[1]
Borges do Nascimento IJ, Cacic N, Abdulazeem HM, et al. Novel Coronavirus infection (COVID-19) in humans: A scoping review and meta-analysis. J Clin Med 2020; 9(4): 941.
[2]
Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID-19): A clinical update. Front Med 2020; 2: 1-10.
[4]
Bayham J, Fenichel EP. 2020.
[5]
Sungnak W, Huang N, Becavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020; 26: 681-7.
[6]
McGonagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev 2020; 2020102537
[7]
Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents 2020; 34(2): 1.
[8]
Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARS-CoV-2. J Endocrinol Invest 2020; 2020: 1-3.
[9]
Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters JL, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020; 1138745
[10]
Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity 2020; 52(4): 583-9.
[11]
Fan HH, Wang LQ, Liu WL, et al. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus (2019-nCoV) related coronavirus model. Chin Med J (Engl) 2020; 133(9): 1051-6.
[12]
Dorvash M, Farahmandnia M, Tavassoly I. a systems biology roadmap to decode mTOR control system in cancer. Interdiscip Sci 2020; 12(1): 1-11.
[13]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[14]
Pan YR, Song JY, Fan B, et al. mTOR may interact with PARP-1 to regulate visible light-induced parthanatos in photoreceptors. Cell Commun Signal 2020; 18(1): 27.
[15]
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10: 54.
[16]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[17]
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res 2016; 11(3): 372-85.
[18]
Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 2013; 19(1): 51-60.
[19]
Walters HE, Deneka-Hannemann S, Cox LS. Reversal of phenotypes of cellular senescence by pan-mTOR inhibition. Aging (Albany NY) 2016; 8(2): 231.
[20]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): Oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[21]
Huang D, Shen S, Cai M, et al. Role of mTOR complex in IGF-1 induced neural differentiation of DPSCs. J Mol Histol 2019; 50(3): 273-83.
[22]
Maiese K. Novel treatment strategies for the nervous system: circadian clock genes, non-coding RNAs, and forkhead transcription factors. Curr Neurovasc Res 2018; 15(1): 81-91.
[23]
Soltani A, Bahreyni A, Boroumand N, et al. Therapeutic potency of mTOR signaling pharmacological inhibitors in the treatment of proinflammatory diseases, current status and perspectives. J Cell Physiol 2017; 233(6): 4783-90.
[24]
Zimmerman MA, Biggers CD, Li PA. Rapamycin treatment increases hippocampal cell viability in an mTOR-independent manner during exposure to hypoxia mimetic, cobalt chloride. BMC Neurosci 2018; 19(1): 82.
[25]
Wang L, Lawrence JC Jr, Sturgill TW, Harris TE. Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR. J Biol Chem 2009; 284(22): 14693-7.
[26]
Beker MC, Caglayan B, Yalcin E, et al. Time-of-day dependent neuronal injury after ischemic stroke: Implication of circadian clock transcriptional factor bmal1 and survival kinase AKT. Mol Neurobiol 2018; 55(3): 2565-76.
[27]
Chong ZZ, Shang YC, Wang S, Maiese K. PRAS40 Is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection. PLoS One 2012; 7(9)e45456
[28]
Wang L, Harris TE, Lawrence JC Jr. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem 2008; 283(23): 15619-27.
[29]
Shang YC, Chong ZZ, Wang S, Maiese K. WNT1 Inducible Signaling Pathway Protein 1 (WISP1) targets PRAS40 to govern beta-amyloid apoptotic injury of microglia. Curr Neurovasc Res 2012; 9(4): 239-49.
[30]
Wang H, Zhang Q, Wen Q, et al. Proline-rich Akt substrate of 40kDa (PRAS40): A novel downstream target of PI3k/Akt signaling pathway. Cell Signal 2012; 24(1): 17-24.
[31]
Gao D, Inuzuka H, Tan MK, et al. mTOR Drives Its Own Activation via SCF(betaTrCP)-Dependent Degradation of the mTOR Inhibitor DEPTOR. Mol Cell 2011; 44(2): 290-303.
[32]
Kim DH, Sarbassov DD, Ali SM, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003; 11(4): 895-904.
[33]
Maiese K. Impacting dementia and cognitive loss with innovative strategies: mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock. Neural Regen Res 2019; 14(5): 773-4.
[34]
Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6(11): 1122-8.
[35]
Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 2008; 416(3): 375-85.
[36]
Pearce LR, Sommer EM, Sakamoto K, Wullschleger S, Alessi DR. Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J 2011; 436(1): 169-79.
[37]
Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 2006; 16(18): 1865-70.
[38]
An T, Zhang X, Li H, et al. GPR120 facilitates cholesterol efflux in macrophages through activation of AMPK signaling pathway. FEBS J 2020. [Epub ahead of print].
[39]
Maiese K. Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[40]
Maiese K. Prospects and perspectives for WISP1 (CCN4) in Diabetes Mellitus. Curr Neurovasc Res 2020. [Epub ahead of print].
[41]
Pal PB, Sonowal H, Shukla K, Srivastava SK, Ramana KV. Aldose reductase regulates hyperglycemia-induced HUVEC death via SIRT1/AMPK-alpha1/mTOR pathway. J Mol Endocrinol 2019; 63(1): 11-25.
[42]
Shokri Afra H, Zangooei M, Meshkani R, et al. Hesperetin is a potent bioactivator that activates SIRT1-AMPK signaling pathway in HepG2 cells. J Physiol Biochem 2019; 75(2): 125-33.
[43]
Zhao D, Sun X, Lv S, et al. Salidroside attenuates oxidized lowdensity lipoproteininduced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. Int J Mol Med 2019; 43(6): 2279-90.
[44]
Kowalska M, Piekut T, Prendecki M, Sodel A, Kozubski W, Dorszewska J. Mitochondrial and nuclear DNA oxidative damage in physiological and pathological aging. DNA Cell Biol 2020. [Epub ahead of print].
[45]
Wu L, Xiong X, Wu X, et al. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci 2020; 13: 28.
[46]
Wang N, Luo Z, Jin M, et al. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging (Albany NY) 2019; 11(10): 3117-37.
[47]
Zhao Y, Wang Q, Wang Y, Li J, Lu G, Liu Z. Glutamine protects against oxidative stress injury through inhibiting the activation of PI3K/Akt signaling pathway in parkinsonian cell model. Environ Health Prev Med 2019; 24(1): 4.
[48]
Atef MM, El-Sayed NM, Ahmed AAM, Mostafa YM. Donepezil improves neuropathy through activation of AMPK signalling pathway in streptozotocin-induced diabetic mice. Biochem Pharmacol 2019; 159: 1-10.
[49]
Maiese K. New Insights for oxidative stress and Diabetes Mellitus. Oxid Med Cell Longev 2015; 2015875961
[50]
Maiese K. Harnessing the power of SIRT1 and non-coding RNAs in vascular disease. Curr Neurovasc Res 2017; 14(1): 82-8.
[51]
Peixoto CA, de Oliveira WH, da Rocha Araujo SM, Nunes AKS. 2017.
[52]
Sato T, Nakashima A, Guo L, Tamanoi F. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem 2009; 284(19): 12783-91.
[53]
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115(5): 577-90.
[54]
Maiese K. WISP1: Clinical insights for a proliferative and restorative member of the CCN family. Curr Neurovasc Res 2014; 11(4): 378-89.
[55]
Gallyas F Jr, Sumegi B, Szabo C. Role of Akt activation in PARP inhibitor resistance in cancer. Cancers (Basel) 2020; 12(3): 532.
[56]
Chang H, Yuan W, Wu H, Yin X, Xuan H. Bioactive components and mechanisms of Chinese poplar propolis alleviates oxidized low-density lipoprotein-induced endothelial cells injury. BMC Complement Altern Med 2018; 18(1): 142.
[57]
Kamarudin MN, Mohd Raflee NA, Syed Hussein SS, Lo JY, Supriady H, Abdul Kadir H. (R)-(+)-alpha-Lipoic acid protected NG108-15 cells against H2O2-induced cell death through PI3K-Akt/GSK-3beta pathway and suppression of NF-kappabeta-cytokines. Drug Des Devel Ther 2014; 8: 1765-80.
[58]
Cheng P, Zuo X, Ren Y, et al. Adenosine A1-receptors modulate mtor signaling to regulate white matter inflammatory lesions induced by chronic cerebral hypoperfusion. Neurochem Res 2016; 41(12): 3272-7.
[59]
Jiang T, Yu JT, Zhu XC, et al. Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol 2014; 171(13): 3146-57.
[60]
Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2016; 12(1): 1-222.
[61]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; 16(12): 1203-14.
[62]
Kalender A, Selvaraj A, Kim SY, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 2010; 11(5): 390-401.
[63]
He C, Zhu H, Li H, Zou MH, Xie Z. Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes 2013; 62(4): 1270-81.
[64]
Oda SS. Metformin protects against experimental acrylamide neuropathy in rats. Drug Dev Res 2017; 78(7): 349-59.
[65]
Hsia SH, Duran P, Lee ML, Davidson MB. Randomized controlled trial comparing hydroxychloroquine with pioglitazone as third-line agents in type 2 diabetic patients failing metformin plus a sulfonylurea: A pilot study. J Diabetes 2020; 12(1): 91-4.
[66]
Shives KD, Massey AR, May NA, Morrison TE, Beckham JD. 4EBP-dependent signaling supports west nile virus growth and protein expression. Viruses 2016; 8(10): 287.
[67]
Takeshita S, Ichikawa T, Taura N, et al. Geranylgeranylacetone has anti-hepatitis C virus activity via activation of mTOR in human hepatoma cells. J Gastroenterol 2012; 47(2): 195-202.
[68]
Nandagopal N, Ali AK, Komal AK, Lee SH. The critical role of IL-15-PI3K-mTOR pathway in natural killer cell effector functions. Front Immunol 2014; 5: 187.
[69]
Seong RK, Kim JA, Shin OS. Wogonin, a flavonoid isolated from Scutellaria baicalensis, has anti-viral activities against influenza infection via modulation of AMPK pathways. Acta Virol 2018; 62(1): 78-85.
[70]
Saenwongsa W, Nithichanon A, Chittaganpitch M, et al. Metformin-induced suppression of IFN-alpha via mTORC1 signalling following seasonal vaccination is associated with impaired antibody responses in type 2 diabetes. Sci Rep 2020; 10(1): 3229.
[71]
Johri MK, Lashkari HV, Gupta D, Vedagiri D, Harshan KH. mTORC1 restricts hepatitis C virus RNA replication through ULK1-mediated suppression of miR-122 and facilitates post-replication events. J Gen Virol 2020; 101(1): 86-95.