Abstract
One of the most recent and exciting approaches in cancer gene therapy is the ability to target the developing blood supply of the tumor. An appealing feature of antiangiogenic gene therapy is that the tumor vasculature is a readily accessible target, particularly when the carrier and its gene are administered systemically. This is in contrast to several other gene therapy approaches in which the tumor vasculature represents a major obstacle to achieving high levels of transfection of the tumor cells. Several gene-based viral or non-viral therapies that target tumor angiogenesis have shown efficacy in pre-clinical models. Genes that encode antiangiogenic polypeptides such as angiostatin and endostatin have significantly inhibited tumor growth, inducing a microscopic dormant state. The products of these genes are thought to act extracellularly to inhibit angiogenesis. An alternative approach that investigators have used successfully in tumor-bearing mice is to target angiogenic growth factors or their receptors that are essential for tumor growth. Levels of angiogenic factors such as vascular endothelial growth factor (VEGF) have been reduced by either antisense methods or the use of genes encoding truncated angiogenic decoy receptors. Despite these promising findings of tumor reduction with antiangiogenic gene therapy, advances in the viral and or non-viral delivery systems are essential for this therapy to have clinical utility. In this review, we will discuss the mechanisms of angiogenesis antiangiogenesis, and the current status and future directions of antiangiogenic gene therapy.
Keywords: Antiangiogenic Gene Therapy, Cancer, Genes, Vascular Endothelial Growth factor VEGF, Receptor, Angiogenesis, Antiangiogenesis, Angiopoietins, Tie Receptor, Fibroblast Growth Factor
Current Genomics
Title: Antiangiogenic Gene Therapy in Cancer
Volume: 1 Issue: 2
Author(s): L. Zhang, Q. R. Chen and A. J. Mixson
Affiliation:
Keywords: Antiangiogenic Gene Therapy, Cancer, Genes, Vascular Endothelial Growth factor VEGF, Receptor, Angiogenesis, Antiangiogenesis, Angiopoietins, Tie Receptor, Fibroblast Growth Factor
Abstract: One of the most recent and exciting approaches in cancer gene therapy is the ability to target the developing blood supply of the tumor. An appealing feature of antiangiogenic gene therapy is that the tumor vasculature is a readily accessible target, particularly when the carrier and its gene are administered systemically. This is in contrast to several other gene therapy approaches in which the tumor vasculature represents a major obstacle to achieving high levels of transfection of the tumor cells. Several gene-based viral or non-viral therapies that target tumor angiogenesis have shown efficacy in pre-clinical models. Genes that encode antiangiogenic polypeptides such as angiostatin and endostatin have significantly inhibited tumor growth, inducing a microscopic dormant state. The products of these genes are thought to act extracellularly to inhibit angiogenesis. An alternative approach that investigators have used successfully in tumor-bearing mice is to target angiogenic growth factors or their receptors that are essential for tumor growth. Levels of angiogenic factors such as vascular endothelial growth factor (VEGF) have been reduced by either antisense methods or the use of genes encoding truncated angiogenic decoy receptors. Despite these promising findings of tumor reduction with antiangiogenic gene therapy, advances in the viral and or non-viral delivery systems are essential for this therapy to have clinical utility. In this review, we will discuss the mechanisms of angiogenesis antiangiogenesis, and the current status and future directions of antiangiogenic gene therapy.
Export Options
About this article
Cite this article as:
Zhang L., Chen R. Q. and Mixson J. A., Antiangiogenic Gene Therapy in Cancer, Current Genomics 2000; 1 (2) . https://dx.doi.org/10.2174/1389202003351535
DOI https://dx.doi.org/10.2174/1389202003351535 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Influence of Enzyme-Inducing Antiepileptic Drugs on Trough Level of Imatinib in Glioblastoma Patients
Current Clinical Pharmacology Nanoparticle Coated Viral Vectors for Gene Therapy
Current Biotechnology Therapeutic Targets for the Management of Peripheral Nerve Injury- Induced Neuropathic Pain
CNS & Neurological Disorders - Drug Targets Signaling Intermediates (MAPK and PI3K) as Therapeutic Targets in NSCLC
Current Pharmaceutical Design Glioma: Tryptophan Catabolite and Melatoninergic Pathways Link microRNA, 14-3- 3, Chromosome 4q35, Epigenetic Processes and other Glioma Biochemical Changes
Current Pharmaceutical Design Histone Methyltransferase Inhibitors: Novel Epigenetic Agents for Cancer Treatment
Current Medicinal Chemistry Extracellular Vesicles in Glioblastoma: Role in Biological Processes and in Therapeutic Applications
Current Cancer Drug Targets Gene Therapy Using an Adenovirus Vector for Apoptosis-Related Genes is a Highly Effective Therapeutic Modality for Killing Glioma Cells
Current Gene Therapy Endothelial Progenitor Cells: Hope Beyond Controversy
Current Cancer Drug Targets Natural Compounds as Inhibitors of SARS-CoV-2 Main Protease (3CLpro): A Molecular Docking and Simulation Approach to Combat COVID-19
Current Pharmaceutical Design IAPs as a Target for Anticancer Therapy
Current Cancer Drug Targets The NK-1 Receptor: A New Target in Cancer Therapy
Current Drug Targets Anti-Cancer Targeting Telomerase Inhibitors: β-Rubromycin and Oleic Acid
Mini-Reviews in Medicinal Chemistry Ketogenic Diet and Other Dietary Intervention Strategies in the Treatment of Cancer
Current Medicinal Chemistry Strategies to Convert PACAP from a Hypophysiotropic Neurohormone Into a Neuroprotective Drug
Current Pharmaceutical Design An Expanding Appreciation of the Role Chemokine Receptors Play in Cancer Progression
Current Pharmaceutical Design Anti-Cancer Cytotoxic Effects of Multiwalled Carbon Nanotubes
Current Pharmaceutical Design Nose-to-Brain Drug Delivery by Nanoparticles in the Treatment of Neurological Disorders
Current Medicinal Chemistry Editorial [Hot Topic: Emerging Therapeutic Targets and Agents for Glioblastoma Therapy – Part I (Guest Editor: Hui-Wen Lo)]
Anti-Cancer Agents in Medicinal Chemistry Ovarian Cancer - Angiogenesis and Targeted Therapy
Current Angiogenesis (Discontinued)