Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Targeting the Endocannabinoid System in Borderline Personality Disorder: Corticolimbic and Hypothalamic Perspectives

Author(s): Sari G. Ferber, Reut Hazani, Gal Shoval* and Aron Weller

Volume 19, Issue 3, 2021

Published on: 29 April, 2020

Page: [360 - 371] Pages: 12

DOI: 10.2174/1570159X18666200429234430

Price: $65

Abstract

Borderline Personality Disorder (BPD) is a chronic debilitating psychiatric disorder characterized mainly by emotional instability, chaotic interpersonal relationships, cognitive disturbance (e.g., dissociation and suicidal thoughts) and maladaptive behaviors. BPD has a high rate of comorbidity with other mental disorders and a high burden on society. In this review, we focused on two compromised brain regions in BPD - the hypothalamus and the corticolimbic system, emphasizing the involvement and potential contribution of the endocannabinoid system (ECS) to improvement in symptoms and coping. The hypothalamus-regulated endocrine axes (hypothalamic pituitary – gonadal, thyroid & adrenal) have been found to be dysregulated in BPD. There is also substantial evidence for limbic system structural and functional changes in BPD, especially in the amygdala and hippocampus, including cortical regions within the corticolimbic system. Extensive expression of CB1 and CB2 receptors of the ECS has been found in limbic regions and the hypothalamus. This opens new windows of opportunity for treatment with cannabinoids such as cannabidiol (CBD) as no other pharmacological treatment has shown long-lasting improvement in the BPD population to date. This review aims to show the potential role of the ECS in BPD patients through their most affected brain regions, the hypothalamus and the corticolimbic system. The literature reviewed does not allow for general indications of treatment with CBD in BPD. However, there is enough knowledge to indicate a treatment ratio of a high level of CBD to a low level of THC. A randomized controlled trial investigating the efficacy of cannabinoid based treatments in BPD is warranted.

Keywords: Borderline personality disorder, hypothalamus, corticolimbic system, endocannabinoid system, pharmacological treatment, cannabidiol.

Graphical Abstract

[1]
Coccaro, E.F.; Fanning, J.R.; Phan, K.L.; Lee, R. Serotonin and impulsive aggression. CNS Spectr., 2015, 20(3), 295-302.
[http://dx.doi.org/10.1017/S1092852915000310] [PMID: 25997605]
[2]
Krause-Utz, A.; Elzinga, B.M.; Oei, N.Y.L.; Paret, C.; Niedtfeld, I.; Spinhoven, P.; Bohus, M.; Schmahl, C. Amygdala and dorsal anterior cingulate connectivity during an emotional working memory task in borderline personality disorder patients with interpersonal trauma history. Front. Hum. Neurosci., 2014, 8(October), 848.
[http://dx.doi.org/10.3389/fnhum.2014.00848] [PMID: 25389397]
[3]
Krause-Utz, A.; Frost, R.; Winter, D.; Elzinga, B.M. Dissociation and alterations in brain function and structure: implications for borderline personality disorder. Curr. Psychiatry Rep., 2017, 19(1), 6.
[http://dx.doi.org/10.1007/s11920-017-0757-y] [PMID: 28138924]
[4]
Leichsenring, F.; Leibing, E.; Kruse, J.; New, A.; Lancet, F.L-T. U. Borderline personality disorder‏.‏, 2011 Lancet 2011, 377
[http://dx.doi.org/10.1016/S0140-6736(10)61422-5]
[5]
Marissen, M.A.E.; Arnold, N.; Franken, I.H.A. Anhedonia in borderline personality disorder and its relation to symptoms of impulsivity. Psychopathology, 2012, 45(3), 179-184.
[http://dx.doi.org/10.1159/000330893] [PMID: 22441143]
[6]
Skodol, A.E.; Gunderson, J.G.; Pfohl, B.; Widiger, T.A.; Livesley, W.J.; Siever, L.J. The borderline diagnosis i: psychopathology, comorbidity, and personaltity structure. Biol. Psychiatry, 2002, 51(12), 936-950.
[http://dx.doi.org/10.1016/S0006-3223(02)01324-0]
[7]
Zimmerman, D.J.; Choi-Kain, L.W. The hypothalamic-pituitary-adrenal axis in borderline personality disorder: a review. Harv. Rev. Psychiatry, 2009, 17(3), 167-183.
[http://dx.doi.org/10.1080/10673220902996734] [PMID: 19499417]
[8]
Cirasola, A.; Hillman, S.; Fonagy, P.; Chiesa, M. Mapping the road from childhood adversity to personality disorder: The role of unresolved states of mind. Pers. Ment. Health, 2017, 11(2), 77-90.
[http://dx.doi.org/10.1002/pmh.1365] [PMID: 28101905]
[9]
Infurna, M.R.; Brunner, R.; Holz, B.; Parzer, P.; Giannone, F.; Reichl, C.; Fischer, G.; Resch, F.; Kaess, M. The specific role of childhood abuse, parental bonding, and family functioning in female adolescents with borderline personality disorder. J. Pers. Disord., 2016, 30(2), 177-192.
[http://dx.doi.org/10.1521/pedi_2015_29_186] [PMID: 25905734]
[10]
Martín-Blanco, A.; Ferrer, M.; Soler, J.; Salazar, J.; Vega, D.; Andión, O.; Sanchez-Mora, C.; Arranz, M.J.; Ribases, M.; Feliu-Soler, A.; Pérez, V.; Pascual, J.C. Association between methylation of the glucocorticoid receptor gene, childhood maltreatment, and clinical severity in borderline personality disorder. J. Psychiatr. Res., 2014, 57, 34-40.
[http://dx.doi.org/10.1016/j.jpsychires.2014.06.011] [PMID: 25048180]
[11]
Winsper, C.; Wolke, D.; Lereya, T. Prospective associations between prenatal adversities and borderline personality disorder at 11-12 years. Psychol. Med., 2015, 45(5), 1025-1037.
[http://dx.doi.org/10.1017/S0033291714002128] [PMID: 25171495]
[12]
Duque-Alarcón, X.; Alcalá-Lozano, R.; González-Olvera, J.J.; Garza-Villarreal, E.A.; Pellicer, F. Effects of Childhood maltreatment on social cognition and brain functional connectivity in borderline personality disorder patients. Front. Psychiatry, 2019, 10, 156.
[http://dx.doi.org/10.3389/fpsyt.2019.00156] [PMID: 30988667]
[13]
Turniansky, H.; Ben-Dor, D.; Krivoy, A.; Weizman, A.; Shoval, G. A history of prolonged childhood sexual abuse is associated with more severe clinical presentation of borderline personality disorder in adolescent female inpatients - A naturalistic study. Child Abuse Negl., 2019, 98104222
[http://dx.doi.org/10.1016/j.chiabu.2019.104222] [PMID: 31639585]
[14]
Torgersen, S.; Kringlen, E.; Cramer, V. The prevalence of personality disorders in a community sample. Arch. Gen. Psychiatry, 2001, 58(6), 590-596.
[http://dx.doi.org/10.1001/archpsyc.58.6.590] [PMID: 11386989]
[15]
Ten Have, M.; Verheul, R.; Kaasenbrood, A.; van Dorsselaer, S.; Tuithof, M.; Kleinjan, M.; de Graaf, R. Prevalence rates of borderline personality disorder symptoms: a study based on the Netherlands Mental Health Survey and Incidence Study-2. BMC Psychiatry, 2016, 16(1), 249.
[http://dx.doi.org/10.1186/s12888-016-0939-x] [PMID: 27435813]
[16]
Grant, B.F.; Chou, S.P.; Goldstein, R.B.; Huang, B.; Stinson, F.S.; Saha, T.D.; Smith, S.M.; Dawson, D.A.; Pulay, A.J.; Pickering, R.P.; Ruan, W.J. Prevalence, correlates, disability, and comorbidity of DSM-IV borderline personality disorder: results from the Wave 2 National epidemiologic survey on alcohol and related conditions. J. Clin. Psychiatry, 2008, 69(4), 533-545.
[http://dx.doi.org/10.4088/JCP.v69n0404] [PMID: 18426259]
[17]
Johnson, D.M.; Shea, M.T.; Yen, S.; Battle, C.L.; Zlotnick, C.; Sanislow, C.A.; Grilo, C.M.; Skodol, A.E.; Bender, D.S.; McGlashan, T.H.; Gunderson, J.G.; Zanarini, M.C. Gender differences in borderline personality disorder: findings from the collaborative longitudinal personality disorders study. Compr. Psychiatry, 2003, 44(4), 284-292.
[http://dx.doi.org/10.1016/S0010-440X(03)00090-7] [PMID: 12923706]
[18]
Stoffers, J.; Völlm, B.A.; Rücker, G.; Timmer, A.; Huband, N.; Lieb, K. Pharmacological interventions for borderline personality disorder. Cochrane Database Syst. Rev., 2010, (6)CD005653
[http://dx.doi.org/10.1002/14651858.cd005653.pub2] [PMID: 20556762]
[19]
Rinne, T.; de Kloet, E.R.; Wouters, L.; Goekoop, J.G.; DeRijk, R.H.; van den Brink, W. Hyperresponsiveness of hypothalamic-pituitary-adrenal axis to combined dexamethasone/corticotropin-releasing hormone challenge in female borderline personality disorder subjects with a history of sustained childhood abuse. Biol. Psychiatry, 2002, 52(11), 1102-1112.
[http://dx.doi.org/10.1016/S0006-3223(02)01395-1] [PMID: 12460693]
[20]
Saunders, E.F.H.; Silk, K.R. Personality trait dimensions and the pharmacological treatment of borderline personality disorder. J. Clin. Psychopharmacol., 2009, 29(5), 461-467.
[http://dx.doi.org/10.1097/JCP.0b013e3181b2b9f3] [PMID: 19745646]
[21]
Bridler, R.; Häberle, A.; Müller, S.T.; Cattapan, K.; Grohmann, R.; Toto, S.; Kasper, S.; Greil, W. Psychopharmacological treatment of 2195 in-patients with borderline personality disorder: A comparison with other psychiatric disorders. Eur. Neuropsychopharmacol., 2015, 25(6), 763-772.
[http://dx.doi.org/10.1016/j.euroneuro.2015.03.017] [PMID: 25907249]
[22]
Castañeda, C.D.C.; Langlois, V.S.; Fernandino, J.I. Crossover of the hypothalamic pituitary-adrenal/interrenal, -thyroid, and -gonadal axes in testicular development. Front. Endocrinol. (Lausanne), 2014, 5, 139.
[http://dx.doi.org/10.3389/fendo.2014.00139] [PMID: 25221542]
[23]
Flood, D.E.K.; Fernandino, J.I.; Langlois, V.S. Thyroid hormones in male reproductive development: evidence for direct crosstalk between the androgen and thyroid hormone axes. Gen. Comp. Endocrinol., 2013, 192, 2-14.
[http://dx.doi.org/10.1016/j.ygcen.2013.02.038] [PMID: 23524004]
[24]
Brüggemann, M.; Licht, O.; Fetter, É.; Teigeler, M.; Schäfers, C.; Eilebrecht, E. Knotting nets: Molecular junctions of interconnecting endocrine axes identified by application of the adverse outcome pathway concept. Environ. Toxicol. Chem., 2018, 37(2), 318-328.
[http://dx.doi.org/10.1002/etc.3995] [PMID: 28984380]
[25]
Cotrufo, P.; Monteleone, P.; d’Istria, M.; Fuschino, A.; Serino, I.; Maj, M. Aggressive behavioral characteristics and endogenous hormones in women with Bulimia nervosa. Neuropsychobiology, 2000, 42(2), 58-61.
[http://dx.doi.org/10.1159/000026673] [PMID: 10940759]
[26]
Rausch, J.; Gäbel, A.; Nagy, K.; Kleindienst, N.; Herpertz, S.C.; Bertsch, K. Increased testosterone levels and cortisol awakening responses in patients with borderline personality disorder: gender and trait aggressiveness matter. Psychoneuroendocrinology, 2015, 55, 116-127.
[http://dx.doi.org/10.1016/j.psyneuen.2015.02.002] [PMID: 25796037]
[27]
Dettenborn, L.; Kirschbaum, C.; Gao, W.; Spitzer, C.; Roepke, S.; Otte, C.; Wingenfeld, K. Increased hair testosterone but unaltered hair cortisol in female patients with borderline personality disorder. Psychoneuroendocrinology, 2016, 71, 176-179.
[http://dx.doi.org/10.1016/j.psyneuen.2016.05.026] [PMID: 27290653]
[28]
Eisenlohr-Moul, T.A.; DeWall, C.N.; Girdler, S.S.; Segerstrom, S.C. Ovarian hormones and borderline personality disorder features: Preliminary evidence for interactive effects of estradiol and progesterone. Biol. Psychol., 2015, 109, 37-52.
[http://dx.doi.org/10.1016/j.biopsycho.2015.03.016] [PMID: 25837710]
[29]
Tan, R.Y.; Grigg, J.; Kulkarni, J. Borderline personality disorder and polycystic ovary syndrome: A review of the literature. Aust. N. Z. J. Psychiatry, 2018, 52(2), 117-128.
[http://dx.doi.org/10.1177/0004867417730650] [PMID: 28891300]
[30]
Goldstein-Ferber, S.; Granot, M. The association between somatization and perceived ability: roles in dysmenorrhea among Israeli Arab adolescents. Psychosom. Med., 2006, 68(1), 136-142.
[http://dx.doi.org/10.1097/01.psy.0000197644.95292.00] [PMID: 16449424]
[31]
Kavoussi, R.J.; Coccaro, E.F.; Klar, H.; Lesser, J.; Siever, L.J. The TRH-stimulation test in DSM-III personality disorder. Biol. Psychiatry, 1993, 34(4), 234-239.
[http://dx.doi.org/10.1016/0006-3223(93)90077-Q] [PMID: 8399820]
[32]
De la Fuente, J.M.; Mendlewicz, J. TRH stimulation and dexamethasone suppression in borderline personality disorder. Biol. Psychiatry, 1996, 40(5), 412-418.
[http://dx.doi.org/10.1016/0006-3223(95)00394-0] [PMID: 8874844]
[33]
De la Fuente, J.M.; Bobes, J.; Vizuete, C.; Mendlewicz, J. Biological nature of depressive symptoms in borderline personality disorder: endocrine comparison to recurrent brief and major depression. J. Psychiatr. Res., 2002, 36(3), 137-145.
[http://dx.doi.org/10.1016/S0022-3956(01)00056-5] [PMID: 11886691]
[34]
Kioukia-Fougia, N.; Antoniou, K.; Bekris, S.; Liapi, C.; Christofidis, I.; Papadopoulou-Daifoti, Z. The effects of stress exposure on the hypothalamic-pituitary-adrenal axis, thymus, thyroid hormones and glucose levels. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2002, 26(5), 823-830.
[http://dx.doi.org/10.1016/S0278-5846(01)00297-4] [PMID: 12369253]
[35]
Cattane, N.; Rossi, R.; Lanfredi, M.; Cattaneo, A. Borderline personality disorder and childhood trauma: exploring the affected biological systems and mechanisms. BMC Psychiatry, 2017, 17(1), 221.
[http://dx.doi.org/10.1186/s12888-017-1383-2] [PMID: 28619017]
[36]
Sinai, C.; Hirvikoski, T.; Nordström, A.L.; Nordström, P.; Nilsonne, A.; Wilczek, A.; Åsberg, M.; Jokinen, J. Hypothalamic pituitary thyroid axis and exposure to interpersonal violence in childhood among women with borderline personality disorder. Eur. J. Psychotraumatol., 2014, 5(Suppl.)
[http://dx.doi.org/10.3402/ejpt.v5.23911] [PMID: 24959326]
[37]
Sinai, C.; Hirvikoski, T.; Nordström, A.L.; Nordström, P.; Nilsonne, Å.; Wilczek, A.; Åsberg, M.; Jokinen, J. Thyroid hormones and adult interpersonal violence among women with borderline personality disorder. Psychiatry Res., 2015, 227(2-3), 253-257.
[http://dx.doi.org/10.1016/j.psychres.2015.03.025] [PMID: 25858801]
[38]
Raymond, C.; Marin, M.F.; Majeur, D.; Lupien, S. Early child adversity and psychopathology in adulthood: HPA axis and cognitive dysregulations as potential mechanisms. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 85, 152-160.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.015] [PMID: 28751271]
[39]
Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci., 2009, 10(6), 434-445.
[http://dx.doi.org/10.1038/nrn2639] [PMID: 19401723]
[40]
Ball, J.S.; Links, P.S. Borderline personality disorder and childhood trauma: evidence for a causal relationship. Curr. Psychiatry Rep., 2009, 11(1), 63-68.
[http://dx.doi.org/10.1007/s11920-009-0010-4] [PMID: 19187711]
[41]
Drews, E.; Fertuck, E.A.; Koenig, J.; Kaess, M.; Arntz, A. Hypothalamic-pituitary-adrenal axis functioning in borderline personality disorder: A meta-analysis. Neurosci. Biobehav. Rev., 2019, 96, 316-334.
[http://dx.doi.org/10.1016/j.neubiorev.2018.11.008] [PMID: 30500331]
[42]
Wingenfeld, K.; Wolf, O.T. Effects of cortisol on cognition in major depressive disorder, posttraumatic stress disorder and borderline personality disorder - 2014 Curt Richter Award Winner. Psychoneuroendocrinology, 2015, 51, 282-295.
[http://dx.doi.org/10.1016/j.psyneuen.2014.10.009] [PMID: 25462901]
[43]
Siever, L.J.; Davis, K.L. A psychobiological perspective on the personality disorders. Am. J. Psychiatry, 1991, 148(12), 1647-1658.
[http://dx.doi.org/10.1176/ajp.148.12.1647] [PMID: 1957926]
[44]
Paris, J.; Zweig-Frank, H.; Kin, N.M.; Schwartz, G.; Steiger, H.; Nair, N.P.V. Neurobiological correlates of diagnosis and underlying traits in patients with borderline personality disorder compared with normal controls. Psychiatry Res., 2004, 121(3), 239-252.
[http://dx.doi.org/10.1016/S0165-1781(03)00237-3] [PMID: 14675743]
[45]
Aleknaviciute, J.; Tulen, J.H.M.; Kamperman, A.M.; de Rijke, Y.B.; Kooiman, C.G.; Kushner, S.A. Borderline and cluster C personality disorders manifest distinct physiological responses to psychosocial stress. Psychoneuroendocrinology, 2016, 72, 131-138.
[http://dx.doi.org/10.1016/j.psyneuen.2016.06.010] [PMID: 27413994]
[46]
Kaess, M.; Whittle, S.; Simmons, J.G.; Jovev, M.; Allen, N.B.; Chanen, A.M. The interaction of childhood maltreatment, sex, and borderline personality features in the prediction of the cortisol awakening response in adolescents. Psychopathology, 2017, 50(3), 188-194.
[http://dx.doi.org/10.1159/000456549] [PMID: 28285316]
[47]
Nater, U.M.; Bohus, M.; Abbruzzese, E.; Ditzen, B.; Gaab, J.; Kleindienst, N.; Ebner-Priemer, U.; Mauchnik, J.; Ehlert, U. Increased psychological and attenuated cortisol and alpha-amylase responses to acute psychosocial stress in female patients with borderline personality disorder. Psychoneuroendocrinology, 2010, 35(10), 1565-1572.
[http://dx.doi.org/10.1016/j.psyneuen.2010.06.002] [PMID: 20630661]
[48]
Haller, J. The neurobiology of abnormal manifestations of aggression--a review of hypothalamic mechanisms in cats, rodents, and humans. Brain Res. Bull., 2013, 93, 97-109.
[http://dx.doi.org/10.1016/j.brainresbull.2012.10.003] [PMID: 23085544]
[49]
Conklin, C.Z.; Bradley, R.; Westen, D. Affect regulation in borderline personality disorder. J. Nerv. Ment. Dis., 2006, 194(2), 69-77.
[http://dx.doi.org/10.1097/01.nmd.0000198138.41709.4f] [PMID: 16477183]
[50]
Gratz, K.L.; Rosenthal, M.Z.; Tull, M.T.; Lejuez, C.W.; Gunderson, J.G. An experimental investigation of emotion dysregulation in borderline personality disorder. J. Abnorm. Psychol., 2006, 115(4), 850-855.
[http://dx.doi.org/10.1037/0021-843X.115.4.850] [PMID: 17100543]
[51]
Inoue, A.; Oshita, H.; Maruyama, Y.; Tanaka, Y.; Ishitobi, Y.; Kawano, A.; Ikeda, R.; Ando, T.; Aizawa, S.; Masuda, K.; Higuma, H.; Kanehisa, M.; Ninomiya, T.; Akiyoshi, J. Gender determines cortisol and alpha-amylase responses to acute physical and psychosocial stress in patients with borderline personality disorder. Psychiatry Res., 2015, 228(1), 46-52.
[http://dx.doi.org/10.1016/j.psychres.2015.04.008] [PMID: 25979467]
[52]
Thomas, N.; Gurvich, C.; Hudaib, A.R.; Gavrilidis, E.; Kulkarni, J. Systematic review and meta-analysis of basal cortisol levels in Borderline Personality Disorder compared to non-psychiatric controls. Psychoneuroendocrinology, 2019, 102, 149-157.
[http://dx.doi.org/10.1016/j.psyneuen.2018.12.009] [PMID: 30557762]
[53]
Coccaro, E.F.; Sripada, C.S.; Yanowitch, R.N.; Luan Phan, K. Corticolimbic function in impulsive aggressive behavior. Psiquiatr. Biol., 2012, 19(2), 46-53.
[http://dx.doi.org/10.1016/j.psiq.2012.06.001]
[54]
Paret, C.; Kluetsch, R.; Zaehringer, J.; Ruf, M.; Demirakca, T.; Bohus, M.; Ende, G.; Schmahl, C. Alterations of amygdala-prefrontal connectivity with real-time fMRI neurofeedback in BPD patients. Soc. Cogn. Affect. Neurosci., 2016, 11(6), 952-960.
[http://dx.doi.org/10.1093/scan/nsw016] [PMID: 26833918]
[55]
Krause-Utz, A.; Elzinga, B. Current understanding of the neural mechanisms of dissociation in borderline Personality Disorder. Curr. Behav. Neurosci. Rep., 2018, 5(1), 113-123.
[http://dx.doi.org/10.1007/s40473-018-0146-9] [PMID: 29577011]
[56]
Buchheim, A.; Erk, S.; George, C.; Kächele, H.; Kircher, T.; Martius, P.; Pokorny, D.; Ruchsow, M.; Spitzer, M.; Walter, H. Neural correlates of attachment trauma in borderline personality disorder: a functional magnetic resonance imaging study. Psychiatry Res., 2008, 163(3), 223-235.
[http://dx.doi.org/10.1016/j.pscychresns.2007.07.001] [PMID: 18635342]
[57]
Buchheim, A.; Erk, S.; George, C.; Kächele, H.; Martius, P.; Pokorny, D.; Spitzer, M.; Walter, H. Neural Response during the activation of the attachment system in patients with borderline personality disorder: An fMRI study. Front. Hum. Neurosci., 2016, 10, 389.
[http://dx.doi.org/10.3389/fnhum.2016.00389] [PMID: 27531977]
[58]
Minzenberg, M.J.; Fan, J.; New, A.S.; Tang, C.Y.; Siever, L.J. Frontolimbic structural changes in borderline personality disorder. J. Psychiatr. Res., 2008, 42(9), 727-733.
[http://dx.doi.org/10.1016/j.jpsychires.2007.07.015] [PMID: 17825840]
[59]
Herpertz, S.C.; Dietrich, T.M.; Wenning, B.; Krings, T.; Erberich, S.G.; Willmes, K.; Thron, A.; Sass, H. Evidence of abnormal amygdala functioning in borderline personality disorder: a functional MRI study. Biol. Psychiatry, 2001, 50(4), 292-298.
[http://dx.doi.org/10.1016/S0006-3223(01)01075-7] [PMID: 11522264]
[60]
Koenigsberg, H.W.; Denny, B.T.; Fan, J.; Liu, X.; Guerreri, S.; Mayson, S.J.; Rimsky, L.; New, A.S.; Goodman, M.; Siever, L.J. The neural correlates of anomalous habituation to negative emotional pictures in borderline and avoidant personality disorder patients. Am. J. Psychiatry, 2014, 171(1), 82-90.
[http://dx.doi.org/10.1176/appi.ajp.2013.13070852] [PMID: 24275960]
[61]
Koenigsberg, H.W.; Siever, L.J.; Lee, H.; Pizzarello, S.; New, A.S.; Goodman, M.; Cheng, H.; Flory, J.; Prohovnik, I. Neural correlates of emotion processing in borderline personality disorder. Psychiatry Res., 2009, 172(3), 192-199.
[http://dx.doi.org/10.1016/j.pscychresns.2008.07.010] [PMID: 19394205]
[62]
Buchheim, A.; Roth, G.; Schiepek, G.; Pogarell, O.; Karch, S. Neurobiology of Borderline Personality Disorder (BPD) and Antisocial Personality Disorder (APD). Schweiz. Arch. Neurol. Psychiatr., 2013, 164(4), 115-122.. https://psycnet.apa.org/doi/10.4414/sanp.2013.00156
[http://dx.doi.org/10.4414/sanp.2013.00156]
[63]
Krause-Utz, A.; Winter, D.; Niedtfeld, I.; Schmahl, C. The latest neuroimaging findings in borderline personality disorder. Curr. Psychiatry Rep., 2014, 16(3), 438.
[http://dx.doi.org/10.1007/s11920-014-0438-z] [PMID: 24492919]
[64]
McLott, J.; Jurecic, J.; Hemphill, L.; Dunn, K.S. Development of an amygdalocentric neurocircuitry-reactive aggression theoretical model of emergence delirium in posttraumatic stress disorder: an integrative literature review. AANA J., 2013, 81(5), 379-384.https://search.proquest.com/docview/1503497698?accountid=14483
[PMID: 24354074]
[65]
Raine, A. The neuromoral theory of antisocial, violent, and psychopathic behavior. Psychiatry Res., 2019, 277, 64-69.
[http://dx.doi.org/10.1016/j.psychres.2018.11.025] [PMID: 30473129]
[66]
Walker, S.E.; Papilloud, A.; Huzard, D.; Sandi, C. The link between aberrant hypothalamic-pituitary-adrenal axis activity during development and the emergence of aggression-Animal studies. Neurosci. Biobehav. Rev., 2018, 91, 138-152.
[http://dx.doi.org/10.1016/j.neubiorev.2016.10.008] [PMID: 27751733]
[67]
Bertsch, K.; Roelofs, K.; Roch, P.J.; Ma, B.; Hensel, S.; Herpertz, S.C.; Volman, I. Neural correlates of emotional action control in anger-prone women with borderline personality disorder. J. Psychiatry Neurosci., 2018, 43(3), 161-170.
[http://dx.doi.org/10.1503/jpn.170102] [PMID: 29688872]
[68]
Kimmel, C.L.; Alhassoon, O.M.; Wollman, S.C.; Stern, M.J.; Perez-Figueroa, A.; Hall, M.G.; Rompogren, J.; Radua, J. Age-related parieto-occipital and other gray matter changes in borderline personality disorder: A meta-analysis of cortical and subcortical structures. Psychiatry Res. Neuroimaging, 2016, 251, 15-25.
[http://dx.doi.org/10.1016/j.pscychresns.2016.04.005] [PMID: 27107250]
[69]
Rodrigues, E.; Wenzel, A.; Ribeiro, M.P.; Quarantini, L.C.; Miranda-Scippa, A.; de Sena, E.P.; de Oliveira, I.R. Hippocampal volume in borderline personality disorder with and without comorbid posttraumatic stress disorder: a meta-analysis. Eur. Psychiatry, 2011, 26(7), 452-456.
[http://dx.doi.org/10.1016/j.eurpsy.2010.07.005] [PMID: 20933369]
[70]
Donegan, N.H.; Sanislow, C.A.; Blumberg, H.P.; Fulbright, R.K.; Lacadie, C.; Skudlarski, P.; Gore, J.C.; Olson, I.R.; McGlashan, T.H.; Wexler, B.E. Amygdala hyperreactivity in borderline personality disorder: implications for emotional dysregulation. Biol. Psychiatry, 2003, 54(11), 1284-1293.
[http://dx.doi.org/10.1016/S0006-3223(03)00636-X] [PMID: 14643096]
[71]
Kuhlmann, A.; Bertsch, K.; Schmidinger, I.; Thomann, P.A.; Herpertz, S.C. Morphometric differences in central stress-regulating structures between women with and without borderline personality disorder. J. Psychiatry Neurosci., 2013, 38(2), 129-137.
[http://dx.doi.org/10.1503/jpn.120039] [PMID: 22909445]
[72]
Mauchnik, J.; Schmahl, C. The latest neuroimaging findings in borderline personality disorder. Curr. Psychiatry Rep., 2010, 12(1), 46-55.
[http://dx.doi.org/10.1007/s11920-009-0089-7] [PMID: 20425310]
[73]
Chye, Y.; Christensen, E.; Solowij, N.; Yücel, M. The endocannabinoid system and cannabidiol’s promise for the treatment of substance use disorder. Front. Psychiatry, 2019, 10, 63.
[http://dx.doi.org/10.3389/fpsyt.2019.00063] [PMID: 30837904]
[74]
Svízenská, I.; Dubový, P.; Sulcová, A. Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures--a short review. Pharmacol. Biochem. Behav., 2008, 90(4), 501-511.
[http://dx.doi.org/10.1016/j.pbb.2008.05.010] [PMID: 18584858]
[75]
Piomelli, D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci., 2003, 4(11), 873-884.
[http://dx.doi.org/10.1038/nrn1247] [PMID: 14595399]
[76]
Wilson, R. I.; Nicoll, R. A. Endocannabinoid signaling in the brain.Science (80-.), 2002, 296(5568), 678-682.,
[77]
Glass, M.; Dragunow, M.; Faull, R.L. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience, 1997, 77(2), 299-318.
[http://dx.doi.org/10.1016/S0306-4522(96)00428-9] [PMID: 9472392]
[78]
Herkenham, M. Cannabinoid receptor localization in brain: relationship to motor and reward systems. Ann. N. Y. Acad. Sci., 1992, 654, 19-32.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb25953.x] [PMID: 1385932]
[79]
Colino, L.; Herranz-Herrer, J.; Gil-Benito, E.; Ponte-Lopez, T.; Del Sol-Calderon, P.; Rodrigo-Yanguas, M.; Gil-Ligero, M.; Sánchez-López, A.J.; de Leon, J.; Blasco-Fontecilla, H. Cannabinoid receptors, mental pain and suicidal behavior: a systematic review. Curr. Psychiatry Rep., 2018, 20(3), 19.
[http://dx.doi.org/10.1007/s11920-018-0880-4] [PMID: 29546501]
[80]
Trautmann, S.M.; Sharkey, K.A. The endocannabinoid system and its role in regulating the intrinsic neural circuitry of the gastrointestinal tract. Int. Rev. Neurobiol., 2015, 125, 85-126.
[http://dx.doi.org/10.1016/bs.irn.2015.10.002] [PMID: 26638765]
[81]
Wright, K.; Rooney, N.; Feeney, M.; Tate, J.; Robertson, D.; Welham, M.; Ward, S. Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing. Gastroenterology, 2005, 129(2), 437-453.
[http://dx.doi.org/10.1016/j.gastro.2005.05.026] [PMID: 16083701]
[82]
Wright, K.L.; Duncan, M.; Sharkey, K.A. Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br. J. Pharmacol., 2008, 153(2), 263-270.
[http://dx.doi.org/10.1038/sj.bjp.0707486] [PMID: 17906675]
[83]
Van Sickle, M. D.; Duncan, M.; Kingsley, P. J.; Mouihate, A.; Urbani, P.; Mackie, K.; Stella, N.; Makriyannis, A.; Piomelli, D.; Davison, J. S.; Marnett, L. J.; Di Marzo, V.; Pittman, Q. J.; Patel, K. D.; Sharkey, K. A. Identification and functional characterization of brainstem cannabinoid CB2 receptors.Science (80-.)., 2005,310(5746), 329–332.,
[84]
Gong, J.P.; Onaivi, E.S.; Ishiguro, H.; Liu, Q.R.; Tagliaferro, P.A.; Brusco, A.; Uhl, G.R. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res., 2006, 1071(1), 10-23.
[http://dx.doi.org/10.1016/j.brainres.2005.11.035] [PMID: 16472786]
[85]
Dos Santos, R.G.; de Lima Osório, F.; Martin-Santos, R.; Zuardi, A.W.; Hallak, J.E.C.; Crippa, J.A.S. Modulation of the endocannabinoid and oxytocinergic systems as a potential treatment approach for social anxiety disorder. CNS Drugs, 2019, 33(10), 1031-1038.
[http://dx.doi.org/10.1007/s40263-019-00669-5] [PMID: 31617149]
[86]
Marco, E.M.; Echeverry-Alzate, V.; López-Moreno, J.A.; Giné, E.; Peñasco, S.; Viveros, M.P. Consequences of early life stress on the expression of endocannabinoid-related genes in the rat brain. Behav. Pharmacol., 2014, 25(5-6), 547-556.
[http://dx.doi.org/10.1097/FBP.0000000000000068] [PMID: 25083571]
[87]
Brusco, A.; Tagliaferro, P.A.; Saez, T.; Onaivi, E.S. Ultrastructural localization of neuronal brain CB2 cannabinoid receptors. Ann. N. Y. Acad. Sci., 2008, 1139, 450-457.
[http://dx.doi.org/10.1196/annals.1432.037]
[88]
Devane, W. A.; Hanuš, L.; Breuer, A.; Pertwee, R. G.; Stevenson, L. A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science (80-.), 1992, 258(5090), 1946–1949.,
[89]
Li, Y.; Kim, J. Deletion of CB2 cannabinoid receptors reduces synaptic transmission and long-term potentiation in the mouse hippocampus. Hippocampus, 2016, 26(3), 275-281.
[http://dx.doi.org/10.1002/hipo.22558] [PMID: 26663094]
[90]
Mechoulam, R.; Ben-Shabat, S.; Hanus, L.; Ligumsky, M.; Kaminski, N.E.; Schatz, A.R.; Gopher, A.; Almog, S.; Martin, B.R.; Compton, D.R.; Pertwee, R.G.; Griffin, G.; Bayewitch, M.; Barg, J.; Vogel, Z. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol., 1995, 50(1), 83-90.
[http://dx.doi.org/10.1016/0006-2952(95)00109-D] [PMID: 7605349]
[91]
Scarante, F.F.; Vila-Verde, C.; Detoni, V.L.; Ferreira-Junior, N.C.; Guimarães, F.S.; Campos, A.C. Cannabinoid modulation of the stressed hippocampus. Front. Mol. Neurosci., 2017, 10, 411.
[http://dx.doi.org/10.3389/fnmol.2017.00411] [PMID: 29311804]
[92]
Stempel, A.V.; Stumpf, A.; Zhang, H.Y.; Özdoğan, T.; Pannasch, U.; Theis, A.K.; Otte, D.M.; Wojtalla, A.; Rácz, I.; Ponomarenko, A.; Xi, Z.X.; Zimmer, A.; Schmitz, D. Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron, 2016, 90(4), 795-809.
[http://dx.doi.org/10.1016/j.neuron.2016.03.034] [PMID: 27133464]
[93]
Aguiar, D.C.; Moreira, F.A.; Terzian, A.L.; Fogaça, M.V.; Lisboa, S.F.; Wotjak, C.T.; Guimaraes, F.S. Modulation of defensive behavior by transient receptor potential vanilloid type-1 (TRPV1) channels. Neurosci. Biobehav. Rev., 2014, 46(Pt 3), 418-428.
[http://dx.doi.org/10.1016/j.neubiorev.2014.03.026] [PMID: 24726577]
[94]
Micale, V.; Drago, F. Endocannabinoid system, stress and HPA axis. Eur. J. Pharmacol., 2018, 834, 230-239.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.039] [PMID: 30036537]
[95]
Crippa, J.A.S.; Derenusson, G.N.; Ferrari, T.B.; Wichert-Ana, L.; Duran, F.L.S.; Martin-Santos, R.; Simões, M.V.; Bhattacharyya, S.; Fusar-Poli, P.; Atakan, Z.; Santos Filho, A.; Freitas-Ferrari, M.C.; McGuire, P.K.; Zuardi, A.W.; Busatto, G.F.; Hallak, J.E.C. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. J. Psychopharmacol. (Oxford), 2011, 25(1), 121-130.
[http://dx.doi.org/10.1177/0269881110379283] [PMID: 20829306]
[96]
Hen-Shoval, D.; Amar, S.; Shbiro, L.; Smoum, R.; Haj, C.G.; Mechoulam, R.; Zalsman, G.; Weller, A.; Shoval, G. Acute oral cannabidiolic acid methyl ester reduces depression-like behavior in two genetic animal models of depression. Behav. Brain Res., 2018, 351, 1-3.
[http://dx.doi.org/10.1016/j.bbr.2018.05.027] [PMID: 29860002]
[97]
Hill, M.N.; Ho, W.S.V.; Sinopoli, K.J.; Viau, V.; Hillard, C.J.; Gorzalka, B.B. Involvement of the endocannabinoid system in the ability of long-term tricyclic antidepressant treatment to suppress stress-induced activation of the hypothalamic-pituitary-adrenal axis. Neuropsychopharmacology, 2006, 31(12), 2591-2599.
[http://dx.doi.org/10.1038/sj.npp.1301092] [PMID: 16710317]
[98]
Shbiro, L.; Hen-Shoval, D.; Hazut, N.; Rapps, K.; Dar, S.; Zalsman, G.; Mechoulam, R.; Weller, A.; Shoval, G. Effects of cannabidiol in males and females in two different rat models of depression. Physiol. Behav., 2019, 201, 59-63.
[http://dx.doi.org/10.1016/j.physbeh.2018.12.019] [PMID: 30571957]
[99]
Shoval, G.; Shbiro, L.; Hershkovitz, L.; Hazut, N.; Zalsman, G.; Mechoulam, R.; Weller, A. Prohedonic effect of cannabidiol in a rat model of depression. Neuropsychobiology, 2016, 73(2), 123-129.
[http://dx.doi.org/10.1159/000443890] [PMID: 27010632]
[100]
Micale, V.; Tabiova, K.; Kucerova, J.; Drago, F. Role of the endocannabinoid system in depression: from preclinical to clinical evidence.In: Cannabinoid Modulation of Emotion, Memory, and Motivation; Springer New York, 2015, pp. 97-129;
[101]
Ferber, S.G.; Namdar, D.; Hen-Shoval, D.; Eger, G.; Koltai, H.; Shoval, G.; Shbiro, L.; Weller, A. The “Entourage Effect”: Terpenes coupled with cannabinoids for the treatment of mood disorders and anxiety disorders. Curr. Neuropharmacol., 2020, 18(2), 87-96.
[http://dx.doi.org/10.2174/1570159X17666190903103923] [PMID: 31481004]
[102]
Borges, G.; Bagge, C.L.; Orozco, R. A literature review and meta-analyses of cannabis use and suicidality. J. Affect. Disord., 2016, 195, 63-74.
[http://dx.doi.org/10.1016/j.jad.2016.02.007] [PMID: 26872332]
[103]
Shalit, N.; Shoval, G.; Shlosberg, D.; Feingold, D.; Lev-Ran, S. The association between cannabis use and suicidality among men and women: A population-based longitudinal study. J. Affect. Disord., 2016, 205, 216-224.
[http://dx.doi.org/10.1016/j.jad.2016.07.010] [PMID: 27449554]
[104]
Shoval, G.; Zalsman, G.; Apter, A.; Diller, R.; Sher, L.; Weizman, A. A 10-year retrospective study of inpatient adolescents with schizophrenia/schizoaffective disorder and substance use. Compr. Psychiatry, 2007, 48(1), 1-7.
[http://dx.doi.org/10.1016/j.comppsych.2006.05.002] [PMID: 17145274]
[105]
Trezza, V.; Vanderschuren, L.J.M.J. Divergent effects of anandamide transporter inhibitors with different target selectivity on social play behavior in adolescent rats. J. Pharmacol. Exp. Ther., 2009, 328(1), 343-350.
[http://dx.doi.org/10.1124/jpet.108.141069] [PMID: 18948500]
[106]
Vanderschuren, L.J.M.J.; Achterberg, E.J.M.; Trezza, V. The neurobiology of social play and its rewarding value in rats. Neurosci. Biobehav. Rev., 2016, 70, 86-105.
[http://dx.doi.org/10.1016/j.neubiorev.2016.07.025] [PMID: 27587003]
[107]
Manduca, A.; Lassalle, O.; Sepers, M.; Campolongo, P.; Cuomo, V.; Marsicano, G.; Kieffer, B.; Vanderschuren, L.J.M.J.; Trezza, V.; Manzoni, O.J.J. Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play. Front. Behav. Neurosci., 2016, 10(NOV), 211.
[http://dx.doi.org/10.3389/fnbeh.2016.00211] [PMID: 27899885]
[108]
Wingenfeld, K.; Dettenborn, L.; Kirschbaum, C.; Gao, W.; Otte, C.; Roepke, S. Reduced levels of the endocannabinoid arachidonylethanolamide (AEA) in hair in patients with borderline personality disorder - a pilot study. Stress, 2018, 21(4), 366-369.
[http://dx.doi.org/10.1080/10253890.2018.1451837] [PMID: 29546791]
[109]
Schaefer, C.; Enning, F.; Mueller, J.K.; Bumb, J.M.; Rohleder, C.; Odorfer, T.M.; Klosterkötter, J.; Hellmich, M.; Koethe, D.; Schmahl, C.; Bohus, M.; Leweke, F.M. Fatty acid ethanolamide levels are altered in borderline personality and complex posttraumatic stress disorders. Eur. Arch. Psychiatry Clin. Neurosci., 2014, 264(5), 459-463.
[http://dx.doi.org/10.1007/s00406-013-0470-8] [PMID: 24253425]
[110]
Hillard, C.J. Circulating endocannabinoids: from whence do they come and where are they going? Neuropsychopharmacology, 2018, 43(1), 155-172.
[http://dx.doi.org/10.1038/npp.2017.130] [PMID: 28653665]
[111]
Kolla, N.J.; Mishra, A. The endocannabinoid system, aggression, and the violence of synthetic cannabinoid use, borderline personality disorder, antisocial personality disorder, and other psychiatric disorders. Front. Behav. Neurosci., 2018, 12, 41.
[http://dx.doi.org/10.3389/fnbeh.2018.00041] [PMID: 29636670]
[112]
Dos Anjos-Garcia, T.; Ullah, F.; Falconi-Sobrinho, L.L.; Coimbra, N.C. CB1 cannabinoid receptor-mediated anandamide signalling reduces the defensive behaviour evoked through GABAA receptor blockade in the dorsomedial division of the ventromedial hypothalamus.Neuropharmacology, 2017, 113(Pt A), 156-166.,
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.003] [PMID: 27062913]
[113]
Crowe, M.S.; Nass, S.R.; Gabella, K.M.; Kinsey, S.G. The endocannabinoid system modulates stress, emotionality, and inflammation. Brain Behav. Immun., 2014, 42, 1-5.
[http://dx.doi.org/10.1016/j.bbi.2014.06.007] [PMID: 24953427]
[114]
Marco, E.M.; Rapino, C.; Caprioli, A.; Borsini, F.; Laviola, G.; Maccarrone, M.; Lodola, A. Potential therapeutic value of a novel faah inhibitor for the treatment of anxiety. PLoS One, 2015, 10(9)e0137034
[http://dx.doi.org/10.1371/journal.pone.0137034] [PMID: 26360704]
[115]
Pagotto, U.; Marsicano, G.; Cota, D.; Lutz, B.; Pasquali, R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr. Rev., 2006, 27(1), 73-100.
[http://dx.doi.org/10.1210/er.2005-0009] [PMID: 16306385]
[116]
Di, S.; Malcher-Lopes, R.; Halmos, K.C.; Tasker, J.G. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J. Neurosci., 2003, 23(12), 4850-4857.
[http://dx.doi.org/10.1523/JNEUROSCI.23-12-04850.2003] [PMID: 12832507]
[117]
Marsicano, G.; Lutz, B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci., 1999, 11(12), 4213-4225.
[http://dx.doi.org/10.1046/j.1460-9568.1999.00847.x] [PMID: 10594647]
[118]
Terzian, A.L.B.; Micale, V.; Wotjak, C.T. Cannabinoid receptor type 1 receptors on GABAergic vs. glutamatergic neurons differentially gate sex-dependent social interest in mice. Eur. J. Neurosci., 2014, 40(1), 2293-2298.
[http://dx.doi.org/10.1111/ejn.12561] [PMID: 24698342]
[119]
Terzian, A.L.; Drago, F.; Wotjak, C.T.; Micale, V. The dopamine and cannabinoid interaction in the modulation of emotions and cognition: assessing the role of cannabinoid cb1 receptor in neurons expressing dopamine D1 receptors. Front. Behav. Neurosci., 2011, 5, 49.
[http://dx.doi.org/10.3389/fnbeh.2011.00049] [PMID: 21887137]
[120]
Micale, V.; Stepan, J.; Jurik, A.; Pamplona, F.A.; Marsch, R.; Drago, F.; Eder, M.; Wotjak, C.T. Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J. Psychiatr. Res., 2017, 90, 46-59.
[http://dx.doi.org/10.1016/j.jpsychires.2017.02.002] [PMID: 28222356]
[121]
Walker, O.S.; Holloway, A.C.; Raha, S. The role of the endocannabinoid system in female reproductive tissues. J. Ovarian Res., 2019, 12(1), 3.
[http://dx.doi.org/10.1186/s13048-018-0478-9] [PMID: 30646937]
[122]
Gammon, C.M.; Freeman, G.M., Jr; Xie, W.; Petersen, S.L.; Wetsel, W.C. Regulation of gonadotropin-releasing hormone secretion by cannabinoids. Endocrinology, 2005, 146(10), 4491-4499.
[http://dx.doi.org/10.1210/en.2004-1672] [PMID: 16020480]
[123]
Scorticati, C.; Fernández-Solari, J.; De Laurentiis, A.; Mohn, C.; Prestifilippo, J.P.; Lasaga, M.; Seilicovich, A.; Billi, S.; Franchi, A.; McCann, S.M.; Rettori, V. The inhibitory effect of anandamide on luteinizing hormone-releasing hormone secretion is reversed by estrogen. Proc. Natl. Acad. Sci. USA, 2004, 101(32), 11891-11896.
[http://dx.doi.org/10.1073/pnas.0404366101] [PMID: 15280536]
[124]
Tyrey, L. delta-9-Tetrahydrocannabinol suppression of episodic luteinizing hormone secretion in the ovariectomized rat. Endocrinology, 1978, 102(6), 1808-1814.
[http://dx.doi.org/10.1210/endo-102-6-1808] [PMID: 369834]
[125]
Asch, R.H.; Smith, C.G.; Siler-Khodr, T.M.; Pauerstein, C.J. Effects of delta 9-tetrahydrocannabinol during the follicular phase of the rhesus monkey (Macaca mulatta). J. Clin. Endocrinol. Metab., 1981, 52(1), 50-55.
[http://dx.doi.org/10.1210/jcem-52-1-50] [PMID: 6256405]
[126]
Smith, C. G.; Almirez, R. G.; Berenberg, J.; Asch, R. H. Tolerance develops to the disruptive effects of δ9- tetrahydrocannabinol on primate menstrual cycle. Science (80-.)., 1983, 219(4591), 1435-5.,
[127]
Bergamaschi, M.M.; Queiroz, R.H.; Zuardi, A.W.; Crippa, J.A. Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr. Drug Saf., 2011, 6(4), 237-249.
[http://dx.doi.org/10.2174/157488611798280924] [PMID: 22129319]
[128]
Hillard, C.J.; Farber, N.E.; Hagen, T.C.; Bloom, A.S. The effects of delta 9-tetrahydrocannabinol on serum thyrotropin levels in the rat. Pharmacol. Biochem. Behav., 1984, 20(4), 547-550.
[http://dx.doi.org/10.1016/0091-3057(84)90303-4] [PMID: 6328543]
[129]
Lomax, P. The effect of marihuana on pituitary-thyroid activity in the rat. Agents Actions, 1970, 1(5), 252-257.
[http://dx.doi.org/10.1007/BF01968699] [PMID: 5520784]
[130]
Liberato Costa Da Veiga, M.A.; Fonseca Bloise, F. Henrique Costa-E-Sousa, R. Lopes Souza, L.; Aparecida, N.; Almeida, S.; Oliveira, K. J.; Cabanelas, Pazos-Moura, C. Acute effects of endocannabinoid anandamide and CB1 receptor antagonist, AM251 in the regulation of thyrotropin secretion. J. Endocrinol., 2008, 199, 235-242.
[http://dx.doi.org/10.1677/JOE-08-0380]
[131]
Brown, T.T.; Dobs, A.S. Endocrine effects of marijuana. J. Clin. Pharmacol., 2002, 42(S1), 90S-96S.
[http://dx.doi.org/10.1002/j.1552-4604.2002.tb06008.x] [PMID: 12412841]
[132]
Porcella, A.; Marchese, G.; Casu, M.A.; Rocchitta, A.; Lai, M.L.; Gessa, G.L.; Pani, L.; Sc, N. Evidence for functional CB1 cannabinoid receptor expressed in the rat thyroid. Eur. J. Endocrinol., 2002, 147(2), 255-261.
[http://dx.doi.org/10.1530/eje.0.1470255] [PMID: 12153749]
[133]
Brummelte, S.; Galea, L.A. Postpartum depression: Etiology, treatment and consequences for maternal care. Horm. Behav., 2016, 77, 153-166.
[http://dx.doi.org/10.1016/j.yhbeh.2015.08.008] [PMID: 26319224]
[134]
Ferrer, A.; Labad, J.; Salvat-Pujol, N.; Monreal, J.A.; Urretavizcaya, M.; Crespo, J.M. Hypothalamic-pituitary-adrenal axis-related genes and cognition in major mood disorders and schizophrenia: a systematic review. Prog. Neuro-Psychopharmacol. Biol. Psych, 2020, 101109929
[135]
Fischer, S.; Ehlert, U. Hypothalamic–Pituitary–Thyroid (HPT) axis functioning in anxiety disorders. a systematic review. Dep. Anxiety, 2018, 35(1), 98-110.
[136]
Fischer, S.; Ehlert, U.; Castro, R.A. Hormones of the hypothalamic-pituitary-gonadal (hpg) axis in male depressive disorders–a systematic review and meta-analysis. Front. Neuroendocrinol., 2019.100792
[137]
Min, W.; Liu, C.; Yang, Y.; Sun, X.; Zhang, B.; Xu, L.; Sun, X. Alterations in hypothalamic–pituitary–adrenal/thyroid (hpa/hpt) axes correlated with the clinical manifestations of depression. Prog. Neuro-Psychopharmacol. Biol. Psych, 2012, 39(1), 206-211.
[138]
Seidman, S.N. Estosterone deficiency and mood in aging Men: Pathogenic and therapeutic interactions. W. J. Biol. Psych., 2003, 4(1), 14-20.
[139]
Xie, X.; Liu, P.; Chen, T.; Wang, Y.; Liu, X. Influence of the hypothalamus–pituitary–gonadal axis reactivation and corresponding surging sex hormones on the amplitude of low-frequency oscillations in early pubertal girls: a resting state FMRI study. J. Affect. Disord., 2019, 256, 288-294.
[140]
Silveira, M.M.; Arnold, J.C.; Laviolette, S.R.; Hillard, C.J.; Celorrio, M.; Aymerich, M.S.; Adams, W.K. Seeing through the smoke: Human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks. Neurosci. Biobehav. Rev., 2017, 76(Pt B), 380-395..
[http://dx.doi.org/10.1016/j.neubiorev.2016.09.007] [PMID: 27639448]
[141]
Bahi, A.; Al Mansouri, S.; Al Memari, E.; Al Ameri, M.; Nurulain, S.M.; Ojha, S. β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol. Behav., 2014, 135, 119-124.
[http://dx.doi.org/10.1016/j.physbeh.2014.06.003] [PMID: 24930711]
[142]
Lee, T.T.Y.; Hill, M.N.; Lee, F.S. Developmental regulation of fear learning and anxiety behavior by endocannabinoids. Genes Brain Behav., 2016, 15(1), 108-124.
[http://dx.doi.org/10.1111/gbb.12253] [PMID: 26419643]
[143]
Goldstein, F.S.; Trezza, V.; Weller, A. Early life stress and development of the endocannabinoid system: A bidirectional process in programming future coping. Dev. Psychobiol.2019 Epub A Head of Print,
[http://dx.doi.org/10.1002/dev.21944] [PMID: 31849055]
[144]
McLaughlin, R.J.; Verlezza, S.; Gray, J.M.; Hill, M.N.; Walker, C.D. Inhibition of anandamide hydrolysis dampens the neuroendocrine response to stress in neonatal rats subjected to suboptimal rearing conditions. Stress, 2016, 19(1), 114-124.
[http://dx.doi.org/10.3109/10253890.2015.1117448] [PMID: 26552023]
[145]
Lee, T.T.Y.; Hill, M.N. Age of stress exposure modulates the immediate and sustained effects of repeated stress on corticolimbic cannabinoid CB1 receptor binding in male rats. Neuroscience, 2013, 249, 106-114.
[http://dx.doi.org/10.1016/j.neuroscience.2012.11.017] [PMID: 23200786]
[146]
Draycott, B.; Loureiro, M.; Ahmad, T.; Tan, H.; Zunder, J.; Laviolette, S.R. Cannabinoid transmission in the prefrontal cortex bi-phasically controls emotional memory formation via functional interactions with the ventral tegmental area. J. Neurosci., 2014, 34(39), 13096-13109.
[http://dx.doi.org/10.1523/JNEUROSCI.1297-14.2014] [PMID: 25253856]
[147]
Tan, H.; Lauzon, N.M.; Bishop, S.F.; Chi, N.; Bechard, M.; Laviolette, S.R. Cannabinoid transmission in the basolateral amygdala modulates fear memory formation via functional inputs to the prelimbic cortex. J. Neurosci., 2011, 31(14), 5300-5312.
[http://dx.doi.org/10.1523/JNEUROSCI.4718-10.2011] [PMID: 21471365]
[148]
Rubino, T.; Realini, N.; Castiglioni, C. Guidali, C.; Vigano´1, D.; Marras, E.; Petrosino, S.; Perletti, G.; Maccarrone, M.; Marzo, V. Di; Parolaro, D. Role in anxiety behavior of the endocannabinoid system in the prefrontal cortex. Cereb. Cortex, 2008, 18, 1292-1301.
[http://dx.doi.org/10.1093/cercor/bhm161]
[149]
Lisboa, S.F.; Borges, A.A.; Nejo, P.; Fassini, A.; Guimarães, F.S.; Resstel, L.B. Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: additional evidence. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2015, 59, 76-83.
[http://dx.doi.org/10.1016/j.pnpbp.2015.01.005] [PMID: 25595265]
[150]
Rey, A.A.; Purrio, M.; Viveros, M.P.; Lutz, B. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology, 2012, 37(12), 2624-2634.
[http://dx.doi.org/10.1038/npp.2012.123] [PMID: 22850737]
[151]
Corniquel, M.B.; Koenigsberg, H.W.; Likhtik, E. Toward an animal model of borderline personality disorder. Psychopharmacology (Berl.), 2019, 236(8), 2485-2500.
[http://dx.doi.org/10.1007/s00213-019-05289-x] [PMID: 31201478]
[152]
Kucerova, J.; Tabiova, K.; Drago, F.; Micale, V. Therapeutic potential of cannabinoids in schizophrenia. Recent Patents CNS Drug Discov., 2014, 9(1), 13-25.
[http://dx.doi.org/10.2174/1574889809666140307115532] [PMID: 24605939]
[153]
Stark, T.; Ruda-Kucerova, J.; Iannotti, F.A.; D’Addario, C.; Di Marco, R.; Pekarik, V.; Drazanova, E.; Piscitelli, F.; Bari, M.; Babinska, Z.; Giurdanella, G.; Di Bartolomeo, M.; Salomone, S.; Sulcova, A.; Maccarrone, M.; Wotjak, C.T.; Starcuk, Z., Jr; Drago, F.; Mechoulam, R.; Di Marzo, V.; Micale, V. Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia. Neuropharmacology, 2019, 146, 212-221.
[http://dx.doi.org/10.1016/j.neuropharm.2018.11.035] [PMID: 30496751]
[154]
Bhattacharyya, S.; Morrison, P.D.; Fusar-Poli, P.; Martin-Santos, R.; Borgwardt, S.; Winton-Brown, T.; Nosarti, C.; O’ Carroll, C.M.; Seal, M.; Allen, P.; Mehta, M.A.; Stone, J.M.; Tunstall, N.; Giampietro, V.; Kapur, S.; Murray, R.M.; Zuardi, A.W.; Crippa, J.A.; Atakan, Z.; McGuire, P.K. Opposite effects of δ-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology.Neuropsychopharmacology, 2010, 35(3), 764-774.,
[http://dx.doi.org/10.1038/npp.2009.184] [PMID: 19924114]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy