Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Application of Nanomaterials in Regulating the Fate of Adipose-derived Stem Cells

Author(s): Lang Wang, Yong Li, Maorui Zhang, Kui Huang, Shuanglin Peng and Jingang Xiao*

Volume 16, Issue 1, 2021

Published on: 01 May, 2020

Page: [3 - 13] Pages: 11

DOI: 10.2174/1574888X15666200502000343

Price: $65

Abstract

Adipose-derived stem cells are adult stem cells which are easy to obtain and multi-potent. Stem-cell therapy has become a promising new treatment for many diseases, and plays an increasingly important role in the field of tissue repair, regeneration and reconstruction. The physicochemical properties of the extracellular microenvironment contribute to the regulation of the fate of stem cells. Nanomaterials have stable particle size, large specific surface area and good biocompatibility, which has led them being recognized as having broad application prospects in the field of biomedicine. In this paper, we review recent developments of nanomaterials in adipose-derived stem cell research. Taken together, the current literature indicates that nanomaterials can regulate the proliferation and differentiation of adipose-derived stem cells. However, the properties and regulatory effects of nanomaterials can vary widely depending on their composition. This review aims to provide a comprehensive guide for future stem-cell research on the use of nanomaterials.

Keywords: Adipose-derived stem cells, nanomaterials, differentiation, biocompatibility, extracellular microenvironment, regeneration.

[1]
Liao CH, Wang YH, Chang WW, et al. Leucine-rich repeat neuronal protein 1 regulates differentiation of embryonic stem cells by post-translational modifications of pluripotency factors. Stem Cells 2018; 36(10): 1514-24.
[http://dx.doi.org/10.1002/stem.2862] [PMID: 29893054]
[2]
Zhu J, Wang Y, Yu W, et al. Long noncoding RNA: Function and mechanism on differentiation of mesenchymal stem cells and embryonic stem cells. Curr Stem Cell Res Ther 2019; 14(3): 259-67.
[http://dx.doi.org/10.2174/1574888X14666181127145809] [PMID: 30479219]
[3]
Liu N, Zhou M, Zhang Q, et al. Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells via the WNT signalling pathway. Cell Prolif 2018; 51(2): e12435
[4]
Huang K, Li Q, Li Y, et al. Cartilage tissue regeneration: The roles of cells, stimulating factors and scaffolds. Curr Stem Cell Res Ther 2018; 13(7): 547-67.
[http://dx.doi.org/10.2174/1574888X12666170608080722] [PMID: 28595567]
[5]
Mohamed-Ahmed S, Fristad I, Lie SA, et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther 2018; 9(1): 168.
[http://dx.doi.org/10.1186/s13287-018-0914-1] [PMID: 29921311]
[6]
Cai A, Hardt M, Schneider P, et al. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds. BMC Biotechnol 2018; 18(1): 75.
[http://dx.doi.org/10.1186/s12896-018-0482-6] [PMID: 30477471]
[7]
Jin Q, Yuan K, Lin W, Niu C, Ma R, Huang Z. Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential. Artif Cells Nanomed Biotechnol 2019; 47(1): 1577-84.
[http://dx.doi.org/10.1080/21691401.2019.1594861] [PMID: 31027424]
[8]
Mukhamedshina Y, Shulman I, Ogurcov S, et al. Mesenchymal stem cell therapy for spinal cord contusion: A comparative study on small and large animal models. Biomolecules 2019; 9(12): 9.[undefined.].
[http://dx.doi.org/10.3390/biom9120811] [PMID: 31805639]
[9]
Rashnonejad A, Ercan G, Gunduz C, Akdemir A, Tiftikcioglu YO. Comparative analysis of human UCB and adipose tissue derived mesenchymal stem cells for their differentiation potential into brown and white adipocytes. Mol Biol Rep 2018; 45(3): 233-44.
[http://dx.doi.org/10.1007/s11033-018-4156-1] [PMID: 29453764]
[10]
Zhang M, Li Y, Rao P, et al. Blockade of receptors of advanced glycation end products ameliorates diabetic osteogenesis of adipose-derived stem cells through DNA methylation and wnt signalling pathway. Cell Prolif 2018; 51(5): e12471
[http://dx.doi.org/10.1111/cpr.12471]
[11]
Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv 2018; 36(4): 1111-26.
[http://dx.doi.org/10.1016/j.biotechadv.2018.03.011] [PMID: 29563048]
[12]
Choi S, Ryoo SB, Park KJ, et al. Autologous adipose tissue-derived stem cells for the treatment of complex perianal fistulas not associated with Crohn’s disease: a phase II clinical trial for safety and efficacy. Tech Coloproctol 2017; 21(5): 345-53.
[http://dx.doi.org/10.1007/s10151-017-1630-z] [PMID: 28567691]
[13]
Lv X, He J, Zhang X, et al. Comparative efficacy of autologous stromal vascular fraction and autologous adipose-derived mesenchymal stem cells combined with hyaluronic acid for the treatment of sheep osteoarthritis. Cell Transplant 2018; 27(7): 1111-25.
[http://dx.doi.org/10.1177/0963689718773333] [PMID: 29909687]
[14]
Marino G, Moraci M, Armenia E, et al. Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res 2013; 185(1): 36-44.
[http://dx.doi.org/10.1016/j.jss.2013.05.024] [PMID: 23773718]
[15]
Perin EC, Sanz-Ruiz R, Sánchez PL, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am Heart J 2014; 168(1): 88-95.e2.
[http://dx.doi.org/10.1016/j.ahj.2014.03.022] [PMID: 24952864]
[16]
Bateman ME, Strong AL, Gimble JM, Bunnell BA. Concise review: Using fat to fight disease: A systematic review of nonhomologous adipose-derived stromal/stem cell therapies. Stem Cells 2018; 36(9): 1311-28.
[http://dx.doi.org/10.1002/stem.2847] [PMID: 29761573]
[17]
Guillaume-Jugnot P, Daumas A, Magalon J, et al. Autologous adipose-derived stromal vascular fraction in patients with systemic sclerosis: 12-month follow-up. Rheumatology (Oxford) 2016; 55(2): 301-6.
[http://dx.doi.org/10.1093/rheumatology/kev323] [PMID: 26350489]
[18]
Granel B, Daumas A, Jouve E, et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial. Ann Rheum Dis 2015; 74(12): 2175-82.
[http://dx.doi.org/10.1136/annrheumdis-2014-205681] [PMID: 25114060]
[19]
Alió Del Barrio JL, El Zarif M, de Miguel MP, et al. Cellular therapy with human autologous adipose-derived adult stem cells for advanced keratoconus. Cornea 2017; 36(8): 952-60.
[http://dx.doi.org/10.1097/ICO.0000000000001228] [PMID: 28486314]
[20]
Thakkar UG, Vanikar AV, Trivedi HL, et al. Infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and hematopoietic stem cells in post-traumatic paraplegia offers a viable therapeutic approach. Adv Biomed Res 2016; 5: 51.
[http://dx.doi.org/10.4103/2277-9175.178792] [PMID: 27110548]
[21]
Thesleff T, Lehtimäki K, Niskakangas T, et al. Cranioplasty with adipose-derived stem cells and biomaterial: A novel method for cranial reconstruction. Neurosurgery 2011; 68(6): 1535-40.
[http://dx.doi.org/10.1227/NEU.0b013e31820ee24e] [PMID: 21336223]
[22]
Sándor GK, Numminen J, Wolff J, et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med 2014; 3(4): 530-40.
[http://dx.doi.org/10.5966/sctm.2013-0173] [PMID: 24558162]
[23]
Song C, Ye F, Zhang H, et al. Metal(loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants. Environ Pollut 2019; 255(Pt 3)113354
[http://dx.doi.org/10.1016/j.envpol.2019.113354] [PMID: 31629223]
[24]
Zou X, Zhao Y, Zhang Z. Preparation of hydroxyapatite nanostructures with different morphologies and adsorption behavior on seven heavy metals ions. J Contam Hydrol 2019.226103538
[http://dx.doi.org/10.1016/j.jconhyd.2019.103538] [PMID: 31421452]
[25]
Zou P, Lee WH, Gao Z, et al. Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH-CATH30 nanoparticles. Carbohydr Polym 2020.232115786
[http://dx.doi.org/10.1016/j.carbpol.2019.115786] [PMID: 31952594]
[26]
Zong H, Xia X, Liang Y, et al. Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Mater Sci Eng C 2018; 92: 1075-91.
[http://dx.doi.org/10.1016/j.msec.2017.11.007] [PMID: 30184730]
[27]
Lee YJ, Lee SC, Jee SC, Sung JS, Kadam AA. Surface functionalization of halloysite nanotubes with supermagnetic iron oxide, chitosan and 2-D calcium-phosphate nanoflakes for synergistic osteoconduction enhancement of human adipose tissue-derived mesenchymal stem cells. Colloids Surf B Biointerfaces 2019; 173: 18-26.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.045] [PMID: 30261345]
[28]
Huang X, Cui B, Ma Y, et al. Three-dimensional nitrogen-doped mesoporous carbon nanomaterials derived from plant biomass: Cost-effective construction of label-free electrochemical aptasensor for sensitively detecting alpha-fetoprotein. Anal Chim Acta 2019; 1078: 125-34.
[http://dx.doi.org/10.1016/j.aca.2019.06.009] [PMID: 31358210]
[29]
Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol 2014; 6(1): 9-26.
[http://dx.doi.org/10.1039/c3ib40165k] [PMID: 24104563]
[30]
Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HE. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine 2018; 13: 5637-55.
[http://dx.doi.org/10.2147/IJN.S153758] [PMID: 30288038]
[31]
Wu M, Wang Y, Wang Y, et al. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer. Int J Nanomedicine 2017; 12: 5313-30.
[http://dx.doi.org/10.2147/IJN.S136032] [PMID: 28794625]
[32]
Zhao X, Han Y, Zhu T, et al. Electrospun Polylactide-nano-hydroxyapatite vancomycin composite scaffolds for advanced osteomyelitis therapy. J Biomed Nanotechnol 2019; 15(6): 1213-22.
[http://dx.doi.org/10.1166/jbn.2019.2773] [PMID: 31072429]
[33]
Kong Y, Xu R, Darabi MA, et al. Fast and safe fabrication of a free-standing chitosan/alginate nanomembrane to promote stem cell delivery and wound healing. Int J Nanomedicine 2016; 11: 2543-55.
[PMID: 27354789]
[34]
Loh KP, Ho D, Chiu GNC, Leong DT, Pastorin G, Chow EK. Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv Mater 2018; 30(47): e1802368
[http://dx.doi.org/10.1002/adma.201802368] [PMID: 30133035]
[35]
Qiu J, Li J, Wang S, et al. TiO2 nanorod array constructed nanotopography for regulation of mesenchymal stem cells fate and the realization of location-committed stem cell differentiation. Small 2016; 12(13): 1770-8.
[http://dx.doi.org/10.1002/smll.201503946] [PMID: 26857087]
[36]
Zhang Q, Tu Q, Hickey ME, et al. Preparation and study of the antibacterial ability of graphene oxide-catechol hybrid polylactic acid nanofiber mats. Colloids Surf B Biointerfaces 2018; 172: 496-505.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.003] [PMID: 30205340]
[37]
Ma W, Shao X, Zhao D, et al. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl Mater Interfaces 2018; 10(9): 7892-900.
[http://dx.doi.org/10.1021/acsami.8b00833] [PMID: 29424522]
[38]
Andreeva E, Andrianova I, Sotnezova E, Gornostaeva A, Khorkova S, Buravkova L. Hematopoiesis-supportive function of growth-arrested human adipose-tissue stromal cells under physiological hypoxia. J Biosci Bioeng 2019; 127(5): 647-54.
[http://dx.doi.org/10.1016/j.jbiosc.2018.10.017] [PMID: 30503171]
[39]
Pulyala P, Singh A, Dias-Netipanyj MF, et al. In vitro cell adhesion and proliferation of adipose derived stem cell on hydroxyapatite composite surfaces. Mater Sci Eng C 2017; 75: 1305-16.
[http://dx.doi.org/10.1016/j.msec.2017.02.175] [PMID: 28415420]
[40]
Pereira IH, Ayres E, Averous L, et al. Differentiation of human adipose-derived stem cells seeded on mineralized electrospun co-axial poly(ε-caprolactone) (PCL)/gelatin nanofibers. J Mater Sci Mater Med 2014; 25(4): 1137-48.
[http://dx.doi.org/10.1007/s10856-013-5133-9] [PMID: 24378848]
[41]
Guasti L, Vagaska B, Bulstrode NW, Seifalian AM, Ferretti P. Chondrogenic differentiation of adipose tissue-derived stem cells within nanocaged POSS-PCU scaffolds: A new tool for nanomedicine. Nanomedicine (Lond) 2014; 10(2): 279-89.
[http://dx.doi.org/10.1016/j.nano.2013.08.006] [PMID: 24008020]
[42]
Luo J, Zhang H, Zhu J, et al. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloids Surf B Biointerfaces 2018; 163: 369-78.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.043] [PMID: 29335199]
[43]
Qian W, Gong L, Cui X, et al. Nanotopographic regulation of human mesenchymal stem cell osteogenesis. ACS Appl Mater Interfaces 2017; 9(48): 41794-806.
[http://dx.doi.org/10.1021/acsami.7b16314] [PMID: 29116745]
[44]
Gjerde C, Mustafa K, Hellem S, et al. Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Res Ther 2018; 9(1): 213.
[http://dx.doi.org/10.1186/s13287-018-0951-9] [PMID: 30092840]
[45]
Redondo LM, García V, Peral B, et al. Repair of maxillary cystic bone defects with mesenchymal stem cells seeded on a cross-linked serum scaffold. J Craniomaxillofac Surg 2018; 46(2): 222-9.
[http://dx.doi.org/10.1016/j.jcms.2017.11.004] [PMID: 29229365]
[46]
Ding L, Tang S, Liang P, Wang C, Zhou PF, Zheng L. Bone regeneration of canine peri-implant defects using cell sheets of adipose-derived mesenchymal stem cells and platelet-rich fibrin membranes. J Oral Maxillofac Surg 2019; 77(3): 499-514.
[http://dx.doi.org/10.1016/j.joms.2018.10.018] [PMID: 30476490]
[47]
Amjadian S, Seyedjafari E, Zeynali B, Shabani I. The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(l-lactide) on the osteogenesis of mesenchymal stem cells. Int J Pharm 2016; 507(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.032] [PMID: 27107902]
[48]
Jahangir S, Hosseini S, Mostafaei F, Sayahpour FA, Baghaban Eslaminejad M. 3D-porous β-tricalcium phosphate-alginate-gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects. J Mater Sci Mater Med 2018; 30(1): 1.
[http://dx.doi.org/10.1007/s10856-018-6202-x] [PMID: 30564959]
[49]
Li L, Li J, Zou Q, et al. Enhanced bone tissue regeneration of a biomimetic cellular scaffold with co-cultured MSCs‐derived osteogenic and angiogenic cells. Cell Prolif 2019; 52(5): e12658
[http://dx.doi.org/10.1111/cpr.12658]
[50]
Xiang J, Li J, He J, et al. Cerium oxide nanoparticle modified scaffold interface enhances vascularization of bone grafts by activating calcium channel of mesenchymal stem cells. ACS Appl Mater Interfaces 2016; 8(7): 4489-99.
[http://dx.doi.org/10.1021/acsami.6b00158] [PMID: 26824825]
[51]
Chen YW, Hsieh SC, Yang YC, et al. Functional engineered mesenchymal stem cells with fibronectin-gold composite coated catheters for vascular tissue regeneration. Nanomedicine (Lond) 2018; 14(3): 699-711.
[http://dx.doi.org/10.1016/j.nano.2017.12.023] [PMID: 29325741]
[52]
Yang F, Cho SW, Son SM, et al. Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc Natl Acad Sci USA 2010; 107(8): 3317-22.
[http://dx.doi.org/10.1073/pnas.0905432106] [PMID: 19805054]
[53]
Xia L, Lin K, Jiang X, et al. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells. Biomaterials 2014; 35(30): 8514-27.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.028] [PMID: 25002263]
[54]
Lin CC, Fu SJ. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats. Mater Sci Eng C 2016; 58: 254-63.
[http://dx.doi.org/10.1016/j.msec.2015.08.009] [PMID: 26478309]
[55]
Lv L, Liu Y, Zhang P, et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials 2015; 39: 193-205.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.002] [PMID: 25468371]
[56]
Malec K, Góralska J, Hubalewska-Mazgaj M, et al. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells. Int J Nanomedicine 2016; 11: 5349-60.
[http://dx.doi.org/10.2147/IJN.S116263] [PMID: 27789947]
[57]
Zhang S, Ma B, Liu F, et al. Polylactic acid nanopillar array-driven osteogenic differentiation of human adipose-derived stem cells determined by pillar diameter. Nano Lett 2018; 18(4): 2243-53.
[http://dx.doi.org/10.1021/acs.nanolett.7b04747] [PMID: 29517915]
[58]
Kang ES, Song I, Kim DS, et al. Size-dependent effects of graphene oxide on the osteogenesis of human adipose-derived mesenchymal stem cells. Colloids Surf B Biointerfaces 2018; 169: 20-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.053] [PMID: 29747027]
[59]
Kim HJ, Yi SW, Oh HJ, Lee JS, Park JS, Park KH. Transfection of gene regulation nanoparticles complexed with pDNA and shRNA controls multilineage differentiation of hMSCs. Biomaterials 2018; 177: 1-13.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.035] [PMID: 29883913]
[60]
Basu S, Pacelli S, Feng Y, Lu Q, Wang J, Paul A. Harnessing the noncovalent interactions of DNA backbone with 2D silicate nanodisks to fabricate injectable therapeutic hydrogels. ACS Nano 2018; 12(10): 9866-80.
[http://dx.doi.org/10.1021/acsnano.8b02434] [PMID: 30189128]
[61]
Heo DN, Castro NJ, Lee SJ, Noh H, Zhu W, Zhang LG. Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel. Nanoscale 2017; 9(16): 5055-62.
[http://dx.doi.org/10.1039/C6NR09652B] [PMID: 28211933]
[62]
Arun Kumar R, Sivashanmugam A, Deepthi S, Bumgardner JD, Nair SV, Jayakumar R. Nano-fibrin stabilized CaSO4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & osteogenesis. Carbohydr Polym 2016; 140: 144-53.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.074] [PMID: 26876838]
[63]
Hayrapetyan A, Bongio M, Leeuwenburgh SC, Jansen JA, van den Beucken JJ. Effect of nano-HA/collagen composite hydrogels on osteogenic behavior of mesenchymal stromal cells. Stem Cell Rev Rep 2016; 12(3): 352-64.
[http://dx.doi.org/10.1007/s12015-016-9644-x] [PMID: 26803618]
[64]
Tang ZB, Cao JK, Wen N, et al. Posterolateral spinal fusion with nano-hydroxyapatite-collagen/PLA composite and autologous adipose-derived mesenchymal stem cells in a rabbit model. J Tissue Eng Regen Med 2012; 6(4): 325-36.
[http://dx.doi.org/10.1002/term.445] [PMID: 21751422]
[65]
Yan H, Zhang G, Liu W, Wang N, Liu Z. different methods of fabricating cartilaginous ear framework in children with microtia according to the length of the eighth costal cartilage intraoperatively. J Craniofac Surg 2019; 30(5): 1425-9.
[http://dx.doi.org/10.1097/SCS.0000000000005282] [PMID: 31299736]
[66]
Xu S, Zhu J, Zhao G, Li S. Tracheal suspension with autogenous rib cartilage in a patient with severe tracheomalacia. J Cardiothorac Surg 2019; 14(1): 21.
[http://dx.doi.org/10.1186/s13019-019-0840-z] [PMID: 30683123]
[67]
Zhang L, Ma WS, Bai JP, et al. Comprehensive application of autologous costal cartilage grafts in rhino- and mentoplasty. J Craniofac Surg 2019; 30(7): 2174-7.
[http://dx.doi.org/10.1097/SCS.0000000000005858] [PMID: 31425405]
[68]
Go JY, Kang BY, Hwang JH, Oh KS. Management of chest deformity caused by microtia reconstruction: Comparison of autogenous diced cartilage versus cadaver cartilage graft partial filling techniques. J Plast Reconstr Aesthet Surg 2017; 70(1): 104-9.
[http://dx.doi.org/10.1016/j.bjps.2016.09.015] [PMID: 27777177]
[69]
Santo VE, Popa EG, Mano JF, Gomes ME, Reis RL. Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta Biomater 2015; 19: 56-65.
[http://dx.doi.org/10.1016/j.actbio.2015.03.015] [PMID: 25795623]
[70]
Forget J, Awaja F, Gugutkov D, et al. Differentiation of human mesenchymal stem cells toward quality cartilage using fibrinogen-based nanofibers. Macromol Biosci 2016; 16(9): 1348-59.
[http://dx.doi.org/10.1002/mabi.201600080] [PMID: 27276166]
[71]
Chen L, Bai Y, Liao G, et al. Electrospun poly(L-lactide)/poly(ε-caprolactone) blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells. PLoS One 2013; 8(8): 712-65.
[http://dx.doi.org/10.1371/journal.pone.0071265] [PMID: 23990941]
[72]
Deepthi S, Jayakumar R. Prolonged release of TGF-β from polyelectrolyte nanoparticle loaded macroporous chitin-poly(caprolactone) scaffold for chondrogenesis. Int J Biol Macromol 2016; 93(Pt B): 1402-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.068] [PMID: 27041649]
[73]
Foldberg S, Petersen M, Fojan P, et al. Patterned poly(lactic acid) films support growth and spontaneous multilineage gene expression of adipose-derived stem cells. Colloids Surf B Biointerfaces 2012; 93: 92-9.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.018] [PMID: 22230359]
[74]
Wang PY, Thissen H, Kingshott P. Stimulation of early osteochondral differentiation of human mesenchymal stem cells using binary colloidal crystals (BCCs). ACS Appl Mater Interfaces 2016; 8(7): 4477-88.
[http://dx.doi.org/10.1021/acsami.5b12660] [PMID: 26812467]
[75]
Huang S, Song X, Li T, et al. Pellet coculture of osteoarthritic chondrocytes and infrapatellar fat pad-derived mesenchymal stem cells with chitosan/hyaluronic acid nanoparticles promotes chondrogenic differentiation. Stem Cell Res Ther 2017; 8(1): 264.
[http://dx.doi.org/10.1186/s13287-017-0719-7] [PMID: 29141683]
[76]
Nikpou P, Soleimani Rad J, Mohammad Nejad D, et al. Indirect coculture of stem cells with fetal chondrons using PCL electrospun nanofiber scaffolds. Artif Cells Nanomed Biotechnol 2017; 45(2): 283-90.
[http://dx.doi.org/10.3109/21691401.2016.1146733] [PMID: 27281584]
[77]
Wang H, Xu PF, Li JY, et al. Adipose tissue transplantation ameliorates lipodystrophy-associated metabolic disorders in seipin-deficient mice. Am J Physiol Endocrinol Metab 2019; 316(1): E54-62.
[http://dx.doi.org/10.1152/ajpendo.00180.2018] [PMID: 30457912]
[78]
Christopoulos A, Ligoudistianou C, Bethanis P, Gazouli M. Successful use of adipose-derived mesenchymal stem cells to correct a male breast affected by Poland Syndrome: a case report. J Surg Case Rep 2018; 2018(7): rjy151
[http://dx.doi.org/10.1093/jscr/rjy151] [PMID: 30002805]
[79]
Ito S, Kai Y, Masuda T, et al. Long-term outcome of adipose-derived regenerative cell-enriched autologous fat transplantation for reconstruction after breast-conserving surgery for Japanese women with breast cancer. Surg Today 2017; 47(12): 1500-11.
[http://dx.doi.org/10.1007/s00595-017-1544-4] [PMID: 28555267]
[80]
Liu B, Tan XY, Liu YP, et al. The adjuvant use of stromal vascular fraction and platelet-rich fibrin for autologous adipose tissue transplantation. Tissue Eng Part C Methods 2013; 19(1): 1-14.
[http://dx.doi.org/10.1089/ten.tec.2012.0126] [PMID: 22681647]
[81]
Shim YH, Zhang RH. Literature review to optimize the autologous fat transplantation procedure and recent technologies to improve graft viability and overall outcome: A systematic and retrospective analytic approach. Aesthetic Plast Surg 2017; 41(4): 815-31.
[http://dx.doi.org/10.1007/s00266-017-0793-3] [PMID: 28175966]
[82]
Tan H, Zhou Q, Qi H, Zhu D, Ma X, Xiong D. Heparin interacting protein mediated assembly of nano-fibrous hydrogel scaffolds for guided stem cell differentiation. Macromol Biosci 2012; 12(5): 621-7.
[http://dx.doi.org/10.1002/mabi.201100502] [PMID: 22454284]
[83]
Jaikumar D, Sajesh KM, Soumya S, et al. Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering. Int J Biol Macromol 2015; 74: 318-26.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.037] [PMID: 25544040]
[84]
Park KS, Cha KJ, Han IB, et al. Mass-producible nano-featured polystyrene surfaces for regulating the differentiation of human adipose-derived stem cells. Macromol Biosci 2012; 12(11): 1480-9.
[http://dx.doi.org/10.1002/mabi.201200225] [PMID: 23042782]
[85]
Krishnaswami A, Maurer MS, Alexander KP. Contextualizing myocardial infarction: Comorbidities and priorities in older adults. Am J Med 2017; 130(10): 1144-7.
[http://dx.doi.org/10.1016/j.amjmed.2017.05.043] [PMID: 28687265]
[86]
Huang J, Zhu X. The molecular mechanisms of calpains action on skeletal muscle atrophy. Physiol Res 2016; 65(4): 547-60.
[http://dx.doi.org/10.33549/physiolres.933087] [PMID: 26988155]
[87]
Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circ Res 2016; 119(1): 91-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303577] [PMID: 27340270]
[88]
Hao T, Li J, Yao F, et al. Injectable fullerenol/alginate hydrogel for suppression of oxidative stress damage in brown adipose-derived stem cells and cardiac repair. ACS Nano 2017; 11(6): 5474-88.
[http://dx.doi.org/10.1021/acsnano.7b00221] [PMID: 28590722]
[89]
Wu SH, Huang SH, Lo YC, et al. Autologous adipose-derived stem cells attenuate muscular atrophy and protect spinal cord ventral horn motor neurons in an animal model of burn injury. Cytotherapy 2015; 17(8): 1066-75.
[http://dx.doi.org/10.1016/j.jcyt.2015.03.687] [PMID: 26139546]
[90]
Schilling BK, Schusterman MA II, Kim DY, et al. Adipose-derived stem cells delay muscle atrophy after peripheral nerve injury in the rodent model. Muscle Nerve 2019; 59(5): 603-10.
[http://dx.doi.org/10.1002/mus.26432] [PMID: 30681163]
[91]
Feng C, Hu J, Liu C, et al. Association of 17-β estradiol with adipose-derived stem cells: New strategy to produce functional myogenic differentiated cells with a nano-scaffold for tissue engineering. PLoS One 2016; 11(10): e0164918
[http://dx.doi.org/10.1371/journal.pone.0164918] [PMID: 27783699]
[92]
Wu S, Duan B, Liu P, Zhang C, Qin X, Butcher JT. Fabrication of aligned nanofiber polymer yarn networks for anisotropic soft tissue scaffolds. ACS Appl Mater Interfaces 2016; 8(26): 16950-60.
[http://dx.doi.org/10.1021/acsami.6b05199] [PMID: 27304080]
[93]
Wu S, Duan B, Qin X, Butcher JT. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application. Acta Biomater 2017; 60: 144-53.
[http://dx.doi.org/10.1016/j.actbio.2017.07.023] [PMID: 28733255]
[94]
Tan J, Xu Y, Han F, Ye X. Genetical modification on adipose-derived stem cells facilitates facial nerve regeneration. Aging (Albany NY) 2019; 11(3): 908-20.
[http://dx.doi.org/10.18632/aging.101790] [PMID: 30728320]
[95]
Allbright KO, Bliley JM, Havis E, et al. Delivery of adipose-derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration. Muscle Nerve 2018; 58(2): 251-60.
[http://dx.doi.org/10.1002/mus.26094] [PMID: 29406624]
[96]
Gomes ED, Mendes SS, Assunção-Silva RC, et al. Co-Transplantation of adipose tissue-derived stromal cells and olfactory ensheathing cells for spinal cord injury repair. Stem Cells 2018; 36(5): 696-708.
[http://dx.doi.org/10.1002/stem.2785] [PMID: 29352743]
[97]
Teo BK, Wong ST, Lim CK, et al. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano 2013; 7(6): 4785-98.
[http://dx.doi.org/10.1021/nn304966z] [PMID: 23672596]
[98]
Lim KT, Seonwoo H, Choi KS, et al. Pulsed-electromagnetic-field-assisted reduced graphene oxide substrates for multidifferentiation of human mesenchymal stem cells. Adv Healthc Mater 2016; 5(16): 2069-79.
[http://dx.doi.org/10.1002/adhm.201600429] [PMID: 27332788]
[99]
Thrivikraman G, Madras G, Basu B. Electrically driven intracellular and extracellular nanomanipulators evoke neurogenic/cardiomyogenic differentiation in human mesenchymal stem cells. Biomaterials 2016; 77: 26-43.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.078] [PMID: 26576047]
[100]
Poudineh M, Wang Z, Labib M, et al. Three-dimensional nanostructured architectures enable efficient neural differentiation of mesenchymal stem cells via mechanotransduction. Nano Lett 2018; 18(11): 7188-93.
[http://dx.doi.org/10.1021/acs.nanolett.8b03313] [PMID: 30335391]
[101]
Kim TH, Shah S, Yang L, et al. Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano 2015; 9(4): 3780-90.
[http://dx.doi.org/10.1021/nn5066028] [PMID: 25840606]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy