Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

General Review Article

The Roles of Long Non-coding RNA in Osteoporosis

Author(s): Ying Li, Jinglan Li, Leilei Chen* and Liangliang Xu*

Volume 15, Issue 7, 2020

Page: [639 - 645] Pages: 7

DOI: 10.2174/1574888X15666200501235735

Price: $65

Abstract

The Human Genome Project (HGP) announced in 2001 that it had sequenced the entire human genome, yielding nearly complete human DNA. About 98.5 percent of the human genome has been found to be non-coding sequences. Long non-coding RNA (lncRNA) is a non-coding RNA with a length between 200 and 100,000 nucleotide units. Because of shallow research on lncRNA, it was believed that it had no biological functions, but exists as a by-product of the transcription process. With the development of high-throughput sequencing technology, studies have shown that lncRNA plays important roles in many processes by participating in epigenetics, transcription, translation and protein modification. Current researches have shown that lncRNA also has an important part in the pathogenesis of osteoporosis. Osteoporosis is a common disorder of bone metabolism, also a major medical and socioeconomic challenge worldwide. It is characterized by a systemic reduction in bone mass and microstructure changes, which increases the risk of brittle fractures. It is more common in postmenopausal women and elderly men. However, the roles of lncRNA and relevant mechanisms in osteoporosis remain unclear. Based on this background, we hereby review the roles of lncRNA in osteoporosis, and how it influences the functions of osteoblasts and osteoclasts, providing reference to clinical diagnosis, treatment and prognosis of osteoporosis.

Keywords: Non-coding RNA, lncRNA, osteoporosis, fracture, osteoblast, osteoclast.

[1]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009; 136(4): 629-41.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[2]
Okazaki Y, Furuno M, Kasukawa T, et al. FANTOM Consortium. RIKEN Genome Exploration Research Group Phase I & II Team. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 2002; 420(6915): 563-73.
[http://dx.doi.org/10.1038/nature01266] [PMID: 12466851]
[3]
Bonnet E, Van de Peer Y, Rouzé P. The small RNA world of plants. New Phytol 2006; 171(3): 451-68.
[http://dx.doi.org/10.1111/j.1469-8137.2006.01806.x] [PMID: 16866953]
[4]
Simon SA, Meyers BC. Small RNA-mediated epigenetic modifications in plants. Curr Opin Plant Biol 2011; 14(2): 148-55.
[http://dx.doi.org/10.1016/j.pbi.2010.11.007] [PMID: 21159545]
[5]
Hung T, Wang Y, Lin MF, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 2011; 43(7): 621-9.
[http://dx.doi.org/10.1038/ng.848] [PMID: 21642992]
[6]
Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 2011; 331(6013): 76-9.
[http://dx.doi.org/10.1126/science.1197349] [PMID: 21127216]
[7]
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10(3): 155-9.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[8]
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20(3): 300-7.
[http://dx.doi.org/10.1038/nsmb.2480] [PMID: 23463315]
[9]
Saxena A, Carninci P. Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. BioEssays 2011; 33(11): 830-9.
[http://dx.doi.org/10.1002/bies.201100084] [PMID: 21915889]
[10]
Heo JB, Lee Y-S, Sung S. Epigenetic regulation by long noncoding RNAs in plants. Chromosome Res 2013; 21(6-7): 685-93.
[http://dx.doi.org/10.1007/s10577-013-9392-6] [PMID: 24233054]
[11]
Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet 2011; 377(9773): 1276-87.
[http://dx.doi.org/10.1016/S0140-6736(10)62349-5] [PMID: 21450337]
[12]
Yuan F-L, Xu M-H, Li X, Xinlong H, Fang W, Dong J. The Roles of Acidosis in Osteoclast Biology. Front Physiol 2016; 7: 222.
[http://dx.doi.org/10.3389/fphys.2016.00222] [PMID: 27445831]
[13]
Li X, Ye JX, Xu MH, Zhao MD, Yuan FL. Evidence that activation of ASIC1a by acidosis increases osteoclast migration and adhesion by modulating integrin/Pyk2/Src signaling pathway. Osteoporos Int 2017; 28(7): 2221-31.
[http://dx.doi.org/10.1007/s00198-017-4017-0] [PMID: 28462470]
[14]
Siepel A, Bejerano G, Pedersen JS, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 2005; 15(8): 1034-50.
[http://dx.doi.org/10.1101/gr.3715005] [PMID: 16024819]
[15]
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43(6): 904-14.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[16]
Chen L-L, Carmichael GG. Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol 2010; 22(3): 357-64.
[http://dx.doi.org/10.1016/j.ceb.2010.03.003] [PMID: 20356723]
[17]
Du Toit A. Non-coding RNA: RNA stability control by Pol II. Nat Rev Mol Cell Biol 2013; 14(3): 128-9.
[http://dx.doi.org/10.1038/nrm3521] [PMID: 23403719]
[18]
Goodrich JA, Kugel JF. Dampening DNA binding: a common mechanism of transcriptional repression for both ncRNAs and protein domains. RNA Biol 2010; 7(3): 305-9.
[http://dx.doi.org/10.4161/rna.7.3.11910] [PMID: 20436282]
[19]
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 2016; 17(1): 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[20]
Mattick JS. RNA regulation: a new genetics? Nat Rev Genet 2004; 5(4): 316-23.
[http://dx.doi.org/10.1038/nrg1321] [PMID: 15131654]
[21]
Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 2009; 106(28): 11667-72.
[http://dx.doi.org/10.1073/pnas.0904715106] [PMID: 19571010]
[22]
Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22(9): 1775-89.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[23]
Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997; 89(5): 747-54.
[http://dx.doi.org/10.1016/S0092-8674(00)80257-3] [PMID: 9182762]
[24]
Frith JE, Thomson B, Genever PG. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods 2010; 16(4): 735-49.
[http://dx.doi.org/10.1089/ten.tec.2009.0432] [PMID: 19811095]
[25]
Wang L, Wang Y, Li Z, Li Z, Yu B. Differential expression of long noncoding ribonucleic acids during osteogenic differentiation of human bone marrow mesenchymal stem cells. Int Orthop 2015; 39(5): 1013-9.
[http://dx.doi.org/10.1007/s00264-015-2683-0] [PMID: 25634249]
[26]
Lin Y, Fu F, Chen Y, et al. Genetic variants in long noncoding RNA H19 contribute to the risk of breast cancer in a southeast China Han population. OncoTargets Ther 2017; 10: 4369-78.
[http://dx.doi.org/10.2147/OTT.S127962] [PMID: 28919786]
[27]
Hemming S, Cakouros D, Isenmann S, et al. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells 2014; 32(3): 802-15.
[http://dx.doi.org/10.1002/stem.1573] [PMID: 24123378]
[28]
Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 2013; 333(2): 213-21.
[http://dx.doi.org/10.1016/j.canlet.2013.01.033] [PMID: 23354591]
[29]
Huang Y, Zheng Y, Jia L, Li W. Long Noncoding RNA H19 Promotes Osteoblast Differentiation Via TGF-β1/Smad3/HDAC Signaling Pathway by Deriving miR-675. Stem Cells 2015; 33(12): 3481-92.
[http://dx.doi.org/10.1002/stem.2225] [PMID: 26417995]
[30]
Liang W-C, Fu W-M, Wang Y-B, et al. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep 2016; 6: 20121.
[http://dx.doi.org/10.1038/srep20121] [PMID: 26853553]
[31]
Wang L, Li Z, Li Z, Yu B, Wang Y. Long noncoding RNAs expression signatures in chondrogenic differentiation of human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2015; 456(1): 459-64.
[http://dx.doi.org/10.1016/j.bbrc.2014.11.106] [PMID: 25482444]
[32]
Bäckesjö C-M, Li Y, Lindgren U, Haldosén L-A. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. Cells Tissues Organs (Print) 2009; 189(1-4): 93-7.
[http://dx.doi.org/10.1159/000151744] [PMID: 18728353]
[33]
Cohen-Kfir E, Artsi H, Levin A, et al. Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor. Endocrinology 2011; 152(12): 4514-24.
[http://dx.doi.org/10.1210/en.2011-1128] [PMID: 21952235]
[34]
Volkmann I, Kumarswamy R, Pfaff N, et al. MicroRNA-mediated epigenetic silencing of sirtuin1 contributes to impaired angiogenic responses. Circ Res 2013; 113(8): 997-1003.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301702] [PMID: 23960241]
[35]
Warburton D, Shi W, Xu B. TGF-β-Smad3 signaling in emphysema and pulmonary fibrosis: an epigenetic aberration of normal development? Am J Physiol Lung Cell Mol Physiol 2013; 304(2): L83-5.
[http://dx.doi.org/10.1152/ajplung.00258.2012] [PMID: 23161884]
[36]
Barham G, Clarke NM. Genetic regulation of embryological limb development with relation to congenital limb deformity in humans. J Child Orthop 2008; 2(1): 1-9.
[http://dx.doi.org/10.1007/s11832-008-0076-2] [PMID: 19308596]
[37]
Xu Y, Wang S, Tang C, Chen W. Upregulation of long non-coding RNA HIF 1α-anti-sense 1 induced by transforming growth factor-β-mediated targeting of sirtuin 1 promotes osteoblastic differentiation of human bone marrow stromal cells. Mol Med Rep 2015; 12(5): 7233-8.
[http://dx.doi.org/10.3892/mmr.2015.4415] [PMID: 26460121]
[38]
Zhu L, Xu P-C. Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression. Biochem Biophys Res Commun 2013; 432(4): 612-7.
[http://dx.doi.org/10.1016/j.bbrc.2013.02.036] [PMID: 23438432]
[39]
Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab 2012; 23(11): 576-81.
[http://dx.doi.org/10.1016/j.tem.2012.03.008] [PMID: 22595550]
[40]
Dou C, Cao Z, Yang B, et al. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Sci Rep 2016; 6: 21499.
[http://dx.doi.org/10.1038/srep21499] [PMID: 26856880]
[41]
Teitelbaum SL. Bone resorption by osteoclasts. Science 2000; 289(5484): 1504-8.
[http://dx.doi.org/10.1126/science.289.5484.1504] [PMID: 10968780]
[42]
Ng PY, Brigitte Patricia Ribet A, Pavlos NJ. Membrane trafficking in osteoclasts and implications for osteoporosis. Biochem Soc Trans 2019; 47(2): 639-50.
[http://dx.doi.org/10.1042/BST20180445] [PMID: 30837319]
[43]
Gibon E, Lu LY, Nathan K, Goodman SB. Inflammation, ageing, and bone regeneration. J Orthop Translat 2017; 10: 28-35.
[http://dx.doi.org/10.1016/j.jot.2017.04.002] [PMID: 29094003]
[44]
Wang Y, Luo T-B, Liu L, Cui Z-Q. LncRNA LINC00311 Promotes the Proliferation and Differentiation of Osteoclasts in Osteoporotic Rats Through the Notch Signaling Pathway by Targeting DLL3. Cell Physiol Biochem 2018; 47(6): 2291-306.
[http://dx.doi.org/10.1159/000491539] [PMID: 29975944]
[45]
Ahlborg HG, Rosengren BE, Järvinen TLN, et al. Prevalence of osteoporosis and incidence of hip fracture in women--secular trends over 30 years. BMC Musculoskelet Disord 2010; 11: 48.
[http://dx.doi.org/10.1186/1471-2474-11-48] [PMID: 20222965]
[46]
Tong X, Gu PC, Xu SZ, Lin XJ. Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem 2015; 79(5): 732-7.
[http://dx.doi.org/10.1080/09168451.2014.998617] [PMID: 25660720]
[47]
Sun Y, Cai M, Zhong J, et al. The long noncoding RNA lnc-ob1 facilitates bone formation by upregulating Osterix in osteoblasts. Nature Metabolism 2019; 1(4): 485-96.
[http://dx.doi.org/10.1038/s42255-019-0053-8]
[48]
Fei Q, Bai X, Lin J, Meng H, Yang Y, Guo A. Identification of aberrantly expressed long non-coding RNAs in postmenopausal osteoporosis. Int J Mol Med 2018; 41(6): 3537-50.
[http://dx.doi.org/10.3892/ijmm.2018.3575] [PMID: 29568943]
[49]
Magagula L, Gagliardi M, Naidoo J, Mhlanga M. Lnc-ing inflammation to disease. Biochem Soc Trans 2017; 45(4): 953-62.
[http://dx.doi.org/10.1042/BST20160377] [PMID: 28687714]
[50]
Xu Z-M, Huang F, Huang WQ. Angiogenic lncRNAs: A potential therapeutic target for ischaemic heart disease. Life Sci 2018; 211: 157-71.
[http://dx.doi.org/10.1016/j.lfs.2018.09.022] [PMID: 30219334]
[51]
Ferrè F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction. Brief Bioinform 2016; 17(1): 106-16.
[http://dx.doi.org/10.1093/bib/bbv031] [PMID: 26041786]
[52]
Bracken AP, Helin K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer 2009; 9(11): 773-84.
[http://dx.doi.org/10.1038/nrc2736] [PMID: 19851313]
[53]
Faghihi MA, Wahlestedt C. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 2009; 10(9): 637-43.
[http://dx.doi.org/10.1038/nrm2738] [PMID: 19638999]
[54]
Whitehead J, Pandey GK, Kanduri C. Regulation of the mammalian epigenome by long noncoding RNAs. Biochim Biophys Acta 2009; 1790(9): 936-47.
[http://dx.doi.org/10.1016/j.bbagen.2008.10.007] [PMID: 19015002]
[55]
Jiang Y, Wu W, Jiao G, Chen Y, Liu H. LncRNA SNHG1 modulates p38 MAPK pathway through Nedd4 and thus inhibits osteogenic differentiation of bone marrow mesenchymal stem cells. Life Sci 2019; 228: 208-14.
[http://dx.doi.org/10.1016/j.lfs.2019.05.002] [PMID: 31055087]
[56]
Fang B, Li Y, Chen C, et al. Huo Xue Tong Luo capsule ameliorates osteonecrosis of femoral head through inhibiting lncRNA-Miat. J Ethnopharmacol 2019; 238111862
[http://dx.doi.org/10.1016/j.jep.2019.111862] [PMID: 30970282]
[57]
Yin C, Tian Y, Yu Y, et al. A novel long noncoding RNA AK016739 inhibits osteoblast differentiation and bone formation. J Cell Physiol 2019; 234(7): 11524-36.
[http://dx.doi.org/10.1002/jcp.27815] [PMID: 30656695]
[58]
Wang CG, Liao Z, Xiao H, et al. LncRNA KCNQ1OT1 promoted BMP2 expression to regulate osteogenic differentiation by sponging miRNA-214. Exp Mol Pathol 2019; 107: 77-84.
[http://dx.doi.org/10.1016/j.yexmp.2019.01.012] [PMID: 30703347]
[59]
Wang Q, Li Y, Zhang Y, et al. LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother 2017; 89: 1178-86.
[http://dx.doi.org/10.1016/j.biopha.2017.02.090] [PMID: 28320084]
[60]
Zhang Y, Chen B, Li D, Zhou X, Chen Z. LncRNA NEAT1/miR-29b-3p/BMP1 axis promotes osteogenic differentiation in human bone marrow-derived mesenchymal stem cells. Pathol Res Pract 2019; 215(3): 525-31.
[http://dx.doi.org/10.1016/j.prp.2018.12.034] [PMID: 30638953]
[61]
Yang L, Li Y, Gong R, et al. The Long Non-coding RNA-ORLNC1 Regulates Bone Mass by Directing Mesenchymal Stem Cell Fate. Mol Ther 2019; 27(2): 394-410.
[http://dx.doi.org/10.1016/j.ymthe.2018.11.019] [PMID: 30638773]
[62]
Wang Y, Wang K, Hu Z, et al. MicroRNA-139-3p regulates osteoblast differentiation and apoptosis by targeting ELK1 and interacting with long noncoding RNA ODSM. Cell Death Dis 2018; 9(11): 1107.
[http://dx.doi.org/10.1038/s41419-018-1153-1] [PMID: 30382082]
[63]
Li C-J, Xiao Y, Yang M, et al. Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J Clin Invest 2018; 128(12): 5251-66.
[http://dx.doi.org/10.1172/JCI99044] [PMID: 30352426]
[64]
Liu Y, Zeng X, Miao J, et al. Upregulation of long noncoding RNA MEG3 inhibits the osteogenic differentiation of periodontal ligament cells. J Cell Physiol 2019; 234(4): 4617-26.
[http://dx.doi.org/10.1002/jcp.27248] [PMID: 30256394]
[65]
Barter MJ, Gomez R, Hyatt S, et al. The long non-coding RNA ROCR contributes to SOX9 expression and chondrogenic differentiation of human mesenchymal stem cells. Development 2017; 144(24): 4510-21.
[http://dx.doi.org/10.1242/dev.152504] [PMID: 29084806]
[66]
Ishikawa T, Nishida T, Ono M, et al. Physiological role of urothelial cancer-associated one long noncoding RNA in human skeletogenic cell differentiation. J Cell Physiol 2018; 233(6): 4825-40.
[http://dx.doi.org/10.1002/jcp.26285] [PMID: 29150954]
[67]
Chen X, Yang L, Ge D, et al. Long non-coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation. Exp Ther Med 2019; 17(1): 803-11.
[PMID: 30651866]
[68]
Sun X, Yuan Y, Xiao Y, et al. Long non-coding RNA, Bmcob, regulates osteoblastic differentiation of bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2018; 506(3): 536-42.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.142] [PMID: 30361096]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy