Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Review Article

An Overview of Abdominal Multi-organ Segmentation

Author(s): Qiang Li, Hong Song*, Lei Chen, Xianqi Meng, Jian Yang and Le Zhang

Volume 15, Issue 8, 2020

Page: [866 - 877] Pages: 12

DOI: 10.2174/1574893615999200425232601

Price: $65

Abstract

The segmentation of multiple abdominal organs of the human body from images with different modalities is challenging because of the inter-subject variance among abdomens, as well as the complex intra-subject variance among organs. In this paper, the recent methods proposed for abdominal multi-organ segmentation (AMOS) on medical images in the literature are reviewed. The AMOS methods can be categorized into traditional and deep learning-based methods. First, various approaches, techniques, recent advances, and related problems under both segmentation categories are explained. Second, the advantages and disadvantages of these methods are discussed. A summary of some public datasets for AMOS is provided. Finally, AMOS remains an open issue, and the combination of different methods can achieve improved segmentation performance.

Keywords: Multi-organ segmentation, deep learning, datasets for AMOS, segmentation performance, abdomen, magnetic resonance.

Graphical Abstract

[1]
Song H, Zhang Q, Wang S. Liver segmentation based on SKFCM and improved GrowCut for CT images. IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2014. Nov 2-5 Belfast, UK
[http://dx.doi.org/10.1109/BIBM.2014.6999179]
[2]
Zhang L, Li J, Yin K, et al. Computed tomography angiography-based analysis of high-risk intracerebral haemorrhage patients by employing a mathematical model. BMC Bioinformatics 2019; 20(Suppl. 7): 193.
[http://dx.doi.org/10.1186/s12859-019-2741-5] [PMID: 31074379]
[3]
Liu G-D, Li Y-C, Zhang W, Zhang L. A brief review of artificial intelligence applications and algorithms for psychiatric disorders. Engineering 2019; 6(4): 462-7.
[http://dx.doi.org/10.1016/j.eng.2019.06.008]
[4]
Okada T, Linguraru MG, Yoshida Y. Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations. International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging Berlin, Germany; Springer: 2011.
[5]
Shen J, Baum T, Cordes C, et al. Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: application to weight-loss in obesity. Eur J Radiol 2016; 85(9): 1613-21.
[http://dx.doi.org/10.1016/j.ejrad.2016.06.006] [PMID: 27501897]
[6]
Wang C, Smedby O. Automatic multi-organ segmentation using fast model based level set method and hierarchical shape priors. Proceedings of the VISCERAL Challenge at ISBI 2014; 1194: 25-31.
[7]
Kéchichian R, Valette S, Desvignes M. Automatic multiorgan segmentation via multiscale registration and graph cut. IEEE Trans Med Imaging 2018; 37(12): 2739-49.
[http://dx.doi.org/10.1109/TMI.2018.2851780] [PMID: 29994393]
[8]
Devi KG, Radhakrishnan R. Segmentation of multiple organ from abdominal CT images using 3D region growing and gradient vector flow. Int J Appl Eng Res 2014; 9(24): 30023-41.
[9]
Gauriau R, Ardori R, Lesage D, Bloch I. Multiple template deformation application to abdominal organ segmentation. IEEE 12th International Symposium on Biomedical Imaging (ISBI); April 16-19; New York, NY, USA. IEEE: 2015.
[10]
Cerrolaza JJ, Reyes M, Summers RM, González-Ballester MÁ, Linguraru MG. Automatic multi-resolution shape modeling of multi-organ structures. Med Image Anal 2015; 25(1): 11-21.
[http://dx.doi.org/10.1016/j.media.2015.04.003] [PMID: 25977156]
[11]
Ren S, Laub P, Lu Y, Nagnawa M, Carson RE. Atlas-based multi-organ segmentation for dynamic abdominal PET. IEEE Trans Radiat Plasma Med Sci 2019; 4(1): 50-62.
[12]
Zhao Y, Li H, Zhou R, Tetteh G, Niethammer M, Menze BH. Automatic multi-atlas segmentation for abdominal images using template construction and robust principal component analysis. 24th International Conference on Pattern Recognition (ICPR) Aug 20-24; Beijing, China: IEEE
[13]
Zhang L, Xiao M, Zhou J, Yu J. Lineage-associated underrepresented permutations (LAUPs) of mammalian genomic sequences based on a Jellyfish-based LAUPs analysis application (JBLA). Bioinformatics 2018; 34(21): 3624-30.
[http://dx.doi.org/10.1093/bioinformatics/bty392] [PMID: 29762634]
[14]
Zhang L, Zhang S. Using game theory to investigate the epigenetic control mechanisms of embryo development: Comment on: “Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition” by Qian Wang et al. Phys Life Rev 2017; 20: 140-2.
[http://dx.doi.org/10.1016/j.plrev.2017.01.007] [PMID: 28109753]
[15]
Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis 1988; 1(4): 321-31.
[http://dx.doi.org/10.1007/BF00133570]
[16]
Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 1995; 17(2): 158-75.
[http://dx.doi.org/10.1109/34.368173]
[17]
Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 2001; 23(11): 1222-39.
[http://dx.doi.org/10.1109/34.969114]
[18]
Way TW, Hadjiiski LM, Sahiner B, et al. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Med Phys 2006; 33(7): 2323-37.
[http://dx.doi.org/10.1118/1.2207129] [PMID: 16898434]
[19]
Pluempitiwiriyawej C, Moura JM. Fellow, Wu YJ, Ho C. STACS: new active contour scheme for cardiac MR image segmentation. IEEE Trans Med Imaging 2005; 24(5): 593-603.
[http://dx.doi.org/10.1109/TMI.2005.843740] [PMID: 15889547]
[20]
Chen D-R, Chang RF, Wu WJ, Moon WK, Wu WL. 3-D breast ultrasound segmentation using active contour model. Ultrasound Med Biol 2003; 29(7): 1017-26.
[http://dx.doi.org/10.1016/S0301-5629(03)00059-0] [PMID: 12878248]
[21]
Gao Y, Tannenbaum A, Kikinis R. Simultaneous multi-object segmentation using local robust statistics and contour interaction. International MICCAI Workshop on Medical Computer Vision Berlin, Germany; Springer: 2010.
[22]
Gao Y, Kikinis R, Bouix S, Shenton M, Tannenbaum A. A 3D interactive multi-object segmentation tool using local robust statistics driven active contours. Med Image Anal 2012; 16(6): 1216-27.
[http://dx.doi.org/10.1016/j.media.2012.06.002] [PMID: 22831773]
[23]
Kohlberger T, Sofka M, Zhang J. Automatic multi-organ segmentation using learning-based segmentation and level set optimization. International Conference on Medical Image Computing and Computer-Assisted Intervention Berlin: Springer; 2013.
[http://dx.doi.org/10.1007/978-3-642-23626-6_42]
[24]
Al-Shaikhli SDS, Yang MY, Rosenhahn B. Medical image segmentation using multi-level set partitioning with topological graph prior. Pacific-Rim Symposium on Image and Video Technology Berlin: Springer; 2013.
[25]
Schreibmann E, Marcus DM, Fox T. Multiatlas segmentation of thoracic and abdominal anatomy with level set-based local search. J Appl Clin Med Phys 2014; 15(4): 4468.
[http://dx.doi.org/10.1120/jacmp.v15i4.4468] [PMID: 25207393]
[26]
Linguraru MG, Pura JA, Chowdhury AS, Summers RM. Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization. International Conference on Medical Image Computing and Computer-Assisted Intervention Berlin: Springer; 2010.
[http://dx.doi.org/10.1007/978-3-642-15711-0_12]
[27]
Oda M, Nakaoka T, Kitasaka T. Organ segmentation from 3D abdominal CT images based on atlas selection and graph cut. International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging Berlin: Springer 2011.
[28]
Luo Q, Qin W, Wen T, et al. Segmentation of abdomen MR images using kernel graph cuts with shape priors. Biomed Eng Online 2013; 12(1): 124.
[http://dx.doi.org/10.1186/1475-925X-12-124] [PMID: 24295198]
[29]
Bevilacqua V, Mastronardi G, Piazzolla A. An evolutionary method for model-based automatic segmentation of lower abdomen CT images for radiotherapy planning. European Conference on the Applications of Evolutionary Computation Berlin: Springer 2010.
[http://dx.doi.org/10.1007/978-3-642-12239-2_33]
[30]
Badakhshannoory H, Saeedi P. A model-based validation scheme for organ segmentation in CT scan volumes. IEEE Trans Biomed Eng 2011; 58(9): 2681-93.
[http://dx.doi.org/10.1109/TBME.2011.2161987] [PMID: 21768040]
[31]
Liu X, Song Q, Medonca P, Tao X, Bhotika R. Organ labeling using anatomical model-driven global optimization. 2011 IEEE First International Conference on Healthcare Informatics, Imaging and Systems Biology July 26-29 San Jose, CA, USA IEEE 2011.
[http://dx.doi.org/10.1109/HISB.2011.38]
[32]
Li C, Wang X, Li J, et al. Joint probabilistic model of shape and intensity for multiple abdominal organ segmentation from volumetric CT images. IEEE J Biomed Health Inform 2013; 17(1): 92-102.
[http://dx.doi.org/10.1109/TITB.2012.2227273] [PMID: 23193317]
[33]
Chen X, Bagci U. 3D automatic anatomy segmentation based on iterative graph-cut-ASM. Med Phys 2011; 38(8): 4610-22.
[http://dx.doi.org/10.1118/1.3602070] [PMID: 21928634]
[34]
Ananth C, Parvin M, Gayathri G. Banu. Image segmentation by multi-shape GC-OAAM. Amer J Sust Cities Soc 2014; 1(3): 274-80.
[35]
Park H, Hero A, Bland P, Kessler M, Seo J, Meyer C. Construction of abdominal probabilistic atlases and their value in segmentation of normal organs in abdominal CT scans. IEICE Trans Inf Syst 2010; 93(8): 2291-301.
[http://dx.doi.org/10.1587/transinf.E93.D.2291]
[36]
Chu C, Oda M, Kitasaka T, et al. Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images. International Conference on Medical Image Computing and Computer-Assisted Intervention Berlin: Springer; 2013.
[http://dx.doi.org/10.1007/978-3-642-40763-5_21]
[37]
Wolz R, Chu C, Misawa K, Mori K, Rueckert D. Multi-organ abdominal CT segmentation using hierarchically weighted subject-specific atlases. International Conference on Medical Image Computing and Computer-Assisted Intervention Berlin: Springer; 2012.
[http://dx.doi.org/10.1007/978-3-642-33415-3_2]
[38]
del Toro OAJ, Müller H. Hierarchic multi–atlas based segmentation for anatomical structures: Evaluation in the visceral anatomy benchmarks. International MICCAI Workshop on Medical Computer Vision Cham: Springer; 2014.
[http://dx.doi.org/10.1007/978-3-319-13972-2_18]
[39]
Linguraru MG, Sandberg JK, Li Z, Shah F, Summers RM. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation. Med Phys 2010; 37(2): 771-83.
[http://dx.doi.org/10.1118/1.3284530] [PMID: 20229887]
[40]
Burke RP, Xu Z, Lee CP, et al. Multi-atlas segmentation for abdominal organs with Gaussian mixture models Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging. International Society for Optics and Photonics 2015.
[41]
Langerak TR, van der Heide UA, Kotte AN, Viergever MA, van Vulpen M, Pluim JP. Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE). IEEE Trans Med Imaging 2010; 29(12): 2000-8.
[http://dx.doi.org/10.1109/TMI.2010.2057442] [PMID: 20667809]
[42]
Xu Z, Burke RP, Lee CP, et al. Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning. Med Image Anal 2015; 24(1): 18-27.
[http://dx.doi.org/10.1016/j.media.2015.05.009] [PMID: 26046403]
[43]
Oliveira B, Queirós S, Morais P, et al. A novel multi-atlas strategy with dense deformation field reconstruction for abdominal and thoracic multi-organ segmentation from computed tomography. Med Image Anal 2018; 45: 108-20.
[http://dx.doi.org/10.1016/j.media.2018.02.001] [PMID: 29432979]
[44]
Xiao M, Yang X, Yu J, Zhang L. CGIDLA: Developing the Web Server for CpG Island related Density and LAUPs (Lineage-associated Underrepresented Permutations) Study. IEEE/ACM Trans Comput Biol Bioinformatics 2019.
[http://dx.doi.org/10.1109/TCBB.2019.2935971] [PMID: 31443042]
[45]
Zhang L, Bai W, Yuan N, Du Z. Comprehensively benchmarking applications for detecting copy number variation. PLOS Comput Biol 2019; 15(5)e1007069
[http://dx.doi.org/10.1371/journal.pcbi.1007069] [PMID: 31136576]
[46]
Zhang L, Fu C, Li J, et al. Discovery of a Ruthenium Complex for the Theranosis of Glioma through Targeting the Mitochondrial DNA with Bioinformatic Methods. Int J Mol Sci 2019; 20(18): 4643.
[http://dx.doi.org/10.3390/ijms20184643] [PMID: 31546801]
[47]
Zhang L, Liu G, Kong M, et al. Revealing dynamic regulations and the related key proteins of myeloma-initiating cells by integrating experimental data into a systems biological model. Bioinformatics 2019; 2019btz542
[http://dx.doi.org/10.1093/bioinformatics/btz542] [PMID: 31350562]
[48]
Zhang L, Liu Y, Wang M, et al. EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients. J Mol Cell Biol 2017; 9(6): 477-88.
[http://dx.doi.org/10.1093/jmcb/mjx056] [PMID: 29272522]
[49]
Zhang L, Zheng C, Li T, et al. Building up a robust risk mathematical platform to predict colorectal cancer. Complexity 2017; 20178917258
[http://dx.doi.org/10.1155/2017/8917258]
[50]
Selver MA. Segmentation of abdominal organs from CT using a multi-level, hierarchical neural network strategy. Comput Methods Programs Biomed 2014; 113(3): 830-52.
[http://dx.doi.org/10.1016/j.cmpb.2013.12.008] [PMID: 24480371]
[51]
He B, Huang C, Jia F. Fully Automatic Multi-Organ Segmentation Based on Multi-Boost Learning and Statistical Shape Model Search. in VISCERAL Challenge@ ISBI 2015.
[52]
Heinrich MP, Blendowski M. Multi-organ segmentation using vantage point forests and binary context features. International Conference on Medical Image Computing and Computer-Assisted Intervention Cham: Springer 2016.
[http://dx.doi.org/10.1007/978-3-319-46723-8_69]
[53]
Dong C, Chen YW, Foruzan AH, et al. Segmentation of liver and spleen based on computational anatomy models. Comput Biol Med 2015; 67: 146-60.
[http://dx.doi.org/10.1016/j.compbiomed.2015.10.007] [PMID: 26551453]
[54]
Larsson M, Zhang Y, Kahl F. Deepseg: abdominal organ segmentation using deep convolutional neural networks[c]//swedish symposium on image analysis 2016. 2016.
[55]
Chen S, Roth H, Dorn S, et al. Towards automatic abdominal multi-organ segmentation in dual energy CT using cascaded 3D fully convolutional network. arXiv preprint arXiv:171005379 2017.
[56]
Gibson E, Giganti F, Hu Y, et al. Towards image-guided pancreas and biliary endoscopy: automatic multi-organ segmentation on abdominal CT with dense dilated networks. International Conference on Medical Image Computing and Computer-Assisted Intervention
[http://dx.doi.org/10.1007/978-3-319-66182-7_83]
[57]
Roth HR, Oda H, Hayashi Y, et al. Hierarchical 3D fully convolutional networks for multi-organ segmentation. arXiv preprint arXiv:170406382 2017.
[58]
Bobo MF, Bao S, Huo Y, et al. Fully convolutional neural networks improve abdominal organ segmentation Medical Imaging 2018: Image Processing. International Society for Optics and Photonics 2018.
[59]
Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, Rueckert D. Drinet for medical image segmentation. IEEE Trans Med Imaging 2018; 37(11): 2453-62.
[http://dx.doi.org/10.1109/TMI.2018.2835303] [PMID: 29993738]
[60]
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention
[http://dx.doi.org/10.1007/978-3-319-24574-4_28]
[61]
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. International Conference on Medical Image Computing and Computer-Assisted Intervention
[62]
Kakeya H, Okada T, Oshiro Y. 3D U-JAPA-Net: Mixture of convolutional networks for abdominal multi-organ CT segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention Cham: Springer 2018.
[http://dx.doi.org/10.1007/978-3-030-00937-3_49]
[63]
Larsson M, Zhang Y, Kahl F. Robust abdominal organ segmentation using regional convolutional neural networks. Appl Soft Comput 2018; 70: 465-71.
[http://dx.doi.org/10.1016/j.asoc.2018.05.038]
[64]
Roth HR, Shen C, Oda H, et al. A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention
[http://dx.doi.org/10.1007/978-3-030-00937-3_48]
[65]
Shen C, Roth HR, Oda H, et al. On the influence of dice loss function in multi-class organ segmentation of abdominal ct using 3D fully convolutional networks. arXiv preprint arXiv:180105912 2018.
[66]
Valindria VV, Powlowski N, Rajchl M, et al. Multi-modal learning from unpaired images: Application to multi-organ segmentation in ct and mri 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
[http://dx.doi.org/10.1109/WACV.2018.00066]
[67]
Wang Y, Zhou Y, Tang P, Shen W, Fishman EK, Yuille AL. Training multi-organ segmentation networks with sample selection by relaxed upper confident bound. International Conference on Medical Image Computing and Computer-Assisted Intervention
[http://dx.doi.org/10.1007/978-3-030-00937-3_50]
[68]
Xia Y, Xie L, Liu F, Zhu Z, Fishman EK, Yuille AL. Bridging the gap between 2d and 3d organ segmentation with volumetric fusion net. International Conference on Medical Image Computing and Computer-Assisted Intervention Cham: Springer; 2018.
[http://dx.doi.org/10.1007/978-3-030-00937-3_51]
[69]
Zhang Y, Jiang X, Zhong C, et al. SequentialSegNet: Combination with Sequential Feature for Multi-Organ Segmentation 24th International Conference on Pattern Recognition (ICPR).
[70]
Heinrich MP, Oktay O, Bouteldja N. OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions. Med Image Anal 2019; 54: 1-9.
[http://dx.doi.org/10.1016/j.media.2019.02.006] [PMID: 30807894]
[71]
Ni T, Xie L, Zheng H, Fishman EK, Yuille AL. Elastic Boundary Projection for 3D Medical Image Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition June 15-20 Long Beach, CA, USA 2019.
[http://dx.doi.org/10.1109/CVPR.2019.00221]
[72]
Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med Image Anal 2019; 55: 88-102.
[http://dx.doi.org/10.1016/j.media.2019.04.005] [PMID: 31035060]
[73]
Xie L, Yu Q, Zhou Y, Wang Y, Fishman EK, Yuille EL. Recurrent Saliency Transformation Network for Tiny Target Segmentation in Abdominal CT Scans. IEEE Trans Med Imaging 2019; 39(2): 514-24.
[PMID: 31352338]
[74]
Zhou Y, Li Z, Bai S, et al. Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation. arXiv preprint arXiv:190406346 2019.
[75]
Zhou Y, Wang Y, Tang P, et al. Semi-supervised 3D abdominal multi-organ segmentation via deep multi-planar co-training 2019. IEEE Winter Conference on Applications of Computer Vision (WACV)
[http://dx.doi.org/ 10.1109/WACV.2019.00020]
[76]
Hu P, Wu F, Peng J, Bao Y, Chen F, Kong D. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J CARS 2017; 12(3): 399-411.
[http://dx.doi.org/10.1007/s11548-016-1501-5] [PMID: 27885540]
[77]
Fu Y, Mazur TR, Wu X, et al. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Med Phys 2018; 45(11): 5129-37.
[http://dx.doi.org/10.1002/mp.13221] [PMID: 30269345]
[78]
Roth HR, Oda H, Zhou X, et al. An application of cascaded 3D fully convolutional networks for medical image segmentation. Comput Med Imaging Graph 2018; 66: 90-9.
[http://dx.doi.org/10.1016/j.compmedimag.2018.03.001] [PMID: 29573583]
[79]
Yang Y, Jiang H, Sun Q. A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network. BioMed Res Int 2017; 20176941306
[http://dx.doi.org/10.1155/2017/6941306]
[80]
Gibson E, Giganti F, Hu Y, et al. Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans Med Imaging 2018; 37(8): 1822-34.
[http://dx.doi.org/10.1109/TMI.2018.2806309] [PMID: 29994628]
[81]
Roth HR, Lu L, Farag A, et al. DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI); Cham: Springer 2015.
[82]
Wang C, Song H, Chen L, et al. Automatic liver segmentation using multi-plane integrated fully convolutional neural networks. 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) December 3-6 Madrid, Spain 2018.
[http://dx.doi.org/10.1109/BIBM.2018.8621257]
[83]
Song H, Kang W, Zhang Q, Wang S. Kidney segmentation in CT sequences using SKFCM and improved GrowCut algorithm. BMC Syst Biol 2015; 9(5)(Suppl. 5): S5.
[http://dx.doi.org/10.1186/1752-0509-9-S5-S5] [PMID: 26356850]
[84]
Landman B, Xu Z, Igelsias JE, Styner M, Langerak TR, Klein A. MICCAI multi-atlas labeling beyond the cranial vault - workshop and challenge; July.
[85]
Kavur AE, Gezer NS, Baris M, Conze P-H, Groza V, Pham DD, et al. CHAOS Challenge - Combined (CT-MR) Healthy Abdominal Organ Segmentation arXiv pre-print, Jan 2020.
[86]
Jimenez-Del-Toro O, Muller H, Krenn M, et al. Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: Visceral anatomy benchmarks. IEEE Trans Med Imaging 2016; 35(11): 2459-75.
[http://dx.doi.org/10.1109/TMI.2016.2578680] [PMID: 27305669]
[87]
Soler L, Hostettler A, Agnus V, et al. Marescaux, 3d image reconstruction for comparison of algorithm database: a patientspecific anatomical and medical image database 2012.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy