Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Autophagy Driven Extracellular Vesicles in the Leukaemic Microenvironment

Author(s): Rebecca H. Horton, Tom Wileman and Stuart A. Rushworth*

Volume 20, Issue 7, 2020

Page: [501 - 512] Pages: 12

DOI: 10.2174/1568009620666200428111051

Price: $65

Abstract

The leukaemias are a heterogeneous group of blood cancers, which together, caused 310,000 deaths in 2016. Despite significant research into their biology and therapeutics, leukaemia is predicted to account for an increased 470,000 deaths in 2040. Many subtypes remain without targeted therapy, and therefore the mainstay of treatment remains generic cytotoxic drugs with bone marrow transplant the sole definitive option. In this review, we will focus on cellular mechanisms which have the potential for therapeutic exploitation to specifically target and treat this devastating disease. We will bring together the disciplines of autophagy and extracellular vesicles, exploring how the dysregulation of these mechanisms can lead to changes in the leukaemic microenvironment and the subsequent propagation of disease. The dual effect of these mechanisms in the disease microenvironment is not limited to leukaemia; therefore, we briefly explore their role in autoimmunity, inflammation and degenerative disease.

Keywords: Leukaemia, autophagy, extracellular vesicles, therapeutic, tumour microenvironment, autoimmunity.

Graphical Abstract

[1]
Wang, Y.; Song, M.; Song, F. Neuronal autophagy and axon degeneration. Cell. Mol. Life Sci., 2018, 75(13), 2389-2406.
[http://dx.doi.org/10.1007/s00018-018-2812-1] [PMID: 29675785]
[2]
Uhlig, H.H.; Powrie, F. Translating immunology into therapeutic concepts for inflammatory bowel disease. Annu. Rev. Immunol., 2018, 36, 755-781.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053055] [PMID: 29677472]
[3]
Keller, C.W.; Lünemann, J.D. Noncanonical autophagy in dendritic cells triggers CNS autoimmunity. Autophagy, 2018, 14(3), 560-561.
[http://dx.doi.org/10.1080/15548627.2018.1427397] [PMID: 29368985]
[4]
Peeters, J.G.C.; de Graeff, N.; Lotz, M.; Albani, S.; de Roock, S.; van Loosdregt, J. Increased autophagy contributes to the inflammatory phenotype of juvenile idiopathic arthritis synovial fluid T cells. Rheumatology (Oxford), 2017, 56(10), 1694-1699.
[http://dx.doi.org/10.1093/rheumatology/kex227] [PMID: 28957547]
[5]
Heckmann, B.L.; Boada-Romero, E.; Cunha, L.D.; Magne, J.; Green, D.R. LC3-Associated phagocytosis and inflammation. J. Mol. Biol., 2017, 429(23), 3561-3576.
[http://dx.doi.org/10.1016/j.jmb.2017.08.012] [PMID: 28847720]
[6]
Aveic, S.; Pantile, M.; Polo, P.; Sidarovich, V.; De Mariano, M.; Quattrone, A.; Longo, L.; Tonini, G.P. Autophagy inhibition improves the cytotoxic effects of receptor tyrosine kinase inhibitors. Cancer Cell Int., 2018, 18, 63.
[http://dx.doi.org/10.1186/s12935-018-0557-4] [PMID: 29713246]
[7]
Lin, P.; He, R.Q.; Dang, Y.W.; Wen, D.Y.; Ma, J.; He, Y.; Chen, G.; Yang, H. An autophagy-related gene expression signature for survival prediction in multiple cohorts of hepatocellular carcinoma patients. Oncotarget, 2018, 9(25), 17368-17395.
[http://dx.doi.org/10.18632/oncotarget.24089] [PMID: 29707114]
[8]
Chude, C.I.; Amaravadi, R.K. targeting autophagy in cancer: Update on clinical trials and novel inhibitors. Int. J. Mol. Sci., 2017, 18(6) E1279
[http://dx.doi.org/10.3390/ijms18061279] [PMID: 28621712]
[9]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[10]
Zeng, X.J.; Li, P.; Ning, Y.L.; Zhao, Y.; Peng, Y.; Yang, N.; Zhao, Z.A.; Chen, J.F.; Zhou, Y.G. Impaired autophagic flux is associated with the severity of trauma and the role of A2AR in brain cells after traumatic brain injury. Cell Death Dis., 2018, 9(2), 252.
[http://dx.doi.org/10.1038/s41419-018-0316-4] [PMID: 29449536]
[11]
Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer, 2017, 17(9), 528-542.
[http://dx.doi.org/10.1038/nrc.2017.53] [PMID: 28751651]
[12]
Onorati, A.V.; Dyczynski, M.; Ojha, R.; Amaravadi, R.K. Targeting autophagy in cancer. Cancer, 2018, 124(16), 3307-3318.
[http://dx.doi.org/10.1002/cncr.31335] [PMID: 29671878]
[13]
Mancias, J.D.; Kimmelman, A.C. Targeting autophagy addiction in cancer. Oncotarget, 2011, 2(12), 1302-1306.
[http://dx.doi.org/10.18632/oncotarget.384] [PMID: 22185891]
[14]
Reina-Campos, M.; Shelton, P.M.; Diaz-Meco, M.T.; Moscat, J. Metabolic reprogramming of the tumor microenvironment by p62 and its partners. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(1), 88-95.
[http://dx.doi.org/10.1016/j.bbcan.2018.04.010] [PMID: 29702207]
[15]
Rybstein, M.D.; Bravo-San Pedro, J.M.; Kroemer, G.; Galluzzi, L. The autophagic network and cancer. Nat. Cell Biol., 2018, 20(3), 243-251.
[http://dx.doi.org/10.1038/s41556-018-0042-2] [PMID: 29476153]
[16]
Mowers, E.E.; Sharifi, M.N.; Macleod, K.F. Functions of autophagy in the tumor microenvironment and cancer metastasis. FEBS J., 2018, 285(10), 1751-1766.
[http://dx.doi.org/10.1111/febs.14388] [PMID: 29356327]
[17]
Doerstling, S.S.; O’Flanagan, C.H.; Hursting, S.D. obesity and cancer metabolism: a perspective on interacting tumor-intrinsic and extrinsic factors. Front. Oncol., 2017, 7, 216.
[http://dx.doi.org/10.3389/fonc.2017.00216] [PMID: 28959684]
[18]
Cadwell, K.; Debnath, J. Beyond self-eating: The control of nonautophagic functions and signaling pathways by autophagy-related proteins. J. Cell Biol., 2018, 217(3), 813-822.
[http://dx.doi.org/10.1083/jcb.201706157] [PMID: 29237720]
[19]
Davis, C.H.; Kim, K.Y.; Bushong, E.A.; Mills, E.A.; Boassa, D.; Shih, T.; Kinebuchi, M.; Phan, S.; Zhou, Y.; Bihlmeyer, N.A.; Nguyen, J.V.; Jin, Y.; Ellisman, M.H.; Marsh-Armstrong, N. Transcellular degradation of axonal mitochondria. Proc. Natl. Acad. Sci. USA, 2014, 111(26), 9633-9638.
[http://dx.doi.org/10.1073/pnas.1404651111] [PMID: 24979790]
[20]
Riahi, Y.; Wikstrom, J.D.; Bachar-Wikstrom, E.; Polin, N.; Zucker, H.; Lee, M.S.; Quan, W.; Haataja, L.; Liu, M.; Arvan, P.; Cerasi, E.; Leibowitz, G. Erratum to: Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia, 2016, 59(7), 1575-1576.
[http://dx.doi.org/10.1007/s00125-016-3986-4] [PMID: 27189065]
[21]
Ponpuak, M.; Mandell, M.A.; Kimura, T.; Chauhan, S.; Cleyrat, C.; Deretic, V. Secretory autophagy. Curr. Opin. Cell Biol., 2015, 35, 106-116.
[http://dx.doi.org/10.1016/j.ceb.2015.04.016] [PMID: 25988755]
[22]
Abdulrahman, B.A.; Abdelaziz, D.H.; Schatzl, H.M. Autophagy regulates exosomal release of prions in neuronal cells. J. Biol. Chem., 2018, 293(23), 8956-8968.
[http://dx.doi.org/10.1074/jbc.RA117.000713] [PMID: 29700113]
[23]
Freeman, D.W.; Hooten, N.N.; Eitan, E.; Green, J.; Mode, N.A.; Bodogai, M. Altered extracellular vesicle concentration, cargo and function in diabetes mellitus. Diabetes, 2018, 67(11), 2377-2388.
[http://dx.doi.org/10.2337/db17-1308]
[24]
Nanou, A.; Coumans, F.A.W.; van Dalum, G.; Zeune, L.L.; Dolling, D.; Onstenk, W.; Crespo, M.; Fontes, M.S.; Rescigno, P.; Fowler, G.; Flohr, P.; Brune, C.; Sleijfer, S.; de Bono, J.S.; Terstappen, L.W.M.M. Circulating tumor cells, tumor-derived extracellular vesicles and plasma cytokeratins in castration-resistant prostate cancer patients. Oncotarget, 2018, 9(27), 19283-19293.
[http://dx.doi.org/10.18632/oncotarget.25019] [PMID: 29721202]
[25]
Gupta, S.; Rodriguez, G.M. Mycobacterial extracellular vesicles and host pathogen interactions. Pathog. Dis., 2018, 76(4) fty031
[http://dx.doi.org/10.1093/femspd/fty031] [PMID: 29722822]
[26]
Anyanwu, S.I.; Doherty, A.; Powell, M.D.; Obialo, C.; Huang, M.B.; Quarshie, A.; Mitchell, C.; Bashir, K.; Newman, G.W. Detection of HIV-1 and Human Proteins in Urinary Extracellular Vesicles from HIV+ Patients. Adv. Virol., 2018, 2018, 7863412
[http://dx.doi.org/10.1155/2018/7863412] [PMID: 29721020]
[27]
Nguyen, D.C.; Lewis, H.C.; Joyner, C.; Warren, V.; Xiao, H.; Kissick, H.T.; Wu, R.; Galipeau, J.; Lee, F.E. Extracellular vesicles from bone marrow-derived mesenchymal stromal cells support ex vivo survival of human antibody secreting cells. J. Extracell. Vesicles, 2018, 7(1) 1463778
[http://dx.doi.org/10.1080/20013078.2018.1463778] [PMID: 29713426]
[28]
Wang, J.; Barr, M.M. Cell-cell communication via ciliary extracellular vesicles: clues from model systems. Essays Biochem., 2018, 62(2), 205-213.
[http://dx.doi.org/10.1042/EBC20170085] [PMID: 29717060]
[29]
Caivano, A.; Laurenzana, I.; De Luca, L.; La Rocca, F.; Simeon, V.; Trino, S.; D’Auria, F.; Traficante, A.; Maietti, M.; Izzo, T.; D’Arena, G.; Mansueto, G.; Pietrantuono, G.; Laurenti, L.; Musto, P.; Del Vecchio, L. High serum levels of extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders. Tumour Biol., 2015, 36(12), 9739-9752.
[http://dx.doi.org/10.1007/s13277-015-3741-3] [PMID: 26156801]
[30]
Guo, H.M.; Sun, L.; Yang, L.; Liu, X.J.; Nie, Z.Y.; Luo, J.M. Microvesicles shed from bortezomib-treated or lenalidomide-treated human myeloma cells inhibit angiogenesis in vitro. Oncol. Rep., 2018, 39(6), 2873-2880.
[http://dx.doi.org/10.3892/or.2018.6395] [PMID: 29693175]
[31]
Pallet, N.; Sirois, I.; Bell, C.; Hanafi, L.A.; Hamelin, K.; Dieudé, M.; Rondeau, C.; Thibault, P.; Desjardins, M.; Hebert, M.J. A comprehensive characterization of membrane vesicles released by autophagic human endothelial cells. Proteomics, 2013, 13(7), 1108-1120.
[http://dx.doi.org/10.1002/pmic.201200531] [PMID: 23436686]
[32]
Fader, C.M.; Colombo, M.I. Multivesicular bodies and autophagy in erythrocyte maturation. Autophagy, 2006, 2(2), 122-125.
[http://dx.doi.org/10.4161/auto.2.2.2350] [PMID: 16874060]
[33]
Baixauli, F.; López-Otín, C.; Mittelbrunn, M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front. Immunol., 2014, 5, 403.
[http://dx.doi.org/10.3389/fimmu.2014.00403] [PMID: 25191326]
[34]
Razi, M.; Chan, E.Y.; Tooze, S.A. Early endosomes and endosomal coatomer are required for autophagy. J. Cell Biol., 2009, 185(2), 305-321.
[http://dx.doi.org/10.1083/jcb.200810098] [PMID: 19364919]
[35]
Guo, H.; Chitiprolu, M.; Roncevic, L.; Javalet, C.; Hemming, F.J.; Trung, M.T.; Meng, L.; Latreille, E.; Tanese de Souza, C.; McCulloch, D.; Baldwin, R.M.; Auer, R.; Côté, J.; Russell, R.C.; Sadoul, R.; Gibbings, D. Atg5 disassociates the V1V0-ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev. Cell, 2017, 43(6), 716-730.
[http://dx.doi.org/10.1016/j.devcel.2017.11.018] [PMID: 29257951]
[36]
Ko, Y.H.; Lin, Z.; Flomenberg, N.; Pestell, R.G.; Howell, A.; Sotgia, F.; Lisanti, M.P.; Martinez-Outschoorn, U.E. Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: Implications for preventing chemotherapy resistance. Cancer Biol. Ther., 2011, 12(12), 1085-1097.
[http://dx.doi.org/10.4161/cbt.12.12.18671] [PMID: 22236876]
[37]
Soto-Heredero, G.; Baixauli, F.; Mittelbrunn, M. Interorganelle communication between mitochondria and the endolysosomal system. Front. Cell Dev. Biol., 2017, 5, 95.
[http://dx.doi.org/10.3389/fcell.2017.00095] [PMID: 29164114]
[38]
You, L.; Mao, L.; Wei, J.; Jin, S.; Yang, C.; Liu, H.; Zhu, L.; Qian, W. The crosstalk between autophagic and endo-/exosomal pathways in antigen processing for MHC presentation in anticancer T cell immune responses. J. Hematol. Oncol., 2017, 10(1), 165.
[http://dx.doi.org/10.1186/s13045-017-0534-8] [PMID: 29058602]
[39]
Viry, E.; Paggetti, J.; Baginska, J.; Mgrditchian, T.; Berchem, G.; Moussay, E.; Janji, B. Autophagy: an adaptive metabolic response to stress shaping the antitumor immunity. Biochem. Pharmacol., 2014, 92(1), 31-42.
[http://dx.doi.org/10.1016/j.bcp.2014.07.006] [PMID: 25044308]
[40]
Chen, P.; Cescon, M.; Bonaldo, P. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy, 2014, 10(2), 192-200.
[http://dx.doi.org/10.4161/auto.26927] [PMID: 24300480]
[41]
Fritz, T.; Niederreiter, L.; Adolph, T.; Blumberg, R.S.; Kaser, A. Crohn’s disease: NOD2, autophagy and ER stress converge. Gut, 2011, 60(11), 1580-1588.
[http://dx.doi.org/10.1136/gut.2009.206466] [PMID: 21252204]
[42]
Crotzer, V.L.; Blum, J.S. Autophagy and its role in MHC-mediated antigen presentation. J. Immunol., 2009, 182(6), 3335-3341.
[http://dx.doi.org/10.4049/jimmunol.0803458] [PMID: 19265109]
[43]
Yang, Y.; Han, Q.; Hou, Z.; Zhang, C.; Tian, Z.; Zhang, J. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction. Cell. Mol. Immunol., 2017, 14(5), 465-475.
[http://dx.doi.org/10.1038/cmi.2016.24] [PMID: 27238466]
[44]
Mathew, R.; Khor, S.; Hackett, S.R.; Rabinowitz, J.D.; Perlman, D.H.; White, E. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol. Cell, 2014, 55(6), 916-930.
[http://dx.doi.org/10.1016/j.molcel.2014.07.019] [PMID: 25175026]
[45]
Kimmelman, A.C. The dynamic nature of autophagy in cancer. Genes Dev., 2011, 25(19), 1999-2010.
[http://dx.doi.org/10.1101/gad.17558811] [PMID: 21979913]
[46]
Marlein, C.R.; Zaitseva, L.; Piddock, R.E.; Robinson, S.D.; Edwards, D.R.; Shafat, M.S.; Zhou, Z.; Lawes, M.; Bowles, K.M.; Rushworth, S.A. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood, 2017, 130(14), 1649-1660.
[http://dx.doi.org/10.1182/blood-2017-03-772939] [PMID: 28733324]
[47]
Anastasiou, D. Tumour microenvironment factors shaping the cancer metabolism landscape. Br. J. Cancer, 2017, 116(3), 277-286.
[http://dx.doi.org/10.1038/bjc.2016.412] [PMID: 28006817]
[48]
Ikemura, S.; Aramaki, N.; Fujii, S.; Kirita, K.; Umemura, S.; Matsumoto, S.; Yoh, K.; Niho, S.; Ohmatsu, H.; Kuwata, T.; Kojima, M.; Ochiai, A.; Betsuyaku, T.; Tsuboi, M.; Goto, K.; Ishii, G. Changes in the tumor microenvironment during lymphatic metastasis of lung squamous cell carcinoma. Cancer Sci., 2017, 108(1), 136-142.
[http://dx.doi.org/10.1111/cas.13110] [PMID: 27761967]
[49]
Abdul-Aziz, A.M.; Shafat, M.S.; Mehta, T.K.; Di Palma, F.; Lawes, M.J.; Rushworth, S.A.; Bowles, K.M. mif-induced stromal PKCβ/IL8 is essential in human acute myeloid leukemia. Cancer Res., 2017, 77(2), 303-311.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1095] [PMID: 27872094]
[50]
Shafat, M.S.; Oellerich, T.; Mohr, S.; Robinson, S.D.; Edwards, D.R.; Marlein, C.R.; Piddock, R.E.; Fenech, M.; Zaitseva, L.; Abdul-Aziz, A.; Turner, J.; Watkins, J.A.; Lawes, M.; Bowles, K.M.; Rushworth, S.A. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood, 2017, 129(10), 1320-1332.
[http://dx.doi.org/10.1182/blood-2016-08-734798] [PMID: 28049638]
[51]
Maffey, A.; Storini, C.; Diceglie, C.; Martelli, C.; Sironi, L.; Calzarossa, C.; Tonna, N.; Lovchik, R.; Delamarche, E.; Ottobrini, L.; Bianco, F. Mesenchymal stem cells from tumor microenvironment favour breast cancer stem cell proliferation, cancerogenic and metastatic potential, via ionotropic purinergic signalling. Sci. Rep., 2017, 7(1), 13162.
[http://dx.doi.org/10.1038/s41598-017-13460-7] [PMID: 29030596]
[52]
Sanchez, C.G.; Penfornis, P.; Oskowitz, A.Z.; Boonjindasup, A.G.; Cai, D.Z.; Dhule, S.S.; Rowan, B.G.; Kelekar, A.; Krause, D.S.; Pochampally, R.R. Activation of autophagy in mesenchymal stem cells provides tumor stromal support. Carcinogenesis, 2011, 32(7), 964-972.
[http://dx.doi.org/10.1093/carcin/bgr029] [PMID: 21317300]
[53]
Liu, Q.; Chen, L.; Atkinson, J.M.; Claxton, D.F.; Wang, H.G. Atg5-dependent autophagy contributes to the development of acute myeloid leukemia in an MLL-AF9-driven mouse model. Cell Death Dis., 2016, 7(9) e2361
[http://dx.doi.org/10.1038/cddis.2016.264]] [PMID: 27607576]
[54]
Auberger, P.; Puissant, A. Autophagy, a key mechanism of oncogenesis and resistance in leukemia. Blood, 2017, 129(5), 547-552.
[http://dx.doi.org/10.1182/blood-2016-07-692707] [PMID: 27956388]
[55]
Sumitomo, Y.; Koya, J.; Nakazaki, K.; Kataoka, K.; Tsuruta-Kishino, T.; Morita, K.; Sato, T.; Kurokawa, M. Cytoprotective autophagy maintains leukemia-initiating cells in murine myeloid leukemia. Blood, 2016, 128(12), 1614-1624.
[http://dx.doi.org/10.1182/blood-2015-12-684696] [PMID: 27480114]
[56]
Altman, J.K.; Szilard, A.; Goussetis, D.J.; Sassano, A.; Colamonici, M.; Gounaris, E.; Frankfurt, O.; Giles, F.J.; Eklund, E.A.; Beauchamp, E.M.; Platanias, L.C. Autophagy is a survival mechanism of acute myelogenous leukemia precursors during dual mTORC2/mTORC1 targeting. Clin. Cancer Res., 2014, 20(9), 2400-2409.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3218] [PMID: 24610825]
[57]
Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; Brown, J.C.; Friedman, J.; He, J.; Heuton, K.R.; Holmberg, M.; Patel, D.J.; Reidy, P.; Carter, A.; Cercy, K.; Chapin, A.; Douwes-Schultz, D.; Frank, T.; Goettsch, F.; Liu, P.Y.; Nandakumar, V.; Reitsma, M.B.; Reuter, V.; Sadat, N.; Sorensen, R.J.D.; Srinivasan, V.; Updike, R.L.; York, H.; Lopez, A.D.; Lozano, R.; Lim, S.S.; Mokdad, A.H.; Vollset, S.E.; Murray, C.J.L. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet, 2018, 392(10159), 2052-2090.
[http://dx.doi.org/10.1016/S0140-6736(18)31694-5] [PMID: 30340847]
[58]
Rosales, C. Neutrophil: A cell with many roles in inflammation or several cell types? Front. Physiol., 2018, 9, 113.
[http://dx.doi.org/10.3389/fphys.2018.00113] [PMID: 29515456]
[59]
Matter, F. Human physiology, biochemistry and basic medicine; Cole, L.; Kramer, P.R., Eds.; Academic Press: Boston, 2016, pp. i-ii.
[60]
Kwak, H.J.; Liu, P.; Bajrami, B.; Xu, Y.; Park, S.Y.; Nombela-Arrieta, C.; Mondal, S.; Sun, Y.; Zhu, H.; Chai, L.; Silberstein, L.E.; Cheng, T.; Luo, H.R. Myeloid cell-derived reactive oxygen species externally regulate the proliferation of myeloid progenitors in emergency granulopoiesis. Immunity, 2015, 42(1), 159-171.
[http://dx.doi.org/10.1016/j.immuni.2014.12.017] [PMID: 25579427]
[61]
Shafat, M.S.; Gnaneswaran, B.; Bowles, K.M.; Rushworth, S.A. The bone marrow microenvironment-Home of the leukemic blasts. Blood Rev., 2017, 31(5), 277-286.
[http://dx.doi.org/10.1016/j.blre.2017.03.004] [PMID: 28318761]
[62]
Rashidi, A.; Uy, G.L. Targeting the microenvironment in acute myeloid leukemia. Curr. Hematol. Malig. Rep., 2015, 10(2), 126-131.
[http://dx.doi.org/10.1007/s11899-015-0255-4] [PMID: 25921388]
[63]
Manier, S.; Sacco, A.; Leleu, X.; Ghobrial, I.M.; Roccaro, A.M. Bone marrow microenvironment in multiple myeloma progression. J. Biomed. Biotechnol., 2012, 2012, 157496.
[http://dx.doi.org/10.1155/2012/157496] [PMID: 23093834]
[64]
Chiarini, F.; Lonetti, A.; Evangelisti, C.; Buontempo, F.; Orsini, E.; Evangelisti, C.; Cappellini, A.; Neri, L.M.; McCubrey, J.A.; Martelli, A.M. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim. Biophys. Acta, 2016, 1863(3), 449-463.
[http://dx.doi.org/10.1016/j.bbamcr.2015.08.015] [PMID: 26334291]
[65]
Crompot, E.; Van Damme, M.; Pieters, K.; Vermeersch, M.; Perez-Morga, D.; Mineur, P.; Maerevoet, M.; Meuleman, N.; Bron, D.; Lagneaux, L.; Stamatopoulos, B. Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications. Haematologica, 2017, 102(9), 1594-1604.
[http://dx.doi.org/10.3324/haematol.2016.163337] [PMID: 28596280]
[66]
Aristizábal, J.A.; Chandia, M.; Del Cañizo, M.C.; Sánchez-Guijo, F. Bone marrow microenvironment in chronic myeloid leukemia: Implications for disease physiopathology and response to treatment. Rev. Med. Chil., 2014, 142(5), 599-605.
[PMID: 25427017]
[67]
Sison, E.A.; Brown, P. The bone marrow microenvironment and leukemia: Biology and therapeutic targeting. Expert Rev. Hematol., 2011, 4(3), 271-283.
[http://dx.doi.org/10.1586/ehm.11.30] [PMID: 21668393]
[68]
Lalaoui, N.; Johnstone, R.; Ekert, P.G. Autophagy and AML-food for thought. Cell Death Differ., 2016, 23(1), 5-6.
[http://dx.doi.org/10.1038/cdd.2015.136] [PMID: 26517530]
[69]
Baquero, P.; Dawson, A.; Mukhopadhyay, A.; Kuntz, E.M.; Mitchell, R.; Olivares, O.; Ianniciello, A.; Scott, M.T.; Dunn, K.; Nicastri, M.C.; Winkler, J.D.; Michie, A.M.; Ryan, K.M.; Halsey, C.; Gottlieb, E.; Keaney, E.P.; Murphy, L.O.; Amaravadi, R.K.; Holyoake, T.L.; Helgason, G.V. Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia, 2019, 33(4), 981-994.
[http://dx.doi.org/10.1038/s41375-018-0252-4] [PMID: 30185934]
[70]
Baquero, P.; Dawson, A.; Helgason, G.V. Autophagy and mitochondrial metabolism: Insights into their role and therapeutic potential in chronic myeloid leukaemia. FEBS J., 2019, 286(7), 1271-1283.
[http://dx.doi.org/10.1111/febs.14659] [PMID: 30222247]
[71]
Chiarini, F.; Grimaldi, C.; Ricci, F.; Tazzari, P.L.; Evangelisti, C.; Ognibene, A.; Battistelli, M.; Falcieri, E.; Melchionda, F.; Pession, A.; Pagliaro, P.; McCubrey, J.A.; Martelli, A.M. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res., 2010, 70(20), 8097-8107.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1814] [PMID: 20876803]
[72]
Liu, Q.; Zhou, X.; Li, C.; Zhang, X.; Li, C.L. Rapamycin promotes the anticancer action of dihydroartemisinin in breast cancer MDA-MB-231 cells by regulating expression of Atg7 and DAPK. Oncol. Lett., 2018, 15(4), 5781-5786.
[http://dx.doi.org/10.3892/ol.2018.8013] [PMID: 29545903]
[73]
Piya, S.; Kornblau, S.M.; Ruvolo, V.R.; Mu, H.; Ruvolo, P.P.; McQueen, T.; Davis, R.E.; Hail, N., Jr; Kantarjian, H.; Andreeff, M.; Borthakur, G. Atg7 suppression enhances chemotherapeutic agent sensitivity and overcomes stroma-mediated chemoresistance in acute myeloid leukemia. Blood, 2016, 128(9), 1260-1269.
[http://dx.doi.org/10.1182/blood-2016-01-692244] [PMID: 27268264]
[74]
E R. Bioenergetics and the problem of tumor growth. Am. Sci., 1972, 60, 56-63.
[PMID: 4332766]
[75]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[76]
Dan, Li. Wang, C.; Ma, P.; Yu, Q.; Gu, M.; Dong, L.; Jiang, W.; Pan, S.; Xie, C.; Han, J.; Lan, Y.; Sun, J.; Sheng, P.; Liu, K.; Wu, Y.; Liu, L.; Ma, Y.; Jiang, H. PGC1α promotes cholangiocarcinoma metastasis by upregulating PDHA1 and MPC1 expression to reverse the Warburg effect. Cell Death Dis., 2018, 9(5), 466.
[http://dx.doi.org/10.1038/s41419-018-0494-0] [PMID: 29700317]
[77]
Thakur, S.; Daley, B.; Gaskins, K.; Vasko, V.V.; Boufraqech, M.; Patel, D.; Sourbier, C.; Reece, J.; Cheng, S.Y.; Kebebew, E.; Agarwal, S.; Klubo-Gwiezdzinska, J. Metformin targets mitochondrial glycerophosphate dehydrogenase (mGPDH) to control Rate of oxidative phosphorylation and growth of thyroid cancer in vitro and in vivo. Clin. Cancer Res., 2018, 24(16), 4030-4043.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3167] [PMID: 29691295]
[78]
Farge, T.; Saland, E.; de Toni, F.; Aroua, N.; Hosseini, M.; Perry, R.; Bosc, C.; Sugita, M.; Stuani, L.; Fraisse, M.; Scotland, S.; Larrue, C.; Boutzen, H.; Féliu, V.; Nicolau-Travers, M.L.; Cassant-Sourdy, S.; Broin, N.; David, M.; Serhan, N.; Sarry, A.; Tavitian, S.; Kaoma, T.; Vallar, L.; Iacovoni, J.; Linares, L.K.; Montersino, C.; Castellano, R.; Griessinger, E.; Collette, Y.; Duchamp, O.; Barreira, Y.; Hirsch, P.; Palama, T.; Gales, L.; Delhommeau, F.; Garmy-Susini, B.H.; Portais, J.C.; Vergez, F.; Selak, M.; Danet-Desnoyers, G.; Carroll, M.; Récher, C.; Sarry, J.E. Chemotherapy resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov., 2017, 7(7), 716-735.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0441] [PMID: 28416471]
[79]
Yucel, B.; Sonmez, M. Repression of oxidative phosphorylation sensitizes leukemia cell lines to cytarabine. Hematology., 2017, 23(6), 330-336.
[PMID: 29139328]
[80]
Neugent, M.L.; Goodwin, J.; Sankaranarayanan, I.; Yetkin, C.E.; Hsieh, M.H.; Kim, J.W. A new perspective on the heterogeneity of cancer glycolysis. Biomol. Ther. (Seoul), 2018, 26(1), 10-18.
[http://dx.doi.org/10.4062/biomolther.2017.210] [PMID: 29212302]
[81]
Thomas, T.M.; Yu, J.S. Metabolic regulation of glioma stem-like cells in the tumor micro-environment. Cancer Lett., 2017, 408, 174-181.
[http://dx.doi.org/10.1016/j.canlet.2017.07.014] [PMID: 28743531]
[82]
Martinez-Outschoorn, U.E.; Pavlides, S.; Howell, A.; Pestell, R.G.; Tanowitz, H.B.; Sotgia, F.; Lisanti, M.P. Stromal-epithelial metabolic coupling in cancer: Integrating autophagy and metabolism in the tumor microenvironment. Int. J. Biochem. Cell Biol., 2011, 43(7), 1045-1051.
[http://dx.doi.org/10.1016/j.biocel.2011.01.023] [PMID: 21300172]
[83]
Doron, B.; Abdelhamed, S.; Butler, J.T.; Hashmi, S.K.; Horton, T.M.; Kurre, P. Transmissible ER stress reconfigures the AML bone marrow compartment. Leukemia, 2018, 33(4), 918-930.
[PMID: 30206307]
[84]
Xu, R.; Rai, A.; Chen, M.; Suwakulsiri, W.; Greening, D.W.; Simpson, R.J. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat. Rev. Clin. Oncol., 2018, 15(10), 617-638.
[http://dx.doi.org/10.1038/s41571-018-0036-9] [PMID: 29795272]
[85]
Bullock, M.D.; Silva, A.M.; Kanlikilicer-Unaldi, P.; Filant, J.; Rashed, M.H.; Sood, A.K.; Lopez-Berestein, G.; Calin, G.A. Exosomal non-coding RNAs: Diagnostic, prognostic and therapeutic applications in cancer. Noncoding RNA, 2015, 1(1), 53-68.
[http://dx.doi.org/10.3390/ncrna1010053] [PMID: 29861415]
[86]
Zhang, J.; Li, S.; Li, L.; Li, M.; Guo, C.; Yao, J.; Mi, S. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics, 2015, 13(1), 17-24.
[http://dx.doi.org/10.1016/j.gpb.2015.02.001] [PMID: 25724326]
[87]
Katakura, K.; Watanabe, H.; Ohira, H. Innate immunity and inflammatory bowel disease: a review of clinical evidence and future application. Clin. J. Gastroenterol., 2013, 6(6), 415-419.
[http://dx.doi.org/10.1007/s12328-013-0436-4] [PMID: 26182129]
[88]
Okumura, R.; Takeda, K. Maintenance of intestinal homeostasis by mucosal barriers. Inflamm. Regen., 2018, 38, 5.
[http://dx.doi.org/10.1186/s41232-018-0063-z] [PMID: 29619131]
[89]
Zambetti, N.A.; Ping, Z.; Chen, S.; Kenswil, K.J.G.; Mylona, M.A.; Sanders, M.A.; Hoogenboezem, R.M.; Bindels, E.M.J.; Adisty, M.N.; Van Strien, P.M.H.; van der Leije, C.S.; Westers, T.M.; Cremers, E.M.P.; Milanese, C.; Mastroberardino, P.G.; van Leeuwen, J.P.T.M.; van der Eerden, B.C.J.; Touw, I.P.; Kuijpers, T.W.; Kanaar, R.; van de Loosdrecht, A.A.; Vogl, T.; Raaijmakers, M.H.G.P. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell, 2016, 19(5), 613-627.
[http://dx.doi.org/10.1016/j.stem.2016.08.021] [PMID: 27666011]
[90]
Parkes, M. Evidence from genetics for a role of autophagy and innate immunity in IBD pathogenesis. Dig. Dis., 2012, 30(4), 330-333.
[http://dx.doi.org/10.1159/000338119] [PMID: 22796792]
[91]
Ray, A.; Dittel, B.N. Interrelatedness between dysbiosis in the gut microbiota due to immunodeficiency and disease penetrance of colitis. Immunology, 2015, 146(3), 359-368.
[http://dx.doi.org/10.1111/imm.12511] [PMID: 26211540]
[92]
Iida, T.; Onodera, K.; Nakase, H. Role of autophagy in the pathogenesis of inflammatory bowel disease. World J. Gastroenterol., 2017, 23(11), 1944-1953.
[http://dx.doi.org/10.3748/wjg.v23.i11.1944] [PMID: 28373760]
[93]
Baker, P.I.; Love, D.R.; Ferguson, L.R. Role of gut microbiota in Crohn’s disease. Expert Rev. Gastroenterol. Hepatol., 2009, 3(5), 535-546.
[http://dx.doi.org/10.1586/egh.09.47] [PMID: 19817674]
[94]
Harris, J.; Hartman, M.; Roche, C.; Zeng, S.G.; O’Shea, A.; Sharp, F.A.; Lambe, E.M.; Creagh, E.M.; Golenbock, D.T.; Tschopp, J.; Kornfeld, H.; Fitzgerald, K.A.; Lavelle, E.C. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J. Biol. Chem., 2011, 286(11), 9587-9597.
[http://dx.doi.org/10.1074/jbc.M110.202911] [PMID: 21228274]
[95]
Kabat, A.M.; Pott, J.; Maloy, K.J. The mucosal immune system and its regulation by autophagy. Front. Immunol., 2016, 7, 240.
[http://dx.doi.org/10.3389/fimmu.2016.00240] [PMID: 27446072]
[96]
Crotzer, V.L.; Blum, J.S. Autophagy and adaptive immunity. Immunology, 2010, 131(1), 9-17.
[PMID: 20586810]
[97]
Segura, E.; Amigorena, S. Cross-presentation in mouse and human dendritic cells. Adv. Immunol., 2015, 127, 1-31.
[http://dx.doi.org/10.1016/bs.ai.2015.03.002] [PMID: 26073982]
[98]
Castrejón-Jiménez, N.S.; Leyva-Paredes, K.; Hernández-González, J.C.; Luna-Herrera, J.; García-Pérez, B.E. The role of autophagy in bacterial infections. Biosci. Trends, 2015, 9(3), 149-159.
[http://dx.doi.org/10.5582/bst.2015.01035] [PMID: 26166368]
[99]
Wang, L.; Yan, J.; Niu, H.; Huang, R.; Wu, S. Autophagy and ubiquitination in. Front. Cell. Infect. Microbiol., 2018, 8, 78.
[http://dx.doi.org/10.3389/fcimb.2018.00078] [PMID: 29594070]
[100]
Nedjic, J.; Aichinger, M.; Emmerich, J.; Mizushima, N.; Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature, 2008, 455(7211), 396-400.
[http://dx.doi.org/10.1038/nature07208] [PMID: 18701890]
[101]
Aichinger, M.; Wu, C.; Nedjic, J.; Klein, L. Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J. Exp. Med., 2013, 210(2), 287-300.
[http://dx.doi.org/10.1084/jem.20122149] [PMID: 23382543]
[102]
Bird, S.W.; Maynard, N.D.; Covert, M.W.; Kirkegaard, K. Nonlytic viral spread enhanced by autophagy components. Proc. Natl. Acad. Sci. USA, 2014, 111(36), 13081-13086.
[http://dx.doi.org/10.1073/pnas.1401437111] [PMID: 25157142]
[103]
Sin, J.; McIntyre, L.; Stotland, A.; Feuer, R.; Gottlieb, R.A.; Coxsackievirus, B.; Coxsackievirus, B. Escapes the Infected Cell in Ejected Mitophagosomes. J. Virol., 2017, 91(24) e01347
[http://dx.doi.org/10.1128/JVI.01347-17] [PMID: 28978702]
[104]
1 P, A.; XW, P S.; MV, H M, RE Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment. Autophagy, 2014.
[105]
Brandel, J.P.; Knight, R. Variant creutzfeldt-jakob disease. Handb. Clin. Neurol., 2018, 153, 191-205.
[http://dx.doi.org/10.1016/B978-0-444-63945-5.00011-8] [PMID: 29887136]
[106]
Ojha, C.R.; Lapierre, J.; Rodriguez, M.; Dever, S.M.; Zadeh, M.A.; DeMarino, C.; Pleet, M.L.; Kashanchi, F.; El-Hage, N. Interplay between autophagy, exosomes and HIV-1 associated neurological disorders: New insights for diagnosis and therapeutic applications. Viruses, 2017, 9(7) E176
[http://dx.doi.org/10.3390/v9070176] [PMID: 28684681]
[107]
Ding, W.X.; Yin, X.M. Mitophagy: Mechanisms, pathophysiological roles, and analysis. Biol. Chem., 2012, 393(7), 547-564.
[http://dx.doi.org/10.1515/hsz-2012-0119] [PMID: 22944659]
[108]
Farmer, T.; Naslavsky, N.; Caplan, S. Tying trafficking to fusion and fission at the mighty mitochondria. Traffic, 2018, 19(8), 569-577.
[http://dx.doi.org/10.1111/tra.12573] [PMID: 29663589]
[109]
Verjans, R.; van Bilsen, M.; Schroen, B. mirna deregulation in cardiac aging and associated disorders. Int. Rev. Cell Mol. Biol., 2017, 334, 207-263.
[http://dx.doi.org/10.1016/bs.ircmb.2017.03.004] [PMID: 28838539]
[110]
Chandra, G.; Shenoi, R.A.; Anand, R.; Rajamma, U.; Mohanakumar, K.P. Reinforcing mitochondrial functions in aging brain: An insight into Parkinson’s disease therapeutics. J. Chem. Neuroanat., 2017, 95, 29-42.
[PMID: 29269015]
[111]
Chu, C.T. Multiple pathways for mitophagy: A neurodegenerative conundrum for Parkinson’s disease. Neurosci. Lett., 2018, 697, 66-71.
[PMID: 29626647]
[112]
Onyango, I.G. Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer’s disease. Neural Regen. Res., 2018, 13(1), 19-25.
[http://dx.doi.org/10.4103/1673-5374.224362] [PMID: 29451200]
[113]
Ryan, T.; Bamm, V.V.; Stykel, M.G.; Coackley, C.L.; Humphries, K.M.; Jamieson-Williams, R.; Ambasudhan, R.; Mosser, D.D.; Lipton, S.A.; Harauz, G.; Ryan, S.D. Cardiolipin exposure on the outer mitochondrial membrane modulates α-synuclein. Nat. Commun., 2018, 9(1), 817.
[http://dx.doi.org/10.1038/s41467-018-03241-9] [PMID: 29483518]
[114]
Song, Y.; Du, Y.; Zou, W.; Luo, Y.; Zhang, X.; Fu, J. Involvement of impaired autophagy and mitophagy in Neuro-2a cell damage under hypoxic and/or high-glucose conditions. Sci. Rep., 2018, 8(1), 3301.
[http://dx.doi.org/10.1038/s41598-018-20162-1] [PMID: 29459731]
[115]
Spees, J.L.; Olson, S.D.; Whitney, M.J.; Prockop, D.J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. USA, 2006, 103(5), 1283-1288.
[http://dx.doi.org/10.1073/pnas.0510511103] [PMID: 16432190]
[116]
Islam, M.N.; Das, S.R.; Emin, M.T.; Wei, M.; Sun, L.; Westphalen, K.; Rowlands, D.J.; Quadri, S.K.; Bhattacharya, S.; Bhattacharya, J. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med., 2012, 18(5), 759-765.
[http://dx.doi.org/10.1038/nm.2736] [PMID: 22504485]
[117]
Jiang, D.; Gao, F.; Zhang, Y.; Wong, D.S.; Li, Q.; Tse, H.F.; Xu, G.; Yu, Z.; Lian, Q. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis., 2016, 7(11) e2467
[http://dx.doi.org/10.1038/cddis.2016.358] [PMID: 27831562]
[118]
Hayakawa, K.; Esposito, E.; Wang, X.; Terasaki, Y.; Liu, Y.; Xing, C.; Ji, X.; Lo, E.H. Transfer of mitochondria from astrocytes to neurons after stroke. Nature, 2016, 535(7613), 551-555.
[http://dx.doi.org/10.1038/nature18928] [PMID: 27466127]
[119]
Phinney, D.G.; Di Giuseppe, M.; Njah, J.; Sala, E.; Shiva, S.; St Croix, C.M.; Stolz, D.B.; Watkins, S.C.; Di, Y.P.; Leikauf, G.D.; Kolls, J.; Riches, D.W.; Deiuliis, G.; Kaminski, N.; Boregowda, S.V.; McKenna, D.H.; Ortiz, L.A. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat. Commun., 2015, 6, 8472.
[http://dx.doi.org/10.1038/ncomms9472] [PMID: 26442449]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy