Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Isovitexin Inhibits Stemness and Induces Apoptosis in Hepatocellular Carcinoma SK-Hep-1 Spheroids by Upregulating miR-34a Expression

Author(s): Chang Xu, Xiaocheng Cao, XiaoZheng Cao, Lihua Liu, Yebei Qiu, Xiang Li, Lingli Zhou, Yingxia Ning, Kaiqun Ren* and Jianguo Cao*

Volume 20, Issue 14, 2020

Page: [1654 - 1663] Pages: 10

DOI: 10.2174/1871520620666200424123139

Price: $65

Abstract

Background: We previously demonstrated that isovitexin (apigenin-6-C-glucoside, ISOV) suppressed the stemness of human Hepatocellular Carcinoma (HCC) cells. However, the mechanism of its action remains to be deciphered.

Objective: The current study was to examine whether ISOV regulates the miR-34a expression and hence suppresses the stemness of HCC SK-Hep-1 cells.

Methods: After identification of the stemness, apoptosis resistance and decreased miR-34a expression of spheres from SK-Hep-1 cells (SK-SC), we utilized transfection of a miR-34a mimic or inhibitor to investigate the effects of ISOV on miR-34a, Bcl-2, Bax and Mcl-1 expression in order to understand the mechanism underlying ISOV-mediated repression of stemness and promotion of apoptosis.

Results: Our results demonstrated that SK-SC displayed higher stemness and resistance to apoptosis, as well as reduced miR-34a levels compared to SK-Hep-1 cells. ISOV suppressed sphere and colony formation, and decreased CD44+ cell populations. In addition, ABCG2, ALDH1, and NANOG mRNA levels were decreased, while there was a concomitant increase in miR-34a levels. With regards to apoptosis-related proteins, ISOV increased Bax protein levels, and reduced Bcl-2 and Mcl-1 protein levels in SK-SC. Importantly, there was a cooperative effect when miR-34a was overexpressed in the presence of ISOV in SK-SC, and down-regulation of miR-34a attenuated the effects of ISOV in SK-Hep-1 cells.

Conclusion: We suggest that ISOV-mediated miR-34a upregulation induces apoptosis and suppresses the stemness of SK-SC. Our data indicate that ISOV exhibits therapeutic potential for the treatment of HCC.

Keywords: Hepatocellular carcinoma, cancer stem cell, isovitexin, miR-34a, apoptosis, Bcl-2, Mcl-1, Bax.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[3]
Yamashita, T.; Wang, X.W. Cancer stem cells in the development of liver cancer. J. Clin. Invest., 2013, 123(5), 1911-1918.
[http://dx.doi.org/10.1172/JCI66024] [PMID: 23635789]
[4]
Pelosi, E.; Castelli, G.; Testa, U. Pancreatic cancer: Molecular characterization, clonal evolution and cancer stem cells. Biomedicines, 2017, 5(4) E65
[http://dx.doi.org/10.3390/biomedicines5040065] [PMID: 29156578]
[5]
Lee, D.; Lee, S.R.; Kang, K.S.; Ko, Y.; Pang, C.; Yamabe, N.; Kim, K.H. Betulinic acid suppresses ovarian cancer cell proliferation through induction of apoptosis. Biomolecules, 2019, 9(7) E257
[http://dx.doi.org/10.3390/biom9070257] [PMID: 31277238]
[6]
Rachmadi, L.; Siregar, N.C.; Kanoko, M.; Andrijono, A.; Bardosono, S.; Suryandari, D.A.; Sekarutami, S.M.; Hernowo, B.S. Role of cancer stem cell, apoptotic factor, DNA repair, and telomerase toward radiation therapy response in stage IIIB cervical cancer. Oman Med. J., 2019, 34(3), 224-230.
[http://dx.doi.org/10.5001/omj.2019.43] [PMID: 31110630]
[7]
Bezerra, P.H.A.; Ferreira, I.M.; Franceschi, B.T.; Bianchini, F.; Ambrósio, L.; Cintra, A.C.O.; Sampaio, S.V.; de Castro, F.A.; Torqueti, M.R. BthTX-I from Bothrops jararacussu induces apoptosis in human breast cancer cell lines and decreases cancer stem cell subpopulation. J. Venom. Anim. Toxins Incl. Trop. Dis., 2019, 25 e20190010
[http://dx.doi.org/10.1590/1678-9199-jvatitd-2019-0010] [PMID: 31384244]
[8]
Cevatemre, B.; Erkısa, M.; Aztopal, N.; Karakas, D.; Alper, P.; Tsimplouli, C.; Sereti, E.; Dimas, K.; Armutak, E.I.I.; Gurevin, E.G.; Uvez, A.; Mori, M.; Berardozzi, S.; Ingallina, C.; D’Acquarica, I.; Botta, B.; Ozpolat, B.; Ulukaya, E. A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer. Pharmacol. Res., 2018, 129, 500-514.
[http://dx.doi.org/10.1016/j.phrs.2017.11.027] [PMID: 29197639]
[9]
Ganesan, K.; Xu, B. Molecular targets of vitexin and isovitexin in cancer therapy: a critical review. Ann. N. Y. Acad. Sci., 2017, 1401(1), 102-113.
[http://dx.doi.org/10.1111/nyas.13446] [PMID: 28891090]
[10]
Mohammed, R.S.; Abou Zeid, A.H.; El Hawary, S.S.; Sleem, A.A.; Ashour, W.E. Flavonoid constituents, cytotoxic and antioxidant activities of Gleditsia triacanthos L. leaves. Saudi J. Biol. Sci., 2014, 21(6), 547-553.
[http://dx.doi.org/10.1016/j.sjbs.2014.02.002] [PMID: 25473363]
[11]
He, M.; Min, J.W.; Kong, W.L.; He, X.H.; Li, J.X.; Peng, B.W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia, 2016, 115, 74-85.
[http://dx.doi.org/10.1016/j.fitote.2016.09.011] [PMID: 27693342]
[12]
Zu, Y.G.; Liu, X.L.; Fu, Y.J.; Wu, N.; Kong, Y.; Wink, M. Chemical composition of the SFE-CO extracts from Cajanus cajan (L.) Huth and their antimicrobial activity in vitro and in vivo. Phytomedicine, 2010, 17(14), 1095-1101.
[http://dx.doi.org/10.1016/j.phymed.2010.04.005] [PMID: 20576412]
[13]
Hanafi, M.M.M.; Afzan, A.; Yaakob, H.; Aziz, R.; Sarmidi, M.R.; Wolfender, J.L.; Prieto, J.M. In Vitro Pro-apoptotic and anti-migratory effects of Ficus deltoidea L. plant extracts on the human prostate cancer cell lines PC3. Front. Pharmacol., 2017, 8, 895.
[http://dx.doi.org/10.3389/fphar.2017.00895] [PMID: 29326585]
[14]
Lv, S.X.; Qiao, X. Isovitexin (IV) induces apoptosis and autophagy in liver cancer cells through endoplasmic reticulum stress. Biochem. Biophys. Res. Commun., 2018, 496(4), 1047-1054.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.111] [PMID: 29355527]
[15]
Cao, X.; Liu, L.; Yuan, Q.; Li, X.; Cui, Y.; Ren, K.; Zou, C.; Chen, A.; Xu, C.; Qiu, Y.; Quan, M.; Zhang, J.; Cao, J.; Chen, X. Isovitexin reduces carcinogenicity and stemness in hepatic carcinoma stem-like cells by modulating MnSOD and FoxM1. J. Exp. Clin. Cancer Res., 2019, 38(1), 264.
[http://dx.doi.org/10.1186/s13046-019-1244-6] [PMID: 31208440]
[16]
Yan, X.; Zhang, D.; Wu, W.; Wu, S.; Qian, J.; Hao, Y.; Yan, F.; Zhu, P.; Wu, J.; Huang, G.; Huang, Y.; Luo, J.; Liu, X.; Liu, B.; Chen, X.; Du, Y.; Chen, R.; Fan, Z. Mesenchymal stem cells promote hepatocarcinogenesis via lncRNA-MUF interaction with ANXA2 and miR-34a. Cancer Res., 2017, 77(23), 6704-6716.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1915] [PMID: 28947421]
[17]
Saito, Y.; Nakaoka, T.; Saito, H. microRNA-34a as a therapeutic agent against human cancer. J. Clin. Med., 2015, 4(11), 1951-1959.
[http://dx.doi.org/10.3390/jcm4111951] [PMID: 26580663]
[18]
Ma, W.; Xiao, G.G.; Mao, J.; Lu, Y.; Song, B.; Wang, L.; Fan, S.; Fan, P.; Hou, Z.; Li, J.; Yu, X.; Wang, B.; Wang, H.; Wang, H.; Xu, F.; Li, Y.; Liu, Q.; Li, L. Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget, 2015, 6(12), 10432-10444.
[http://dx.doi.org/10.18632/oncotarget.3394] [PMID: 25826085]
[19]
Zhao, Y.; Wang, X. miR-34a targets BCL-2 to suppress the migration and invasion of sinonasal squamous cell carcinoma. Oncol. Lett., 2018, 16(5), 6566-6572.
[http://dx.doi.org/10.3892/ol.2018.9427] [PMID: 30405796]
[20]
Ding, N.; Wu, H.; Tao, T.; Peng, E. NEAT1 regulates cell proliferation and apoptosis of ovarian cancer by miR-34a-5p/BCL2. OncoTargets Ther., 2017, 10, 4905-4915.
[http://dx.doi.org/10.2147/OTT.S142446] [PMID: 29062236]
[21]
Lin, X.; Guan, H.; Huang, Z.; Liu, J.; Li, H.; Wei, G.; Cao, X.; Li, Y. Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis. J. Diabetes Res., 2014, 2014 258695
[http://dx.doi.org/10.1155/2014/258695] [PMID: 24829923]
[22]
Shanesazzade, Z.; Peymani, M.; Ghaedi, K.; Nasr Esfahani, M.H. miR-34a/BCL-2 signaling axis contributes to apoptosis in MPP+ -induced SH-SY5Y cells. Mol. Genet. Genomic Med., 2018, 6(6), 975-981.
[http://dx.doi.org/10.1002/mgg3.469] [PMID: 30221494]
[23]
Hashimoto, N.; Tsunedomi, R.; Yoshimura, K.; Watanabe, Y.; Hazama, S.; Oka, M. Cancer stem-like sphere cells induced from de-differentiated hepatocellular carcinoma-derived cell lines possess the resistance to anti-cancer drugs. BMC Cancer, 2014, 14, 722.
[http://dx.doi.org/10.1186/1471-2407-14-722] [PMID: 25260650]
[24]
Zhao, X.C.; Tian, L.; Cao, J.G.; Liu, F. Induction of apoptosis by 5,7-dihydroxy-8-nitrochrysin in breast cancer cells: The role of reactive oxygen species and Akt. Int. J. Oncol., 2010, 37(5), 1345-1352.
[PMID: 20878083]
[25]
Dai, X.; Ahn, K.S.; Wang, L.Z.; Kim, C.; Deivasigamni, A.; Arfuso, F.; Um, J.Y.; Kumar, A.P.; Chang, Y.C.; Kumar, D.; Kundu, G.C.; Magae, J.; Goh, B.C.; Hui, K.M.; Sethi, G. Ascochlorin enhances the sensitivity of doxorubicin leading to the reversal of epithelial-to-mesenchymal transition in hepatocellular carcinoma. Mol. Cancer Ther., 2016, 15(12), 2966-2976.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0391] [PMID: 27765853]
[26]
Nishiyama, M.; Tsunedomi, R.; Yoshimura, K.; Hashimoto, N.; Matsukuma, S.; Ogihara, H.; Kanekiyo, S.; Iida, M.; Sakamoto, K.; Suzuki, N.; Takeda, S.; Yamamoto, S.; Yoshino, S.; Ueno, T.; Hamamoto, Y.; Hazama, S.; Nagano, H. Metastatic ability and the epithelial-mesenchymal transition in induced cancer stem-like hepatoma cells. Cancer Sci., 2018, 109(4), 1101-1109.
[http://dx.doi.org/10.1111/cas.13527] [PMID: 29417690]
[27]
Zheng, S.Z.; Sun, P.; Wang, J.P.; Liu, Y.; Gong, W.; Liu, J. MiR-34a overexpression enhances the inhibitory effect of doxorubicin on HepG2 cells. World J. Gastroenterol., 2019, 25(22), 2752-2762.
[http://dx.doi.org/10.3748/wjg.v25.i22.2752] [PMID: 31235998]
[28]
Han, R.; Chen, X.; Li, Y.; Zhang, S.; Li, R.; Lu, L. MicroRNA-34a suppresses aggressiveness of hepatocellular carcinoma by modulating E2F1, E2F3, and Caspase-3. Cancer Manag. Res., 2019, 11, 2963-2976.
[http://dx.doi.org/10.2147/CMAR.S202664] [PMID: 31114344]
[29]
Sun, T.Y.; Xie, H.J.; Li, Z.; Kong, L.F.; Gou, X.N.; Li, D.J.; Shi, Y.J.; Ding, Y.Z. miR-34a regulates HDAC1 expression to affect the proliferation and apoptosis of hepatocellular carcinoma. Am. J. Transl. Res., 2017, 9(1), 103-114.
[PMID: 28123637]
[30]
Tafsiri, E.; Darbouy, M.; Shadmehr, M.B.; Cho, W.C.; Karimipoor, M. Abberent expression of oncogenic and tumor-suppressive microRNAs and their target genes in human adenocarcinoma alveolar basal epithelial cells. J. Cancer Res. Ther., 2016, 12(1), 395-400.
[http://dx.doi.org/10.4103/0973-1482.148673] [PMID: 27072269]
[31]
Nalls, D.; Tang, S.N.; Rodova, M.; Srivastava, R.K.; Shankar, S. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One, 2011, 6(8) e24099
[http://dx.doi.org/10.1371/journal.pone.0024099] [PMID: 21909380]
[32]
Espinoza, J.L.; Takami, A.; Trung, L.Q.; Kato, S.; Nakao, S. Resveratrol prevents EBV transformation and inhibits the outgrowth of EBV-immortalized human B cells. PLoS One, 2012, 7(12) e51306
[http://dx.doi.org/10.1371/journal.pone.0051306] [PMID: 23251493]
[33]
da Silva, I.C.V.; Kaluđerović, G.N.; de Oliveira, P.F.; Guimarães, D.O.; Quaresma, C.H.; Porzel, A.; Muzitano, M.F.; Wessjohann, L.A.; Leal, I.C.R. Apoptosis caused by triterpenes and phytosterols and antioxidant activity of an enriched flavonoid extract from Passiflora mucronata. Anticancer. Agents Med. Chem., 2018, 18(10), 1405-1416.
[http://dx.doi.org/10.2174/1871520618666180315090949] [PMID: 29542423]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy