General Review Article

基于miRNA生物标志物系统发育分析的抑郁与胃食管反流之间的关联

卷 27, 期 38, 2020

页: [6536 - 6547] 页: 12

弟呕挨: 10.2174/0929867327666200425214906

价格: $65

conference banner
摘要

许多临床研究表明,重度抑郁症(MD)与胃食管反流病(GERD)之间存在关联。 两种疾病均显示影响很大一部分全球人口。 了解这两种疾病合并症机制的更高级研究可以为开发这两种疾病的新疗法提供启示。 据我们所知,文献中还没有任何研究使用其miRNA生物标记物研究MD和GERD之间的关系。 我们采用系统发育分析来分析其miRNA生物标记。 根据我们的分析结果,可以通过miRNA系统发育探索这两种疾病之间的关联。 除了来自系统发育分析的证据外,我们还基于台湾生物库数据证明了MD和GERD之间关系的流行病学证据。

关键词: 严重抑郁症,胃食管反流,microRNA,系统发育分析,MD,GERD,常见消化系统疾病。

[1]
Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.; Zitman, F.G. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry, 2010, 67(3), 220-229.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.2] [PMID: 20194822]
[2]
Ouakinin, S.R.S.; Barreira, D.P.; Gois, C.J. Depression and obesity: Integrating the role of stress, neuroendocrine dysfunction and inflammatory pathways. Front. Endocrinol., 2018, 9, 431.
[http://dx.doi.org/10.3389/fendo.2018.00431] [PMID: 30108549]
[3]
Kang, H-J.; Kim, S.Y.; Bae, K.Y.; Kim, S.W.; Shin, I.S.; Yoon, J.S.; Kim, J.M. Comorbidity of depression with physical disorders: research and clinical implications. Chonnam Med. J., 2015, 51(1), 8-18.
[http://dx.doi.org/10.4068/cmj.2015.51.1.8] [PMID: 25914875]
[4]
Atlantis, E.; Fahey, P.; Foster, J. Collaborative care for comorbid depression and diabetes: a systematic review and meta-analysis. BMJ Open, 2014, 4(4)e004706
[http://dx.doi.org/10.1136/bmjopen-2013-004706] [PMID: 24727428]
[5]
Cheung, S.G.; Goldenthal, A.R.; Uhlemann, A.C.; Mann, J.J.; Miller, J.M.; Sublette, M.E. Systematic review of gut microbiota and major depression. Front. Psychiatry, 2019, 10, 34.
[http://dx.doi.org/10.3389/fpsyt.2019.00034] [PMID: 30804820]
[6]
Locke, G.R., III; Talley, N.J.; Fett, S.L.; Zinsmeister, A.R.; Melton, L.J., III Prevalence and clinical spectrum of gastroesophageal reflux: a population-based study in Olmsted County, Minnesota. Gastroenterology, 1997, 112(5), 1448-1456.
[http://dx.doi.org/10.1016/S0016-5085(97)70025-8] [PMID: 9136821]
[7]
Domper Arnal, M.J.; Ferrández Arenas, Á.; Lanas Arbeloa, Á. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. WJG, 2015, 21(26), 7933-7943.
[http://dx.doi.org/10.3748/wjg.v21.i26.7933] [PMID: 26185366]
[8]
Thrift, A.P.; Kramer, J.R.; Qureshi, Z.; Richardson, P.A.; El-Serag, H.B. Age at onset of GERD symptoms predicts risk of Barrett’s esophagus. Am. J. Gastroenterol., 2013, 108(6), 915-922.
[http://dx.doi.org/10.1038/ajg.2013.72] [PMID: 23567358]
[9]
Jansson, C.; Nordenstedt, H.; Wallander, M.A.; Johansson, S.; Johnsen, R.; Hveem, K.; Lagergren, J. Severe gastro-oesophageal reflux symptoms in relation to anxiety, depression and coping in a population-based study. Aliment. Pharmacol. Ther., 2007, 26(5), 683-691.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03411.x] [PMID: 17697202]
[10]
Choi, J.M.; Yang, J.I.; Kang, S.J.; Han, Y.M.; Lee, J.; Lee, C.; Chung, S.J.; Yoon, D.H.; Park, B.; Kim, Y.S. Association between anxiety and depression and gastroesophageal reflux disease: results from a large cross-sectional study. J. Neurogastroenterol. Motil., 2018, 24(4), 593-602.
[http://dx.doi.org/10.5056/jnm18069] [PMID: 30347938]
[11]
Kim, S.Y.; Kim, H.J.; Lim, H.; Kong, I.G.; Kim, M.; Choi, H.G. Bidirectional association between gastroesophageal reflux disease and depression: two different nested case-control studies using a national sample cohort. Sci. Rep., 2018, 8(1), 11748.
[http://dx.doi.org/10.1038/s41598-018-29629-7] [PMID: 30082758]
[12]
On, Z.X.; Grant, J.; Shi, Z.; Taylor, A.W.; Wittert, G.A.; Tully, P.J.; Hayley, A.C.; Martin, S. The association between gastroesophageal reflux disease with sleep quality, depression, and anxiety in a cohort study of Australian men. J. Gastroenterol. Hepatol., 2017, 32(6), 1170-1177.
[http://dx.doi.org/10.1111/jgh.13650] [PMID: 27862259]
[13]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[14]
Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75(5), 855-862.
[http://dx.doi.org/10.1016/0092-8674(93)90530-4] [PMID: 8252622]
[15]
Hwang, H.W.; Mendell, J.T. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer, 2006, 94(6), 776-780.
[http://dx.doi.org/10.1038/sj.bjc.6603023] [PMID: 16495913]
[16]
Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther., 2016, 1, 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[17]
Wang, H.; Li, W-H. Increasing MicroRNA target prediction confidence by the relative R(2) method. J. Theor. Biol., 2009, 259(4), 793-798.
[http://dx.doi.org/10.1016/j.jtbi.2009.05.007] [PMID: 19463832]
[18]
Hsieh, W.J.; Lin, F.M.; Huang, H.D.; Wang, H. Investigating microRNA-target interaction-supported tissues in human cancer tissues based on miRNA and target gene expression profiling. PLoS One, 2014, 9(4)e95697
[http://dx.doi.org/10.1371/journal.pone.0095697] [PMID: 24756070]
[19]
Wang, H. Predicting cancer-related MiRNAs using expression profiles in tumor tissue. Curr. Pharm. Biotechnol., 2014, 15(5), 438-444.
[http://dx.doi.org/10.2174/1389201015666140519121255] [PMID: 24846064]
[20]
Wang, H. Predicting microRNA biomarkers for cancer using phylogenetic tree and microarray analysis. Int. J. Mol. Sci., 2016, 17(5), 773.
[http://dx.doi.org/10.3390/ijms17050773] [PMID: 27213352]
[21]
Mumford, S.L.; Towler, B.P.; Pashler, A.L.; Gilleard, O.; Martin, Y.; Newbury, S.F. Circulating microRNA biomarkers in melanoma: tools and challenges in personalised medicine. Biomolecules, 2018, 8(2), 21.
[http://dx.doi.org/10.3390/biom8020021] [PMID: 29701682]
[22]
Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin. Epigenetics, 2018, 10(1), 59.
[http://dx.doi.org/10.1186/s13148-018-0492-1] [PMID: 29713393]
[23]
Garzon, R.; Calin, G.A.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Med., 2009, 60, 167-179.
[http://dx.doi.org/10.1146/annurev.med.59.053006.104707] [PMID: 19630570]
[24]
Karthikeyan, A.; Patnala, R.; Jadhav, S.P.; Eng-Ang, L.; Dheen, S.T. MicroRNAs: key players in microglia and astrocyte mediated inflammation in CNS pathologies. Curr. Med. Chem., 2016, 23(30), 3528-3546.
[http://dx.doi.org/10.2174/0929867323666160814001040] [PMID: 27528056 ]
[25]
Taguchi, Y.H.; Wang, H. Exploring microRNA biomarker for amyotrophic lateral sclerosis. Int. J. Mol. Sci., 2018, 19(5)E1318
[http://dx.doi.org/10.3390/ijms19051318] [PMID: 29710810]
[26]
Wang, H. Anti-NMDA receptor encephalitis: efficacy of treatment for male patients and miRNA Biomarker. Curr. Med. Chem., 2019.
[http://dx.doi.org/10.2174/0929867325666180221142623] [PMID: 29473497]
[27]
Yin, H.; Fan, Z.; Li, X.; Wang, J.; Liu, W.; Wu, B.; Ying, Z.; Liu, L.; Liu, Z.; Li, J. Phylogenetic tree-informed microRNAome analysis uncovers conserved and lineage-specific miRNAs in Camellia during floral organ development. J. Exp. Bot., 2016, 67(9), 2641-2653.
[http://dx.doi.org/10.1093/jxb/erw095] [PMID: 26951373]
[28]
Tarver, J.E.; Sperling, E.A.; Nailor, A.; Heimberg, A.M.; Robinson, J.M.; King, B.L.; Pisani, D.; Donoghue, P.C.; Peterson, K.J. miRNAs: small genes with big potential in metazoan phylogenetics. Mol. Biol. Evol., 2013, 30(11), 2369-2382.
[http://dx.doi.org/10.1093/molbev/mst133] [PMID: 23913097]
[29]
Zhao, J-P.; Diao, S.; Zhang, B.Y.; Niu, B.Q.; Wang, Q.L.; Wan, X.C.; Luo, Y.Q. Phylogenetic analysis and molecular evolution patterns in the MIR482-MIR1448 polycistron of Populus L. PLoS One, 2012, 7(10)e47811
[http://dx.doi.org/10.1371/journal.pone.0047811] [PMID: 23094096]
[30]
Patel, V.D.; Capra, J.A. Ancient human miRNAs are more likely to have broad functions and disease associations than young miRNAs. BMC Genomics, 2017, 18(1), 672.
[http://dx.doi.org/10.1186/s12864-017-4073-z] [PMID: 28859623]
[31]
Wang, H. Anti-NMDA receptor encephalitis and vaccination. Int. J. Mol. Sci., 2017, 18(1), 193.
[http://dx.doi.org/10.3390/ijms18010193] [PMID: 28106787]
[32]
Wang, H. Phylogenetic Analysis to explore the association between Anti-NMDA receptor encephalitis and tumors based on microRNA biomarkers. Biomolecules, 2019, 9(10), 572.
[http://dx.doi.org/10.3390/biom9100572] [PMID: 31590348]
[33]
Taiwan Biobank. Homepage., 2015. Available at https://www.twbiobank.org.tw/new_web_en/index.php (Accessed date: May 2020).
[34]
Yuan, H.; Mischoulon, D.; Fava, M.; Otto, M.W. Circulating microRNAs as biomarkers for depression: Many candidates, few finalists. J. Affect. Disord., 2018, 233, 68-78.
[http://dx.doi.org/10.1016/j.jad.2017.06.058] [PMID: 28673667]
[35]
Su, M.; Hong, J.; Zhao, Y.; Liu, S.; Xue, X. MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA 132 in rats with depression. Mol. Med. Rep., 2015, 12(4), 5399-5406.
[http://dx.doi.org/10.3892/mmr.2015.4104] [PMID: 26239616]
[36]
Liu, Y.; Yang, X.; Zhao, L.; Zhang, J.; Li, T.; Ma, X. Increased miR-132 level is associated with visual memory dysfunction in patients with depression. Neuropsychiatr. Dis. Treat., 2016, 12, 2905-2911.
[http://dx.doi.org/10.2147/NDT.S116287] [PMID: 27877044]
[37]
Baudry, A.; Mouillet-Richard, S.; Schneider, B.; Launay, J.M.; Kellermann, O. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science, 2010, 329(5998), 1537-1541.
[http://dx.doi.org/10.1126/science.1193692] [PMID: 20847275]
[38]
Song, M-F.; Dong, J.Z.; Wang, Y.W.; He, J.; Ju, X.; Zhang, L.; Zhang, Y.H.; Shi, J.F.; Lv, Y.Y. CSF miR-16 is decreased in major depression patients and its neutralization in rats induces depression-like behaviors via a serotonin transmitter system. J. Affect. Disord., 2015, 178, 25-31.
[http://dx.doi.org/10.1016/j.jad.2015.02.022] [PMID: 25779937]
[39]
Garbett, K.A.; Vereczkei, A.; Kálmán, S.; Brown, J.A.; Taylor, W.D.; Faludi, G.; Korade, Ž.; Shelton, R.C.; Mirnics, K. Coordinated messenger RNA/microRNA changes in fibroblasts of patients with major depression. Biol. Psychiatry, 2015, 77(3), 256-265.
[http://dx.doi.org/10.1016/j.biopsych.2014.05.015] [PMID: 25016317]
[40]
Bai, M.; Zhu, X.; Zhang, Y.; Zhang, S.; Zhang, L.; Xue, L.; Yi, J.; Yao, S.; Zhang, X. Abnormal hippocampal BDNF and miR-16 expression is associated with depression-like behaviors induced by stress during early life. PLoS One, 2012, 7(10)e46921
[http://dx.doi.org/10.1371/journal.pone.0046921] [PMID: 23056528]
[41]
Fiori, L.M.; Lopez, J.P.; Richard-Devantoy, S.; Berlim, M.; Chachamovich, E.; Jollant, F.; Foster, J.; Rotzinger, S.; Kennedy, S.H.; Turecki, G. Investigation of miR-1202, miR-135a, and miR-16 in major depressive disorder and antidepressant response. Int. J. Neuropsychopharmacol., 2017, 20(8), 619-623.
[http://dx.doi.org/10.1093/ijnp/pyx034] [PMID: 28520926 ]
[42]
Zhang, Y.; Zhu, X.; Bai, M.; Zhang, L.; Xue, L.; Yi, J. Maternal deprivation enhances behavioral vulnerability to stress associated with miR-504 expression in nucleus accumbens of rats. PLoS One, 2013, 8(7)e69934
[http://dx.doi.org/10.1371/journal.pone.0069934] [PMID: 23922862]
[43]
Maffioletti, E.; Cattaneo, A.; Rosso, G.; Maina, G.; Maj, C.; Gennarelli, M.; Tardito, D.; Bocchio-Chiavetto, L. Peripheral whole blood microRNA alterations in major depression and bipolar disorder. J. Affect. Disord., 2016, 200, 250-258.
[http://dx.doi.org/10.1016/j.jad.2016.04.021] [PMID: 27152760]
[44]
Gururajan, A.; Naughton, M.E.; Scott, K.A.; O’Connor, R.M.; Moloney, G.; Clarke, G.; Dowling, J.; Walsh, A.; Ismail, F.; Shorten, G.; Scott, L.; McLoughlin, D.M.; Cryan, J.F.; Dinan, T.G. MicroRNAs as biomarkers for major depression: a role for let-7b and let-7c. Transl. Psychiatry, 2016, 6(8)e862
[http://dx.doi.org/10.1038/tp.2016.131] [PMID: 27483380]
[45]
Wei, Y.B.; Liu, J.J.; Villaescusa, J.C.; Åberg, E.; Brené, S.; Wegener, G.; Mathé, A.A.; Lavebratt, C. Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression. Transl. Psychiatry, 2016, 6(8)e869
[http://dx.doi.org/10.1038/tp.2016.136] [PMID: 27529677]
[46]
Roy, B.; Dunbar, M.; Shelton, R.C.; Dwivedi, Y. Identification of microRNA-124-3p as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacology, 2017, 42(4), 864-875.
[http://dx.doi.org/10.1038/npp.2016.175] [PMID: 27577603]
[47]
Dwivedi, Y.; Roy, B.; Lugli, G.; Rizavi, H.; Zhang, H.; Smalheiser, N.R. Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: relevance to depression pathophysiology. Transl. Psychiatry, 2015, 5(11)e682
[http://dx.doi.org/10.1038/tp.2015.175] [PMID: 26575223]
[48]
Wang, S-S.; Mu, R.H.; Li, C.F.; Dong, S.Q.; Geng, D.; Liu, Q.; Yi, L.T. microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 79(Pt B), 417-425.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.024] [PMID: 28764913]
[49]
Muñoz-Llanos, M.; García-Pérez, M.A.; Xu, X.; Tejos-Bravo, M.; Vidal, E.A.; Moyano, T.C.; Gutiérrez, R.A.; Aguayo, F.I.; Pacheco, A.; García-Rojo, G.; Aliaga, E.; Rojas, P.S.; Cidlowski, J.A.; Fiedler, J.L. MicroRNA profiling and bioinformatics target analysis in dorsal hippocampus of chronically stressed Rats: relevance to depression pathophysiology. Front. Mol. Neurosci., 2018, 11, 251.
[http://dx.doi.org/10.3389/fnmol.2018.00251] [PMID: 30127715]
[50]
Wang, X.; Sundquist, K.; Hedelius, A.; Palmér, K.; Memon, A.A.; Sundquist, J. Circulating microRNA-144-5p is associated with depressive disorders. Clin. Epigenetics, 2015, 7(1), 69.
[http://dx.doi.org/10.1186/s13148-015-0099-8] [PMID: 26199675]
[51]
Dwivedi, Y. Emerging role of microRNAs in major depressive disorder: diagnosis and therapeutic implications. Dialogues Clin. Neurosci., 2014, 16(1), 43-61.
[PMID: 24733970]
[52]
Bocchio-Chiavetto, L.; Maffioletti, E.; Bettinsoli, P.; Giovannini, C.; Bignotti, S.; Tardito, D.; Corrada, D.; Milanesi, L.; Gennarelli, M. Blood microRNA changes in depressed patients during antidepressant treatment. Eur. Neuropsychopharmacol., 2013, 23(7), 602-611.
[http://dx.doi.org/10.1016/j.euroneuro.2012.06.013] [PMID: 22925464]
[53]
Issler, O.; Haramati, S.; Paul, E.D.; Maeno, H.; Navon, I.; Zwang, R.; Gil, S.; Mayberg, H.S.; Dunlop, B.W.; Menke, A.; Awatramani, R.; Binder, E.B.; Deneris, E.S.; Lowry, C.A.; Chen, A. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron, 2014, 83(2), 344-360.
[http://dx.doi.org/10.1016/j.neuron.2014.05.042] [PMID: 24952960]
[54]
Lopez, J.P.; Lim, R.; Cruceanu, C.; Crapper, L.; Fasano, C.; Labonte, B.; Maussion, G.; Yang, J.P.; Yerko, V.; Vigneault, E.; El Mestikawy, S.; Mechawar, N.; Pavlidis, P.; Turecki, G. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat. Med., 2014, 20(7), 764-768.
[http://dx.doi.org/10.1038/nm.3582] [PMID: 24908571]
[55]
Torres-Berrío, A.; Lopez, J.P.; Bagot, R.C.; Nouel, D.; Dal Bo, G.; Cuesta, S.; Zhu, L.; Manitt, C.; Eng, C.; Cooper, H.M.; Storch, K.F.; Turecki, G.; Nestler, E.J.; Flores, C. DCC confers susceptibility to depression-like behaviors in humans and mice and is regulated by miR-218. Biol. Psychiatry, 2017, 81(4), 306-315.
[http://dx.doi.org/10.1016/j.biopsych.2016.08.017] [PMID: 27773352]
[56]
Enatescu, V.R.; Papava, I.; Enatescu, I.; Antonescu, M.; Anghel, A.; Seclaman, E.; Sirbu, I.O.; Marian, C. Circulating plasma micro RNAs in patients with major depressive disorder treated with antidepressants: a pilot study. Psychiatry Investig., 2016, 13(5), 549-557.
[http://dx.doi.org/10.4306/pi.2016.13.5.549] [PMID: 27757134]
[57]
Smalheiser, N.R.; Lugli, G.; Rizavi, H.S.; Torvik, V.I.; Turecki, G.; Dwivedi, Y. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One, 2012, 7(3)e33201
[http://dx.doi.org/10.1371/journal.pone.0033201] [PMID: 22427989]
[58]
Sun, X.; Song, Z.; Si, Y.; Wang, J.H. microRNA and mRNA profiles in ventral tegmental area relevant to stress-induced depression and resilience. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 86, 150-165.
[http://dx.doi.org/10.1016/j.pnpbp.2018.05.023] [PMID: 29864451]
[59]
Li, J.; Meng, H.; Cao, W.; Qiu, T. MiR-335 is involved in major depression disorder and antidepressant treatment through targeting GRM4. Neurosci. Lett., 2015, 606, 167-172.
[http://dx.doi.org/10.1016/j.neulet.2015.08.038] [PMID: 26314506]
[60]
Uemura, R.; Murakami, Y.; Hashimoto, A.; Sawada, A.; Otani, K.; Taira, K.; Hosomi, S.; Nagami, Y.; Tanaka, F.; Kamata, N.; Yamagami, H.; Tanigawa, T.; Watanabe, T.; Taguchi, Y.H.; Fujiwara, Y. Expression of serum exosomal and esophageal MicroRNA in rat reflux esophagitis. Int. J. Mol. Sci., 2017, 18(8)E1611
[http://dx.doi.org/10.3390/ijms18081611] [PMID: 28757556]
[61]
Xu, Z.; Liao, B.; Zhang, R.; Li, Y.; Mei, L.; Wang, L. Downregulation of microRNA-128-3p protects human esophageal squamous Het-1A cells from hydrochloric acid-induced cell injury by targeting E2F3. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2018, 73(9), 513-518.
[http://dx.doi.org/doi.org/10.1691/ph.2018.8554] [PMID: 30223934]
[62]
Smith, C.M.; Michael, M.Z.; Watson, D.I.; Tan, G.; Astill, D.S.; Hummel, R.; Hussey, D.J. Impact of gastro-oesophageal reflux on microRNA expression, location and function. BMC Gastroenterol., 2013, 13(1), 4.
[http://dx.doi.org/10.1186/1471-230X-13-4] [PMID: 23297865]
[63]
Yan, X.; Zhu, S.; Zhang, H. miR-203 expression in exfoliated cells of tongue coating represents a sensitive and specific biomarker of gastroesophageal reflux disease. Gastroenterol. Res. Pract., 2016, 2016234945
[http://dx.doi.org/doi.org/10.1155/2016/2349453] [PMID: 27667995]
[64]
Shoji, H.; Isomoto, H.; Yoshida, A.; Ikeda, H.; Minami, H.; Kanda, T.; Urabe, S.; Matsushima, K.; Takeshima, F.; Nakao, K.; Inoue, H. MicroRNA-130a is highly expressed in the esophageal mucosa of achalasia patients. Exp. Ther. Med., 2017, 14(2), 898-904.
[http://dx.doi.org/10.3892/etm.2017.4598] [PMID: 28810541]
[65]
Wang, L.; Ji, F.; Liu, G.; Wang, W.; Li, Z.; Yue, Y.; Wang, Z. Upregulation of circulating miR130a is correlated with development of Barrett’s esophagus and esophageal adenocarcinoma. OncoTargets Ther., 2018, 12, 1-7.
[http://dx.doi.org/10.2147/OTT.S162603] [PMID: 30588024]
[66]
Mathworks, I.J.M.I. Natick. MATLAB: R2014a, 2014. Available at: https://www.mathworks.com/products/matlab.html (Accessed date: May 2020).
[67]
Kozomara, A.; Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res., 2014, 42(Database issue), D68-D73.
[http://dx.doi.org/10.1093/nar/gkt1181] [PMID: 24275495]
[68]
Fromm, B.; Domanska, D.; Høye, E.; Ovchinnikov, V.; Kang, W.; Aparicio-Puerta, E.; Johansen, M.; Flatmark, K.; Mathelier, A.; Hovig, E.; Hackenberg, M.; Friedländer, M.R.; Peterson, K.J. MirGeneDB 2.0: the metazoan microRNA complement. Nucleic Acids Res., 2020, 48(D1), D132-D141.
[http://dx.doi.org/doi.org/10.1093/nar/gkz1016] [PMID: 31598695]
[69]
Fromm, B.; Billipp, T.; Peck, L.E.; Johansen, M.; Tarver, J.E.; King, B.L.; Newcomb, J.M.; Sempere, L.F.; Flatmark, K.; Hovig, E.; Peterson, K.J. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu. Rev. Genet., 2015, 49, 213-242.
[http://dx.doi.org/10.1146/annurev-genet-120213-092023] [PMID: 26473382]
[70]
Taiwan, Biobank. Participation Program, 2015. Available at: https://www.twbiobank.org.tw/new_web_en/join-flow-before.php
[71]
Taiwan, Biobank. Data Access Details, 2015. Available at: https://www.twbiobank.org.tw/new_web_en/about-export. php
[72]
Wu, C-S.; Yu, S.H.; Lee, C.Y.; Tseng, H.Y.; Chiu, Y.F.; Hsiung, C.A. Prevalence of and risk factors for minor and major depression among community-dwelling older adults in Taiwan. Int. Psychogeriatr., 2017, 29(7), 1113-1121.
[http://dx.doi.org/10.1017/S1041610217000199] [PMID: 28390440]
[73]
Hung, L.J.; Hsu, P.I.; Yang, C.Y.; Wang, E.M.; Lai, K.H. Prevalence of gastroesophageal reflux disease in a general population in Taiwan. J. Gastroenterol. Hepatol., 2011, 26(7), 1164-1168.
[http://dx.doi.org/10.1111/j.1440-1746.2011.06750.x] [PMID: 21517967]
[74]
Banach, E.; Dmitrzak-Weglarz, M.; Pawlak, J.; Kapelski, P.; Szczepankiewicz, A.; Rajewska-Rager, A.; Slopien, A.; Skibinska, M.; Czerski, P.; Hauser, J. Dysregulation of miR-499, miR-708 and miR-1908 during a depression episode in bipolar disorders. Neurosci. Lett., 2017, 654, 117-119.
[http://dx.doi.org/10.1016/j.neulet.2017.06.019] [PMID: 28647289]
[75]
Bair, M.J.; Robinson, R.L.; Katon, W.; Kroenke, K. Depression and pain comorbidity: a literature review. Arch. Intern. Med., 2003, 163(20), 2433-2445.
[http://dx.doi.org/10.1001/archinte.163.20.2433] [PMID: 14609780]
[76]
Lenze, E.J. Comorbidity of depression and anxiety in the elderly. Curr. Psychiatry Rep., 2003, 5(1), 62-67.
[http://dx.doi.org/10.1007/s11920-003-0011-7] [PMID: 12686004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy