G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev., 2018, 281(1), 138-153.
[http://dx.doi.org/10.1111/imr.12616] [PMID: 29247988]
[50]
Hardy, J.; Hambly, B.; Ko, H.; Wyburn, K.; Eris, J.; Yin, J. Stimulation of mesangial cells by angiotensin II and lipopolysaccharide increases expression of interleukin-18, but not IL-18 receptor. Nephron, Exp. Nephrol., 2010, 116(4), e63-e71.
[http://dx.doi.org/10.1159/000319319] [PMID: 20664297]
[51]
He, H.; Li, W.; Qian, W.; Zhao, X.; Wang, L.; Yu, Y.; Liu, J.; Cheng, J. Urinary interleukin-18 as an early indicator to predict contrast-induced nephropathy in patients undergoing percutaneous coronary intervention. Exp. Ther. Med., 2014, 8(4), 1263-1266.
[http://dx.doi.org/10.3892/etm.2014.1898] [PMID: 25187836]
[52]
Lin, X.; Yuan, J.; Zhao, Y.; Zha, Y. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis. J. Nephrol., 2015, 28(1), 7-16.
[http://dx.doi.org/10.1007/s40620-014-0113-9] [PMID: 24899123]
[53]
Ling, W.; Zhaohui, N.; Ben, H.; Leyi, G.; Jianping, L.; Huili, D.; Jiaqi, Q. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin. Pract., 2008, 108(3), c176-c181.
[http://dx.doi.org/10.1159/000117814] [PMID: 18287807]
[54]
Parikh, C.R.; Mishra, J.; Thiessen-Philbrook, H.; Dursun, B.; Ma, Q.; Kelly, C.; Dent, C.; Devarajan, P.; Edelstein, C.L. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int., 2006, 70(1), 199-203.
[http://dx.doi.org/10.1038/sj.ki.5001527] [PMID: 16710348]
[55]
Liu, Y.; Guo, W.; Zhang, J.; Xu, C.; Yu, S.; Mao, Z.; Wu, J.; Ye, C.; Mei, C.; Dai, B. Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am. J. Kidney Dis., 2013, 62(6), 1058-1067.
[http://dx.doi.org/10.1053/j.ajkd.2013.05.014] [PMID: 23830182]
[56]
Bulent Gul, C.B.; Gullulu, M.; Oral, B.; Aydinlar, A.; Oz, O.; Budak, F.; Yilmaz, Y.; Yurtkuran, M. Urinary IL-18: a marker of contrast-induced nephropathy following percutaneous coronary intervention? Clin. Biochem., 2008, 41(7-8), 544-547.
[http://dx.doi.org/10.1016/j.clinbiochem.2008.01.002] [PMID: 18237555]
[57]
de Geus, H.R.; Betjes, M.G.; Bakker, J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin. Kidney J., 2012, 5(2), 102-108.
[http://dx.doi.org/10.1093/ckj/sfs008] [PMID: 22833807]
[58]
Ferguson, M.A.; Vaidya, V.S.; Waikar, S.S.; Collings, F.B.; Sunderland, K.E.; Gioules, C.J.; Bonventre, J.V. Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney Int., 2010, 77(8), 708-714.
[http://dx.doi.org/10.1038/ki.2009.422] [PMID: 19940842]
[59]
Yamamoto, T.; Noiri, E.; Ono, Y.; Doi, K.; Negishi, K.; Kamijo, A.; Kimura, K.; Fujita, T.; Kinukawa, T.; Taniguchi, H.; Nakamura, K.; Goto, M.; Shinozaki, N.; Ohshima, S.; Sugaya, T. Renal L-type fatty acid--binding protein in acute ischemic injury. J. Am. Soc. Nephrol., 2007, 18(11), 2894-2902.
[http://dx.doi.org/10.1681/ASN.2007010097] [PMID: 17942962]
[60]
Oezkur, M.; Gorski, A.; Peltz, J.; Wagner, M.; Lazariotou, M.; Schimmer, C.; Heuschmann, P.U.; Leyh, R.G. Preoperative serum h-FABP concentration is associated with postoperative incidence of acute kidney injury in patients undergoing cardiac surgery. BMC Cardiovasc. Disord., 2014, 14, 117.
[http://dx.doi.org/10.1186/1471-2261-14-117] [PMID: 25212385]
[61]
Manabe, K.; Kamihata, H.; Motohiro, M.; Senoo, T.; Yoshida, S.; Iwasaka, T. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of contrast-induced acute kidney injury. Eur. J. Clin. Invest., 2012, 42(5), 557-563.
[http://dx.doi.org/10.1111/j.1365-2362.2011.02620.x] [PMID: 22070248]
[62]
Portilla, D.; Dent, C.; Sugaya, T.; Nagothu, K.K.; Kundi, I.; Moore, P.; Noiri, E.; Devarajan, P. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int., 2008, 73(4), 465-472.
[http://dx.doi.org/10.1038/sj.ki.5002721] [PMID: 18094680]
[63]
Katagiri, D.; Doi, K.; Honda, K.; Negishi, K.; Fujita, T.; Hisagi, M.; Ono, M.; Matsubara, T.; Yahagi, N.; Iwagami, M.; Ohtake, T.; Kobayashi, S.; Sugaya, T.; Noiri, E. Combination of two urinary biomarkers predicts acute kidney injury after adult cardiac surgery. Ann. Thorac. Surg., 2012, 93(2), 577-583.
[http://dx.doi.org/10.1016/j.athoracsur.2011.10.048] [PMID: 22269724]
[64]
Bachorzewska-Gajewska, H.; Poniatowski, B.; Dobrzycki, S. NGAL (neutrophil gelatinase-associated lipocalin) and L-FABP after percutaneous coronary interventions due to unstable angina in patients with normal serum creatinine. Adv. Med. Sci., 2009, 54(2), 221-224.
[http://dx.doi.org/10.2478/v10039-009-0036-1] [PMID: 19875355]
[65]
Hayashi, M.; Izawa, H. Recent prophylactic strategies and novel biomarkers for contrast-induced acute kidney injury. OA Nephrology, 2014, 2(1), 1.
[66]
Li, Y.; Zhu, M.; Xia, Q.; Wang, S.; Qian, J.; Lu, R.; Che, M.; Dai, H.; Wu, Q.; Ni, Z.; Lindholm, B.; Axelsson, J.; Yan, Y. Urinary neutrophil gelatinase-associated lipocalin and L-type fatty acid binding protein as diagnostic markers of early acute kidney injury after liver transplantation. Biomarkers, 2012, 17(4), 336-342.
[http://dx.doi.org/10.3109/1354750X.2012.672458] [PMID: 22455661]
[67]
Yuan, Y.; Qiu, H.; Hu, X.; Luo, T.; Gao, X.; Zhao, X.; Zhang, J.; Wu, Y.; Qiao, S.; Yang, Y.; Gao, R. Predictive value of inflammatory factors on contrast-induced acute kidney injury in patients who underwent an emergency percutaneous coronary intervention. Clin. Cardiol., 2017, 40(9), 719-725.
[http://dx.doi.org/10.1002/clc.22722] [PMID: 28543803]
[68]
Toso, A.; Leoncini, M.; Maioli, M.; Tropeano, F.; Di Vincenzo, E.; Villani, S.; Bellandi, F. Relationship between inflammation and benefits of early high-dose rosuvastatin on contrast-induced nephropathy in patients with acute coronary syndrome: the pathophysiological link in the PRATO-ACS study (protective effect of rosuvastatin and antiplatelet therapy on contrast-induced nephropathy and myocardial damage in patients with acute coronary syndrome undergoing coronary intervention). JACC Cardiovasc. Interv., 2014, 7(12), 1421-1429.
[http://dx.doi.org/10.1016/j.jcin.2014.06.023] [PMID: 25523533]
[69]
Lu, Z.; Wang, F.; Liang, M. SerpinC1/Antithrombin III in kidney-related diseases. Clin. Sci. (Lond.), 2017, 131(9), 823-831.
[http://dx.doi.org/10.1042/CS20160669] [PMID: 28424376]
[70]
Wu, R.; Kong, Y.; Yin, J.; Liang, R.; Lu, Z.; Wang, N.; Zhao, Q.; Zhou, Y.; Yan, C.; Wang, F.; Liang, M. Antithrombin III is a novel predictor for contrast induced nephropathy after coronary angiography. Kidney Blood Press. Res., 2018, 43(1), 170-180.
[http://dx.doi.org/10.1159/000487499] [PMID: 29466798]
[71]
Yin, J.; Wang, F.; Kong, Y.; Wu, R.; Zhang, G.; Wang, N.; Wang, L.; Lu, Z.; Liang, M. Antithrombin III prevents progression of chronic kidney disease following experimental ischaemic-reperfusion injury. J. Cell. Mol. Med., 2017, 21(12), 3506-3514.
[http://dx.doi.org/10.1111/jcmm.13261] [PMID: 28767184]
[72]
Mosa, O.; Skitek, M.; Jerin, A. Validity of Klotho, CYR61 and YKL-40 as ideal predictive biomarkers for acute kidney injury: review study. Sao Paulo Med. J., 2017, 135(1), 57-65.
[http://dx.doi.org/10.1590/1516-3180.2016.0099220516] [PMID: 27759760]
[73]
Ober, C.; Chupp, G.L. The chitinase and chitinase-like proteins: a review of genetic and functional studies in asthma and immune-mediated diseases. Curr. Opin. Allergy Clin. Immunol., 2009, 9(5), 401-408.
[http://dx.doi.org/10.1097/ACI.0b013e3283306533] [PMID: 19644363]
[74]
Schmidt, I.M.; Hall, I.E.; Kale, S.; Lee, S.; He, C.H.; Lee, Y.; Chupp, G.L.; Moeckel, G.W.; Lee, C.G.; Elias, J.A.; Parikh, C.R.; Cantley, L.G. Chitinase-like protein Brp-39/YKL-40 modulates the renal response to ischemic injury and predicts delayed allograft function. J. Am. Soc. Nephrol., 2013, 24(2), 309-319.
[http://dx.doi.org/10.1681/ASN.2012060579] [PMID: 23291472]
[75]
Lee, C.G.; Hartl, D.; Lee, G.R.; Koller, B.; Matsuura, H.; Da Silva, C.A.; Sohn, M.H.; Cohn, L.; Homer, R.J.; Kozhich, A.A.; Humbles, A.; Kearley, J.; Coyle, A.; Chupp, G.; Reed, J.; Flavell, R.A.; Elias, J.A. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J. Exp. Med., 2009, 206(5), 1149-1166.
[http://dx.doi.org/10.1084/jem.20081271] [PMID: 19414556]
[76]
Hall, I.E.; Stern, E.P.; Cantley, L.G.; Elias, J.A.; Parikh, C.R. Urine YKL-40 is associated with progressive acute kidney injury or death in hospitalized patients. BMC Nephrol., 2014, 15, 133.
[http://dx.doi.org/10.1186/1471-2369-15-133] [PMID: 25128003]
[77]
De Loor, J.; Decruyenaere, J.; Demeyere, K.; Nuytinck, L.; Hoste, E.A.; Meyer, E. Urinary chitinase 3-like protein 1 for early diagnosis of acute kidney injury: a prospective cohort study in adult critically ill patients. Crit. Care, 2016, 20(1), 38.
[http://dx.doi.org/10.1186/s13054-016-1192-x] [PMID: 26864834]
[78]
Parikh, C.R.; Liu, C.; Mor, M.K.; Palevsky, P.M.; Kaufman, J.S.; Philbrook, H.T.; Weisbord, S.D. Kidney biomarkers of injury and repair as predictors of contrast-associated AKI: a substudy of the PRESERVE trial. Am. J. Kidney Dis., 2020, 75(2), 187-197.
[http://dx.doi.org/10.1053/j.ajkd.2019.06.011]] [PMID: 31547939]
[79]
Wang, Z.; Bao, W.; Zou, X.; Tan, P.; Chen, H.; Lai, C.; Liu, D.; Luo, Z.; Huang, M. Co-expression analysis reveals dysregulated miRNAs and miRNA-mRNA interactions in the development of contrast-induced acute kidney injury. PLoS One, 2019, 14(7)e021857
[http://dx.doi.org/10.1371/journal.pone.0218574] [PMID: 31306435]
[80]
Flynt, A.S.; Lai, E.C. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat. Rev. Genet., 2008, 9(11), 831-842.
[http://dx.doi.org/10.1038/nrg2455] [PMID: 18852696]
[81]
Saikumar, J.; Hoffmann, D.; Kim, T.M.; Gonzalez, V.R.; Zhang, Q.; Goering, P.L.; Brown, R.P.; Bijol, V.; Park, P.J.; Waikar, S.S.; Vaidya, V.S. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol. Sci., 2012, 129(2), 256-267.
[http://dx.doi.org/10.1093/toxsci/kfs210] [PMID: 22705808]
[82]
Amrouche, L.; Desbuissons, G.; Rabant, M.; Sauvaget, V.; Nguyen, C.; Benon, A.; Barre, P.; Rabaté, C.; Lebreton, X.; Gallazzini, M.; Legendre, C.; Terzi, F.; Anglicheau, D. MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action. J. Am. Soc. Nephrol., 2017, 28(2), 479-493.
[http://dx.doi.org/10.1681/ASN.2016010045] [PMID: 27444565]
[83]
Lan, Y.F.; Chen, H.H.; Lai, P.F.; Cheng, C.F.; Huang, Y.T.; Lee, Y.C.; Chen, T.W.; Lin, H. MicroRNA-494 reduces ATF3 expression and promotes AKI. J. Am. Soc. Nephrol., 2012, 23(12), 2012-2023.
[http://dx.doi.org/10.1681/ASN.2012050438] [PMID: 23160513]
[84]
Bhatt, K.; Zhou, L.; Mi, Q.S.; Huang, S.; She, J.X.; Dong, Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol. Med., 2010, 16(9-10), 409-416.
[http://dx.doi.org/10.2119/molmed.2010.00002] [PMID: 20386864]
[85]
Parikh, C.R.; Thiessen-Philbrook, H.; Garg, A.X.; Kadiyala, D.; Shlipak, M.G.; Koyner, J.L.; Edelstein, C.L.; Devarajan, P.; Patel, U.D.; Zappitelli, M.; Krawczeski, C.D.; Passik, C.S.; Coca, S.G. TRIBE-AKI Consortium. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin. J. Am. Soc. Nephrol., 2013, 8(7), 1079-1088.
[http://dx.doi.org/10.2215/CJN.10971012] [PMID: 23599408]
[86]
Kerr, K.F.; Roth, J.; Zhu, K.; Thiessen-Philbrook, H.; Meisner, A.; Wilson, F.P.; Coca, S.; Parikh, C.R. Evaluating biomarkers for prognostic enrichment of clinical trials. Clin. Trials, 2017, 14(6), 629-638.
[http://dx.doi.org/10.1177/1740774517723588] [PMID: 28795578]
[87]
McCullough, P.A. Radiocontrast-induced acute kidney injury. Nephron, Physiol., 2008, 109(4), 61-72.
[http://dx.doi.org/10.1159/000142938] [PMID: 18802377]
[88]
Weisbord, S.D.; Chen, H.; Stone, R.A.; Kip, K.E.; Fine, M.J.; Saul, M.I.; Palevsky, P.M. Associations of increases in serum creatinine with mortality and length of hospital stay after coronary angiography. J. Am. Soc. Nephrol., 2006, 17(10), 2871-2877.
[http://dx.doi.org/10.1681/ASN.2006030301] [PMID: 16928802]
[89]
Sun, S.Q.; Zhang, T.; Ding, D.; Zhang, W.F.; Wang, X.L.; Sun, Z.; Hu, L.H.; Qin, S.Y.; Shen, L.H.; He, B. Circulating microRNA-188, -30a, and -30e as early biomarkers for contrast-induced acute kidney injury. J. Am. Heart Assoc., 2016, 5(8)e004138
[http://dx.doi.org/10.1161/JAHA.116.004138] [PMID: 27528406]
[90]
Gandhi, S.; Mosleh, W.; Abdel-Qadir, H.; Farkouh, M.E. Statins and contrast-induced acute kidney injury with coronary angiography. Am. J. Med., 2014, 127(10), 987-1000.
[http://dx.doi.org/10.1016/j.amjmed.2014.05.011] [PMID: 24852935]
[91]
Queiroz, R.E.B.; de Oliveira, L.S.N.; de Albuquerque, C.A. Santana, Cde.A.; Brasil, P.M.; Carneiro, L.L.; Libório, A.B. Acute kidney injury risk in patients with ST-segment elevation myocardial infarction at presentation to the ED. Am. J. Emerg. Med., 2012, 30(9), 1921-1927.
[http://dx.doi.org/10.1016/j.ajem.2012.04.011] [PMID: 22795418]
[92]
Avci, E.; Yeşil, M.; Bayata, S.; Postaci, N.; Arikan, E.; Cirit, M. The role of nebivolol in the prevention of contrast-induced nephropathy in patients with renal dysfunction. Anadolu Kardiyol. Derg., 2011, 11(7), 613-617.
[http://dx.doi.org/10.5152/akd.2011.164] [PMID: 21959875]
[93]
Altunoren, O.; Balli, M.; Eren, N.; Tasolar, H.; Arpaci, A.; Caglayan, C.E.; Yavuz, Y.C.; Gungor, O. Is nebivolol really effective in preventing contrast induced nephropathy? Kidney Blood Press. Res., 2015, 40(5), 533-541.
[http://dx.doi.org/10.1159/000368529] [PMID: 26496491]
[94]
Ren, X.P.; Wu, J.; Wang, X.; Sartor, M.A.; Jones, K.; Qian, J.; Nicolaou, P.; Pritchard, T.J.; Fan, G.C. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation, 2009, 119(17), 2357-2366.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.814145] [PMID: 19380620]
[95]
Thum, T.; Gross, C.; Fiedler, J.; Fischer, T.; Kissler, S.; Bussen, M.; Galuppo, P.; Just, S.; Rottbauer, W.; Frantz, S.; Castoldi, M.; Soutschek, J.; Koteliansky, V.; Rosenwald, A.; Basson, M.A.; Licht, J.D.; Pena, J.T.; Rouhanifard, S.H.; Muckenthaler, M.U.; Tuschl, T.; Martin, G.R.; Bauersachs, J.; Engelhardt, S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456(7224), 980-984.
[http://dx.doi.org/10.1038/nature07511] [PMID: 19043405]
[96]
Godwin, J.G.; Ge, X.; Stephan, K.; Jurisch, A.; Tullius, S.G.; Iacomini, J. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc. Natl. Acad. Sci. USA, 2010, 107(32), 14339-14344.
[http://dx.doi.org/10.1073/pnas.0912701107] [PMID: 20651252]
[97]
Lorenzen, J.M.; Kielstein, J.T.; Hafer, C.; Gupta, S.K.; Kümpers, P.; Faulhaber-Walter, R.; Haller, H.; Fliser, D.; Thum, T. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin. J. Am. Soc. Nephrol., 2011, 6(7), 1540-1546.
[http://dx.doi.org/10.2215/CJN.00430111] [PMID: 21700819]
[98]
Almendarez, M.; Gurm, H.S.; Mariani, J., Jr; Montorfano, M.; Brilakis, E.S.; Mehran, R.; Azzalini, L. Procedural strategies to reduce the incidence of contrast-induced acute kidney injury during percutaneous coronary intervention. JACC Cardiovasc. Interv., 2019, 12(19), 1877-1888.
[http://dx.doi.org/10.1016/j.jcin.2019.04.055] [PMID: 31521648]
[99]
Mueller, C.; Buerkle, G.; Buettner, H.J.; Petersen, J.; Perruchoud, A.P.; Eriksson, U.; Marsch, S.; Roskamm, H. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch. Intern. Med., 2002, 162(3), 329-336.
[http://dx.doi.org/10.1001/archinte.162.3.329] [PMID: 11822926]
[100]
Hoste, E.A.; De Waele, J.J.; Gevaert, S.A.; Uchino, S.; Kellum, J.A. Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis. Nephrol. Dial. Transplant., 2010, 25(3), 747-758.
[http://dx.doi.org/10.1093/ndt/gfp389] [PMID: 19703838]
[101]
Igarashi, G.; Iino, K.; Watanabe, H.; Ito, H. Remote ischemic pre-conditioning alleviates contrast-induced acute kidney injury in patients with moderate chronic kidney disease. Circ. J., 2013, 77(12), 3037-3044.
[http://dx.doi.org/10.1253/circj.CJ-13-0171] [PMID: 23986081]
[102]
Liu, J.; Sun, G.; He, Y.; Song, F.; Chen, S.; Guo, Z.; Liu, B.; Lei, L.; He, L.; Chen, J.; Tan, N.; Liu, Y. Early β-blockers administration might be associated with a reduced risk of contrast-induced acute kidney injury in patients with acute myocardial infarction. J. Thorac. Dis., 2019, 11(4), 1589-1596.
[http://dx.doi.org/10.21037/jtd.2019.04.65] [PMID: 31179103]
[103]
Er, F.; Nia, A.M.; Dopp, H.; Hellmich, M.; Dahlem, K.M.; Caglayan, E.; Kubacki, T.; Benzing, T.; Erdmann, E.; Burst, V.; Gassanov, N. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (renal protection trial). Circulation, 2012, 126(3), 296-303.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.096370] [PMID: 22735306]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy