Abstract
The segmentation of multiple abdominal organs of the human body from images with different modalities is challenging because of the inter-subject variance among abdomens, as well as the complex intra-subject variance among organs. In this paper, the recent methods proposed for abdominal multi-organ segmentation (AMOS) on medical images in the literature are reviewed. The AMOS methods can be categorized into traditional and deep learning-based methods. First, various approaches, techniques, recent advances, and related problems under both segmentation categories are explained. Second, the advantages and disadvantages of these methods are discussed. A summary of some public datasets for AMOS is provided. Finally, AMOS remains an open issue, and the combination of different methods can achieve improved segmentation performance.
Keywords: Multi-organ segmentation, deep learning, datasets for AMOS, segmentation performance, abdomen, magnetic resonance.
Graphical Abstract
[http://dx.doi.org/10.1109/BIBM.2014.6999179]
[http://dx.doi.org/10.1186/s12859-019-2741-5] [PMID: 31074379]
[http://dx.doi.org/10.1016/j.eng.2019.06.008]
[http://dx.doi.org/10.1016/j.ejrad.2016.06.006] [PMID: 27501897]
[http://dx.doi.org/10.1109/TMI.2018.2851780] [PMID: 29994393]
[http://dx.doi.org/10.1016/j.media.2015.04.003] [PMID: 25977156]
[http://dx.doi.org/10.1093/bioinformatics/bty392] [PMID: 29762634]
[http://dx.doi.org/10.1016/j.plrev.2017.01.007] [PMID: 28109753]
[http://dx.doi.org/10.1007/BF00133570]
[http://dx.doi.org/10.1109/34.368173]
[http://dx.doi.org/10.1109/34.969114]
[http://dx.doi.org/10.1118/1.2207129] [PMID: 16898434]
[http://dx.doi.org/10.1109/TMI.2005.843740] [PMID: 15889547]
[http://dx.doi.org/10.1016/S0301-5629(03)00059-0] [PMID: 12878248]
[http://dx.doi.org/10.1016/j.media.2012.06.002] [PMID: 22831773]
[http://dx.doi.org/10.1007/978-3-642-23626-6_42]
[http://dx.doi.org/10.1120/jacmp.v15i4.4468] [PMID: 25207393]
[http://dx.doi.org/10.1007/978-3-642-15711-0_12]
[http://dx.doi.org/10.1186/1475-925X-12-124] [PMID: 24295198]
[http://dx.doi.org/10.1007/978-3-642-12239-2_33]
[http://dx.doi.org/10.1109/TBME.2011.2161987] [PMID: 21768040]
[http://dx.doi.org/10.1109/HISB.2011.38]
[http://dx.doi.org/10.1109/TITB.2012.2227273] [PMID: 23193317]
[http://dx.doi.org/10.1118/1.3602070] [PMID: 21928634]
[http://dx.doi.org/10.1587/transinf.E93.D.2291]
[http://dx.doi.org/10.1007/978-3-642-40763-5_21]
[http://dx.doi.org/10.1007/978-3-642-33415-3_2]
[http://dx.doi.org/10.1007/978-3-319-13972-2_18]
[http://dx.doi.org/10.1118/1.3284530] [PMID: 20229887]
[http://dx.doi.org/10.1109/TMI.2010.2057442] [PMID: 20667809]
[http://dx.doi.org/10.1016/j.media.2015.05.009] [PMID: 26046403]
[http://dx.doi.org/10.1016/j.media.2018.02.001] [PMID: 29432979]
[http://dx.doi.org/10.1109/TCBB.2019.2935971] [PMID: 31443042]
[http://dx.doi.org/10.1371/journal.pcbi.1007069] [PMID: 31136576]
[http://dx.doi.org/10.3390/ijms20184643] [PMID: 31546801]
[http://dx.doi.org/10.1093/bioinformatics/btz542] [PMID: 31350562]
[http://dx.doi.org/10.1093/jmcb/mjx056] [PMID: 29272522]
[http://dx.doi.org/10.1155/2017/8917258]
[http://dx.doi.org/10.1016/j.cmpb.2013.12.008] [PMID: 24480371]
[http://dx.doi.org/10.1007/978-3-319-46723-8_69]
[http://dx.doi.org/10.1016/j.compbiomed.2015.10.007] [PMID: 26551453]
[http://dx.doi.org/10.1007/978-3-319-66182-7_83]
[http://dx.doi.org/10.1109/TMI.2018.2835303] [PMID: 29993738]
[http://dx.doi.org/10.1007/978-3-319-24574-4_28]
[http://dx.doi.org/10.1007/978-3-030-00937-3_49]
[http://dx.doi.org/10.1016/j.asoc.2018.05.038]
[http://dx.doi.org/10.1007/978-3-030-00937-3_48]
[http://dx.doi.org/10.1109/WACV.2018.00066]
[http://dx.doi.org/10.1007/978-3-030-00937-3_50]
[http://dx.doi.org/10.1007/978-3-030-00937-3_51]
[http://dx.doi.org/10.1016/j.media.2019.02.006] [PMID: 30807894]
[http://dx.doi.org/10.1109/CVPR.2019.00221]
[http://dx.doi.org/10.1016/j.media.2019.04.005] [PMID: 31035060]
[PMID: 31352338]
[http://dx.doi.org/ 10.1109/WACV.2019.00020]
[http://dx.doi.org/10.1007/s11548-016-1501-5] [PMID: 27885540]
[http://dx.doi.org/10.1002/mp.13221] [PMID: 30269345]
[http://dx.doi.org/10.1016/j.compmedimag.2018.03.001] [PMID: 29573583]
[http://dx.doi.org/10.1155/2017/6941306]
[http://dx.doi.org/10.1109/TMI.2018.2806309] [PMID: 29994628]
[http://dx.doi.org/10.1109/BIBM.2018.8621257]
[http://dx.doi.org/10.1186/1752-0509-9-S5-S5] [PMID: 26356850]
[http://dx.doi.org/10.1109/TMI.2016.2578680] [PMID: 27305669]