Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

General Review Article

Recent Advances in Molecular Marker-Assisted Breeding for Quality Improvement of Traditional Chinese Medicine

Author(s): Zhenqiao Song and Xingfeng Li*

Volume 22, Issue 6, 2021

Published on: 30 April, 2020

Page: [867 - 875] Pages: 9

DOI: 10.2174/1389201021666200430121013

Price: $65

conference banner
Abstract

Background: The quality of Traditional Chinese Medicine (TCM), reflected by its bioactive compounds and associated contents, is directly linked to its clinical efficacy. Therefore, it is of great importance to improve the quality of TCM by increasing the bioactive compound content.

Methods: Mapping the active component content-associated QTLs in TCM and further markerassisted breeding has enabled us to rapidly and effectively cultivate new varieties with high bioactive compound contents, which has opened the door for genetic breeding studies on medicinal plants.

Results: In this paper, a strategy and technical molecular breeding method for TCM are discussed. The development of four methods and progress in functional marker development, as well as the applications of such markers in TCM, are reviewed.

Conclusion: The progress in, challenges of, and future of marker-assisted breeding for quality improvement of TCM are discussed, which provide valuable scientific references for future molecular breeding.

Keywords: MAS, traditional Chinese medicinal plant, bioactive compound content, QTLs, expressed sequence tag, GWAS.

« Previous
Graphical Abstract

[1]
Shen, Q.; Zhang, L.; Liao, Z.; Wang, S.; Yan, T.; Shi, P.; Liu, M.; Fu, X.; Pan, Q.; Wang, Y.; Lv, Z.; Lu, X.; Zhang, F.; Jiang, W.; Ma, Y.; Chen, M.; Hao, X.; Li, L.; Tang, Y.; Lv, G.; Zhou, Y.; Sun, X.; Brodelius, P.E.; Rose, J.K.C.; Tang, K. The genome of Artemisia annua provides insight into the evolution of asteraceae family and artemisinin biosynthesis. Mol. Plant, 2018, 11(6), 776-788.
[http://dx.doi.org/10.1016/j.molp.2018.03.015] [PMID: 29703587]
[2]
Chen, S.L.; Sun, Y.Z.; Xu, J.; Luo, H.M.; Sun, C.; He, L.; Cheng, X.L.; Zhang, B.L.; Xiao, P.G. Strategies of the study on herb genome program. Yao Xue Xue Bao, 2010, 45(7), 807-812.
[PMID: 20931775]
[3]
Li, W.; Lei, C.; Cheng, Z.; Jia, Y.; Huang, D.; Wang, J.; Wang, J.; Zhang, X.; Su, N.; Guo, X.; Zhai, H.; Wan, J. Identification of SSR markers for a broad-spectrum blast resistance gene Pi20(t) for marker-assisted breeding. Mol. Breed., 2008, 22, 141-149.
[http://dx.doi.org/10.1007/s11032-008-9163-9]
[4]
Krishna, M.S.R.; Reddy, S.S.; Satyanarayana, S.D.V. Markerassisted breeding for introgression of opaque-2 allele into elite maize inbred line BML-7. 3 Biotech, 2017, 7, 165-172..
[5]
Kumar, A.; Sandhu, N.; Dixit, S.; Yadav, S.; Swamy, B.P.M.; Shamsudin, N.A.A. Marker-assisted selection strategy to pyramid two or more QTLs for quantitative trait-grain yield under drought. Rice (N. Y.), 2018, 11(1), 35-51.
[http://dx.doi.org/10.1186/s12284-018-0227-0] [PMID: 29845495]
[6]
Hu, D.; Sheng, Z.; Li, Q.; Chen, W.; Wei, X.; Xie, L.; Jiao, G.; Shao, G.; Wang, J.; Tang, S.; Hu, P. Identification of QTLs associated with cadmium concentration in rice grains. J. Integr. Agric., 2018, 17(7), 60345-60352.
[http://dx.doi.org/10.1016/S2095-3119(17)61847-1]
[7]
Yu, X.; Ren, S.; Zhao, L.; Guo, J.; Bao, Y.; Ma, Y.; Wang, H.; Ohm, H.W.; Yu, D.; Li, H.; Kong, L. Molecular mapping of a novel wheat powdery mildew resistance gene Ml92145E8-9 and its application in wheat breeding by marker-assisted selection. Crop J., 2018, 621-627.
[http://dx.doi.org/10.1016/j.cj.2018.04.004]
[8]
Shaw, P.C.; Ngan, F.N.; But, P.P.H.; Wang, J. Molecular markers in chinese medicinal materials; Authentication Chinese Med. Mats. DNA Technol, 2002, 1-23.
[http://dx.doi.org/10.1142/9789812706591_0001]
[9]
Wang, B.; Zhang, Y.; Chen, C.B.; Li, X.L.; Chen, R.Y.; Chen, L. Analysis on genetic diversity of different Salvia miltiorrhiza geographical populations in China. Zhongguo Zhongyao Zazhi, 2007, 32(19), 1988-1991.
[PMID: 18161287]
[10]
Song, Z.; Li, X.; Wang, H.; Wang, J. Genetic diversity and population structure of Salvia miltiorrhiza Bge in China revealed by ISSR and SRAP. Genetica, 2010, 138(2), 241-249.
[http://dx.doi.org/10.1007/s10709-009-9416-5] [PMID: 19844793]
[11]
Zhan, Q.Q.; Sui, C.; Wei, J.H.; Fan, S.C.; Zhang, J. Construction of genetic linkage map of Bupleurum chinense DC. using ISSR and SSR markers. Yao Xue Xue Bao, 2010, 45(4), 517-523.
[PMID: 21355221]
[12]
Pan, L.; Quan, Z.; Hu, J.; Wang, G.; Liu, S.; He, Y.; Ke, W.; Ding, Y. Genetic diversity and differentiation of lotus (Nelumbo nucifera) accessions assessed by simple sequence repeats. Ann. Appl. Biol., 2011, 159(3), 428-441.
[http://dx.doi.org/10.1111/j.1744-7348.2011.00509.x]
[13]
Liu, L.; Ma, X.; Wei, J.; Qin, J.; Mo, C. The first genetic linkage map of Luohanguo (Siraitia grosvenorii) based on ISSR and SRAP markers. Genome, 2011, 54(1), 19-25.
[http://dx.doi.org/10.1139/G10-084] [PMID: 21217802]
[14]
Hu, J.; Pan, L.; Liu, H.; Wang, S.; Wu, Z.; Ke, W.; Ding, Y. Comparative analysis of genetic diversity in sacred lotus (Nelumbo nucifera Gaertn.) using AFLP and SSR markers. Mol. Biol. Rep., 2012, 39(4), 3637-3647.
[http://dx.doi.org/10.1007/s11033-011-1138-y] [PMID: 21735103]
[15]
Ren, M.; Chen, Y.; Zhang, D.; Du, L.; Liu, F.; Guan, X.; Zhang, Y. Application and research progress of Inter-Simple Sequence Repeat (ISSR) marker in medicinal plants. Shengwu Jishu Tongbao, 2017, 33(4), 63-69.
[16]
Morgante, M.; Olivieri, A.M. PCR-amplified microsatellites as markers in plant genetics. Plant J., 1993, 3(1), 175-182..
[http://dx.doi.org/10.1046/j.1365-313X.1993.t01-9-00999.x] [PMID: 8401603]
[17]
Shokeen, B.; Choudhary, S.; Sethy, N.K.; Bhatia, S. Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus. Ann. Bot., 2011, 108(2), 321-336.
[http://dx.doi.org/10.1093/aob/mcr162] [PMID: 21788377]
[18]
Shehzad, T.; Okuno, K. QTL mapping for yield and yield-contributing traits in sorghum (Sorghum bicolor (L.) Moench) with genome-based SSR markers. Euphytica, 2016, 203(1), 1-15.
[19]
Zong Cheng-kun, ; Song, Z.Q.; Chen, H.M.; Liu, C.; Wang, J.H.; Guo, L.L.; Liu, T.; Pan, Y.L. Construction of the first genetic linkage map of Salvia miltiorrhiza Bge. using SSR, SRAP and ISSR markers. Yao Xue Xue Bao, 2015, 50(3), 360-366.
[PMID: 26118118]
[20]
Feng, Y.; Guo, L.; Jin, H.; Lin, C.; Zhou, C.; Fang, X.; Wang, J.; Song, Z. Quantitative trait loci analysis of phenolic acids contents in Salvia miltiorrhiza based on genomic simple sequence repeat markers. Ind. Crops Prod., 2019, 133, 365-372.
[http://dx.doi.org/10.1016/j.indcrop.2019.01.063]
[21]
Rowe, H.C.; Renaut, S.; Guggisberg, A. RAD in the realm of next-generation sequencing technologies., Mol. Ecol., 2011, 20(17), 3499-3502..
[http://dx.doi.org/10.1111/j.1365-294X.2011.05197.x] [PMID: 21991593]
[22]
Zhang, Q.; Li, L.; VanBuren, R.; Liu, Y.; Yang, M.; Xu, L.; Bowers, J.E.; Zhong, C.; Han, Y.; Li, S.; Ming, R. Optimization of linkage mapping strategy and construction of a high-density American lotus linkage map. BMC Genomics, 2014, 15(1), 372-385.
[http://dx.doi.org/10.1186/1471-2164-15-372] [PMID: 24885335]
[23]
Liu, T.; Guo, L.; Pan, Y.; Zhao, Q.; Wang, J.; Song, Z. Construction of the first high-density genetic linkage map of Salvia miltiorrhiza using Specific Length Amplified Fragment (SLAF) sequencing. Sci. Rep., 2016, 6, 24070-24078.
[http://dx.doi.org/10.1038/srep24070] [PMID: 27040179]
[24]
Grattapaglia, D.; Sederoff, R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: Mapping strategy and RAPD markers. Genetics, 1994, 137(4), 1121-1137.
[PMID: 7982566]
[25]
Ferreira, J.F.S.; Janick, J. Floral morphology of Artemisia annua with special reference to trichomes. Int. J. Plant Sci., 1995, 156(6), 807-815.
[26]
Graham, I.A.; Besser, K.; Blumer, S.; Branigan, C.A.; Czechowski, T.; Elias, L.; Guterman, I.; Harvey, D.; Isaac, P.G.; Khan, A.M.; Larson, T.R.; Li, Y.; Pawson, T.; Penfield, T.; Rae, A.M.; Rathbone, D.A.; Reid, S.; Ross, J.; Smallwood, M.F.; Segura, V.; Townsend, T.; Vyas, D.; Winzer, T.; Bowles, D. The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science, 2010, 327(5963), 328-331.
[http://dx.doi.org/10.1126/science.1182612] [PMID: 20075252]
[27]
Zhao, Y.; Su, K.; Wang, G.; Zhang, L.; Zhang, J.; Li, J.; Guo, Y. High-density genetic linkage map construction and quantitative trait locus mapping for hawthorn (Crataegus pinnatifida bunge). Sci. Rep., 2017, 7(1), 5492-5502.
[http://dx.doi.org/10.1038/s41598-017-05756-5] [PMID: 28710433]
[28]
Lu, J.; Liu, Y.; Xu, J.; Mei, Z.; Shi, Y.; Liu, P.; He, J.; Wang, X.; Meng, Y.; Feng, S.; Shen, C.; Wang, H. High-density genetic map construction and stem total polysaccharide content-related QTL exploration for Chinese Endemic Dendrobium (Orchidaceae). Front. Plant Sci., 2018, 9, 398-410.
[http://dx.doi.org/10.3389/fpls.2018.00398] [PMID: 29636767]
[29]
Gong, H.; Rehman, F.; Yang, T.; Li, Z.; Wang, Y. Construction of the first high-density genetic map and QTL mapping for photosynthetic traits in Lycium barbarum L. Mol. Breed., 2019, 39(7), 106-119.
[http://dx.doi.org/10.1007/s11032-019-1000-9]
[30]
Chagné, D.; Krieger, C.; Rassam, M.; Sullivan, M.; Fraser, J.; André, C.; Pindo, M.; Troggio, M.; Gardiner, S.E.; Henry, R.A.; Allan, A.C.; McGhie, T.K.; Laing, W.A. QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol., 2012, 12, 12-28.
[http://dx.doi.org/10.1186/1471-2229-12-12] [PMID: 22269060]
[31]
Ky, C.L.; Barre, P.; Noirot, M. Genetic investigations on the caffeine and chlorogenic acid relationship in an interspecific cross between Coffea liberica dewevrei and C. pseudozanguebariae. Tree Genet. Genomes, 2013, 9(4), 1043-1049.
[http://dx.doi.org/10.1007/s11295-013-0616-x]
[32]
Cai, Z.; Cheng, Y.; Ma, Z.; Liu, X.; Ma, Q.; Xia, Q.; Zhang, G.; Mu, Y.; Nian, H. Fine-mapping of QTLs for individual and total isoflavone content in soybean (Glycine max L.) using a high-density genetic map. Theor. Appl. Genet., 2018, 131(3), 555-568.
[http://dx.doi.org/10.1007/s00122-017-3018-x] [PMID: 29159422]
[33]
Pei, R.; Zhang, J.; Tian, L.; Zhang, S.; Sun, J. Identification of novel QTL associated with soybean isoflavone content. Crop J., 2018, 6(3), 244-252.
[http://dx.doi.org/10.1016/j.cj.2017.10.004]
[34]
Xu, T.Y.; Sun, J.; Chang, H.L.; Zheng, H.L.; Zou, D.T. QTL mapping for anthocyanin and proanthocyanidin content in red rice. Euphytica, 2017, 213(11), 243-254.
[http://dx.doi.org/10.1007/s10681-017-2035-9]
[35]
Liu, H.; Cao, G.; Wu, D.; Jiang, Z.; Han, Y.; Li, W. Quantitative trait loci underlying soybean seed tocopherol content with main additive, epistatic and QTL × environment effects. Plant Breed., 2017, 136, 924-938.
[http://dx.doi.org/10.1111/pbr.12534]
[36]
Han, K.; Lee, H.Y.; Ro, N.Y.; Hur, O.S.; Lee, J.H.; Kwon, J.K.; Kang, B.C. QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol. J., 2018, 16(9), 1546-1558.
[http://dx.doi.org/10.1111/pbi.12894] [PMID: 29406565]
[37]
Sonah, H.; O’Donoughue, L.; Cober, E.; Rajcan, I.; Belzile, F. Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol. J., 2015, 13(2), 211-221.
[http://dx.doi.org/10.1111/pbi.12249] [PMID: 25213593]
[38]
Upadhyaya, H.D.; Bajaj, D.; Narnoliya, L.; Das, S.; Kumar, V.; Gowda, C.L.; Sharma, S.; Tyagi, A.K.; Parida, S.K. Genome‐wide scans for delineation of candidate genes regulating seed‐protein content in chickpea. Front. Plant Sci., 2016, 7, 302-336.
[http://dx.doi.org/10.3389/fpls.2016.00302] [PMID: 27047499]
[39]
Romero Navarro, J.A.; Willcox, M.; Burgueño, J.; Romay, C.; Swarts, K.; Trachsel, S.; Preciado, E.; Terron, A.; Delgado, H.V.; Vidal, V.; Ortega, A.; Banda, A.E.; Montiel, N.O.G.; Ortiz-Monasterio, I.; Vicente, F.S.; Espinoza, A.G.; Atlin, G.; Wenzl, P.; Hearne, S.; Buckler, E.S. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet., 2017, 49(3), 476-480.
[http://dx.doi.org/10.1038/ng.3784] [PMID: 28166212]
[40]
Sakiroglu, M.; Brummer, E.C. Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS. Theor. Appl. Genet., 2017, 130(2), 261-268.
[http://dx.doi.org/10.1007/s00122-016-2782-3] [PMID: 27662844]
[41]
Zhang, G.; Tian, Y.; Zhang, J.; Shu, L.; Yang, S.; Wang, W.; Sheng, J.; Dong, Y.; Chen, W. Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge). Gigascience, 2015, 4(1), 62-66.
[http://dx.doi.org/10.1186/s13742-015-0104-3] [PMID: 26673920]
[42]
Xu, H.; Song, J.; Luo, H.; Zhang, Y.; Li, Q.; Zhu, Y.; Xu, J.; Li, Y.; Song, C.; Wang, B.; Sun, W.; Shen, G.; Zhang, X.; Qian, J.; Ji, A.; Xu, Z.; Luo, X.; He, L.; Li, C.; Sun, C.; Yan, H.; Cui, G.; Li, X.; Li, X.; Wei, J.; Liu, J.; Wang, Y.; Hayward, A.; Nelson, D.; Ning, Z.; Peters, R.J.; Qi, X.; Chen, S. Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol. Plant, 2016, 9(6), 949-952.
[http://dx.doi.org/10.1016/j.molp.2016.03.010] [PMID: 27018390]
[43]
Upadhyay, A.K.; Chacko, A.R.; Gandhimathi, A.; Ghosh, P.; Harini, K.; Joseph, A.P.; Joshi, A.G.; Karpe, S.D.; Kaushik, S.; Kuravadi, N.; Lingu, C.S.; Mahita, J.; Malarini, R.; Malhotra, S.; Malini, M.; Mathew, O.K.; Mutt, E.; Naika, M.; Nitish, S.; Pasha, S.N.; Raghavender, U.S.; Rajamani, A.; Shilpa, S.; Shingate, P.N.; Singh, H.R.; Sukhwal, A.; Sunitha, M.S.; Sumathi, M.; Ramaswamy, S.; Gowda, M.; Sowdhamini, R. Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biol., 2015, 15, 212-232.
[http://dx.doi.org/10.1186/s12870-015-0562-x] [PMID: 26315624]
[44]
Mochida, K.; Sakurai, T.; Seki, H.; Yoshida, T.; Takahagi, K.; Sawai, S.; Uchiyama, H.; Muranaka, T.; Saito, K. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J., 2017, 89(2), 181-194.
[http://dx.doi.org/10.1111/tpj.13385] [PMID: 27775193]
[45]
Fu, Y.; Li, L.; Hao, S.; Guan, R.; Lee, M.Y. Draft genome sequence of the tibetan medicinal herb, Draft genome sequence of the tibetan medicinal herb, Rhodiola crenulata. Gigascience, 2017, 6(6), 1-5.
[46]
Xu, J.; Chu, Y.; Liao, B.; Xiao, S.; Yin, Q.; Bai, R.; Su, H.; Dong, L.; Li, X.; Qian, J.; Zhang, J.; Zhang, Y.; Zhang, X.; Wu, M.; Zhang, J.; Li, G.; Zhang, L.; Chang, Z.; Zhang, Y.; Jia, Z.; Liu, Z.; Afreh, D.; Nahurira, R.; Zhang, L.; Cheng, R.; Zhu, Y.; Zhu, G.; Rao, W.; Zhou, C.; Qiao, L.; Huang, Z.; Cheng, Y.C.; Chen, S. Panax ginseng genome examination for ginsenoside biosynthesis. Gigascience, 2017, 6(11), 1-15.
[http://dx.doi.org/10.1093/gigascience/gix093] [PMID: 29048480]
[47]
Jayakodi, M.; Choi, B.S.; Lee, S.C.; Kim, N.H.; Park, J.Y.; Jang, W.; Lakshmanan, M.; Mohan, S.V.G.; Lee, D.Y.; Yang, T.J. Ginseng Genome Database: An open-access platform for genomics of Panax ginseng. BMC Plant Biol., 2018, 18(1), 62-69.
[http://dx.doi.org/10.1186/s12870-018-1282-9] [PMID: 29649979]
[48]
Giovannoni, J.J.; Wing, R.A.; Ganal, M.W.; Tanksley, S.D. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res., 1991, 19(23), 6553-6558.
[http://dx.doi.org/10.1093/nar/19.23.6553] [PMID: 1684420]
[49]
Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S.; Innan, H.; Cano, L.M.; Kamoun, S.; Terauchi, R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J., 2013, 74(1), 174-183.
[http://dx.doi.org/10.1111/tpj.12105] [PMID: 23289725]
[50]
Michelmore, R.W.; Paran, I.; Kesseli, R.V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA, 1991, 88(21), 9828-9832.
[http://dx.doi.org/10.1073/pnas.88.21.9828] [PMID: 1682921]
[51]
Ren, Y.; Li, Z.; He, Z.; Wu, L.; Bai, B.; Lan, C.; Wang, C.; Zhou, G.; Zhu, H.; Xia, X. QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor. Appl. Genet., 2012, 125(6), 1253-1262.
[http://dx.doi.org/10.1007/s00122-012-1910-y] [PMID: 22806327]
[52]
Chen, W.; Fan, C.; Qin, J.; Guo, Z.; Fu, T.; Zhou, Y. Genetic improvement of oleic and linolenic acid content through marker-assisted selection in Brassica napus seeds. Mol. Plant Breed., 2011, 9(2), 190-197.
[53]
Cui, G.H.; Feng, H.; Li, W.Y.; Wang, W.Y.; Huang, L.Q. Cloning and polymorphism analysis of SmERF in Salvia miltiorrhiza. Yao Xue Xue Bao, 2010, 45(9), 1188-1193.
[PMID: 21351578]
[54]
Ting, H.M.; Wang, B.; Rydén, A.M.R.; Woittiez, L.; van Herpen, T.; Verstappen, F.W.A.; Ruyter-Spira, C.; Beekwilder, J.; Bouwmeester, H.J.; van der Krol, A. The metabolite chemotype of Nicotiana benthamiana transiently expressing artemisinin biosynthetic pathway genes is a function of CYP71AV1 type and relative gene dosage. New Phytol., 2013, 199(2), 352-366.
[http://dx.doi.org/10.1111/nph.12274] [PMID: 23638869]
[55]
Hosseini, R.; Yazdani, N.; Garoosi, G. The presence of amorpha-4, 11-diene synthase, a key enzyme in artemisinin production in ten Artemisia species. Daru, 2011, 19(5), 332-337.
[PMID: 22615678]
[56]
Lv, Z.; Wang, S.; Zhang, F.; Chen, L.; Hao, X.; Pan, Q.; Fu, X.; Li, L.; Sun, X.; Tang, K. Overexpression of a novel NAC domain-containing transcription factor gene (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua. Plant Cell Physiol., 2016, 57(9), 1961-1971.
[http://dx.doi.org/10.1093/pcp/pcw118] [PMID: 27388340]
[57]
Guo, J.; Zhou, Y.J.; Hillwig, M.L.; Shen, Y.; Yang, L.; Wang, Y.; Zhang, X.; Liu, W.; Peters, R.J.; Chen, X.; Zhao, Z.K.; Huang, L. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc. Natl. Acad. Sci. USA, 2013, 110(29), 12108-12113.
[http://dx.doi.org/10.1073/pnas.1218061110] [PMID: 23812755]
[58]
Ma, Y.; Ma, X.H.; Meng, F.Y.; Zhan, Z.L.; Guo, J.; Huang, L.Q. RNA interference targeting CYP76AH1 in hairy roots of Salvia miltiorrhiza reveals its key role in the biosynthetic pathway of tanshinones. Biochem. Biophys. Res. Commun., 2016, 477(2), 155-160.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.036] [PMID: 27291148]
[59]
Zhou, Z.; Tan, H.; Li, Q.; Chen, J.; Gao, S.; Wang, Y.; Chen, W.; Zhang, L. CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry, 2018, 148, 63-70..
[http://dx.doi.org/10.1016/j.phytochem.2018.01.015] [PMID: 29421512]
[60]
Zhao, Z.; Guo, P.; Brand, E. The formation of daodi medicinal materials. J. Ethnopharmacol., 2012, 140(3), 476-481.
[http://dx.doi.org/10.1016/j.jep.2012.01.048] [PMID: 22342382]
[61]
Wang, H.; Hao, N.; Chen, L.; Li, G. Development of intron polymorphism markers in major latex-like protein gene for locality-level and cultivar identification of Salvia miltiorrhiza. Springerplus, 2016, 5(1), 1919-1925.
[http://dx.doi.org/10.1186/s40064-016-3611-5] [PMID: 27867826]
[62]
Kim, H.J.; Jung, J.; Kim, M.S.; Lee, J.M.; Choi, D.; Yeam, I. Molecular marker development and genetic diversity exploration by RNA-seq in Platycodon grandiflorum. Genome, 2015, 58(10), 441-451.
[http://dx.doi.org/10.1139/gen-2015-0017] [PMID: 26501479]
[63]
Chen, S.; Yao, H.; Han, J.; Liu, C.; Song, J.; Shi, L.; Zhu, Y.; Ma, X.; Gao, T.; Pang, X.; Luo, K.; Li, Y.; Li, X.; Jia, X.; Lin, Y.; Leon, C. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One, 2010, 5(1)e8613
[http://dx.doi.org/10.1371/journal.pone.0008613] [PMID: 20062805]
[64]
Sanitá Lima, M.; Woods, L.C.; Cartwright, M.W.; Smith, D.R. The (in)complete organelle genome: Exploring the use and nonuse of available technologies for characterizing mitochondrial and plastid chromosomes. Mol. Ecol. Resour., 2016, 16(6), 1279-1286.
[http://dx.doi.org/10.1111/1755-0998.12585] [PMID: 27482846]
[65]
Li, X.; Yang, Y.; Henry, R.J.; Rossetto, M.; Wang, Y.; Chen, S. Plant DNA barcoding: From gene to genome. Biol. Rev. Camb. Philos. Soc., 2015, 90(1), 157-166.
[http://dx.doi.org/10.1111/brv.12104] [PMID: 24666563]
[66]
Somaratne, Y.; Guan, D.L.; Wang, W.Q.; Zhao, L.; Xu, S.Q. Complete chloroplast genome sequence of Xanthium sibiricum provides useful DNA barcodes for future species identification and phylogeny. Plant Syst. Evol., 2019, 305, 949-960.
[http://dx.doi.org/10.1007/s00606-019-01614-1]
[67]
Luo, Y.; Sangha, J.S.; Wang, S.; Li, Z.; Yang, J.; Yin, Z. Marker-assisted breeding of Xa4, Xa21 and Xa27 in the restorer lines of hybrid rice for broad-spectrum and enhanced disease resistance to bacterial blight. Mol. Breed., 2012, 30, 1601-1610.
[http://dx.doi.org/10.1007/s11032-012-9742-7]
[68]
Wetzstein, H.Y.; Porter, J.A.; Janick, J.; Ferreira, J.F.S.; Mutui, T.M. Selection and clonal propagation of high artemisinin genotypes of Artemisia annua. Front. Plant Sci., 2018, 9, 358-377.
[http://dx.doi.org/10.3389/fpls.2018.00358] [PMID: 29636758]
[69]
Delabays, N.; Simonnet, X.; Gaudin, M. The genetics of artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars. Curr. Med. Chem., 2001, 8(15), 1795-1801.
[http://dx.doi.org/10.2174/0929867013371635] [PMID: 11772351]
[70]
Asghari, M.; Naghavi, M.R.; Hosseinzadeh, A.H.; Ranjbar, M.; Poorebrahim, M. Sequence characterized amplified region marker as a tool for selection of high-artemisinin containing species of Artemisia. Res. Pharm. Sci., 2015, 10(5), 453-459.
[PMID: 26752994]
[71]
Staginnus, C.; Zörntlein, S.; de Meijer, E. A PCR marker linked to a THCA synthase polymorphism is a reliable tool to discriminate potentially THC-rich plants of Cannabis sativa L. J. Forensic Sci., 2014, 59(4), 919-926.
[http://dx.doi.org/10.1111/1556-4029.12448] [PMID: 24579739]
[72]
Shen, Q.; Zhang, D.; Sun, W.; Zhang, Y.J.; Shang, Z.W.; Chen, S.L. Medicinal plant DNA marker assisted breeding (II) the assistant identification of SNPs assisted identification and breeding research of high yield Perilla frutescens new variety. Zhongguo Zhongyao Zazhi, 2017, 42(9), 1668-1672.
[PMID: 29082687]
[73]
Dong, L.L.; Chen, Z.J.; Wang, Y.; Wei, F.G.; Zhang, L.J.; Xu, J.; Wei, G.F.; Wang, R.; Yang, J.; Liu, W.L.; Li, X.W.; Yu, Y.Q.; Chen, S.L. DNA marker-assisted selection of medicinal plants (I). Breeding research of disease-resistant cultivars of Panax notoginseng. Zhongguo Zhongyao Zazhi, 2017, 42(1), 56-62.
[PMID: 28945025]
[74]
Williamson, C.E.; Zepp, R.G.; Lucas, R.M.; Madronich, S.; Austin, A.T.; Ballaré, C.L.; Norval, M.; Sulzberger, B.; Bais, A.F.; McKenzie, R.L.; Robinson, S.A.; Häder, D.P.; Paul, N.D.; Bornman, J.F. Solar ultraviolet radiation in a changing climate. Nat. Clim. Chang., 2014, 4(6), 434-441.
[http://dx.doi.org/10.1038/nclimate2225]
[75]
Vitasse, Y.; Signarbieux, C.; Fu, Y.H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl. Acad. Sci. USA, 2018, 115(5), 1004-1008.
[http://dx.doi.org/10.1073/pnas.1717342115] [PMID: 29279381]
[76]
Gairola, S.; Shariff, N.M.; Bhatt, A.; Kala, C.P. Influence of climate change on production of secondary chemicals in high altitude medicinal plants: Issues needs immediate attention. J. Med. Plants Res., 2010, 4(18), 1825-1829.
[77]
Peng, H.S.; Hao, J.D.; Huang, L.Q. Effect of climate change on genuine medicinal materials producing areas during last 2 000 years-Alisma orientale and Citrus aurtantium as examples. Zhongguo Zhongyao Zazhi, 2013, 38(13), 2218-2222.
[PMID: 24079258]
[78]
Xia, M.; Zhong, W.; Zhang, Z.; Qin, M. Coping strategies and effects of climate change on traditional Chinese medicine resources. Zhonghua Zhongyiyao Zazhi, 2019, 34(2), 677-680.
[79]
Ma, X.J.; Mo, C.M. Prospects of molecular breeding in medical plants. Zhongguo Zhongyao Zazhi, 2017, 42(11), 2021-2031.
[PMID: 28822142]
[80]
Yan, H.; Guo, C.; Shao, Y.; Ouyang, Z. Rapid detection of volatile oil in Mentha haplocalyx by near-infrared spectroscopy and chemometrics. Pharmacogn. Mag., 2017, 13(51), 439-445.
[http://dx.doi.org/10.4103/0973-1296.211026] [PMID: 28839369]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy