Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Review Article

Encapsulation and Bioavailability of Lactobacillus spp. in Electrospun Fibers

Author(s): Juliana M.D. Soares, Mateus M. da Costa and Helinando P. de Oliveira*

Volume 9, Issue 1, 2020

Page: [15 - 22] Pages: 8

DOI: 10.2174/2211550109999200422121834

Price: $65

conference banner
Abstract

Some species of Lactobacillus (Gram-positive bacilli) are promising probiotics with positive physiological effects on the prevention and treatment of diseases. A critical drawback related to the action of these microorganisms refers to the sustainable viability of the cells at adverse conditions (under storage, packing and at gastrointestinal tract flux) - the high humidity conditions inhibit the prolonged viability of the cells. As a consequence, the encapsulation in oxygen-free or impermeable micro containers represents an additional protective procedure to preserve bioactive living cells, providing targeted release of microorganisms at specific parts of the organism. Herein, this mini-review investigates the alternative encapsulation of Lactobacillus spp. by polymeric electrospun fibers. The use of polymeric solutions as templates for electrospinning procedure may increase not only the stability of Lactobacillus spp. but also provide hydrophobic pockets that protect probiotics against adverse conditions. Besides, the electrospun fibers can control the release of species, favoring the therapeutic benefits of probiotics, increasing the viability and stability of Lactobacillus spp.

Keywords: Encapsulation, electrospinning, nanofibers, bioactive cells, probiotics, microorganisms.

Graphical Abstract

[1]
Duar RM, Lin XB, Zheng J, et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 2017; 41(1): S27-48.
[http://dx.doi.org/10.1093/femsre/fux030] [PMID: 28673043]
[2]
Le B, Yang SH. Efficacy of Lactobacillus plantarum in prevention of inflammatory bowel disease. Toxicol Rep 2018; 5: 314-7.
[http://dx.doi.org/10.1016/j.toxrep.2018.02.007] [PMID: 29854599]
[3]
Jeavons HS. Prevention and treatment of vulvovaginal candidiasis using exogenous Lactobacillus. J Obstet Gynecol Neonatal Nurs 2003; 32(3): 287-96.
[http://dx.doi.org/10.1177/0884217503253439] [PMID: 12774870]
[4]
Santos SCD, Konstantyner T, Cocco RR. Effects of probiotics in the treatment of food hypersensitivity in children: a systematic review. Allergol Immunopathol 2020; 48(1): 95-104.
[5]
Goldstein EJ, Tyrrell KL, Citron DM. Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin Infect Dis 2015; 60(2): S98-S107.
[http://dx.doi.org/10.1093/cid/civ072]
[6]
Tajabadi N, Mardan M, Saari N, Mustafa S, Bahreini R, Manap MY. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee. Braz J Microbiol 2014; 44(3): 717-22.
[http://dx.doi.org/10.1590/S1517-83822013000300008] [PMID: 24516438]
[7]
Rocha J, Botelho J, Ksiezarek M, et al. Lactobacillus mulieris sp. nov., a new species of Lactobacillus delbrueckii group. Int J Syst Evol Microbiol 2020; 70(3): 1522-7.
[8]
Frassinetti S, Gabriele M, Moccia E, Longo V, Di Gioia D. Antimicrobial and antibiofilm activity of Cannabis sativa L seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp.LWT. 2020; p. 109149.
[9]
Gong P, Lin K, Zhang J, et al. Enhancing spray drying tolerance of Lactobacillus bulgaricus by intracellular trehalose delivery via electroporation. Food Res Int 2020; 127: 108725
[http://dx.doi.org/10.1016/j.foodres.2019.108725] [PMID: 31882105]
[10]
de Vos P, Faas MM, Spasojevic M, Sikkema J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 2010; 20(4): 292-302.
[http://dx.doi.org/10.1016/j.idairyj.2009.11.008]
[11]
Kailasapathy K. Encapsulation technologies for functional foods and nutraceutical product development. Perspect Agric Vet Sci Nutr Nat Resour 2009; 4(033): 1-19.
[http://dx.doi.org/10.1079/PAVSNNR20094033]
[12]
Chan MZA, Chua JY, Toh M, Liu S-Q. Survival of probiotic strain Lactobacillus paracasei L26 during co-fermentation with S. cerevisiae for the development of a novel beer beverage. Food Microbiol 2019; 82: 541-50.
[http://dx.doi.org/10.1016/j.fm.2019.04.001] [PMID: 31027817]
[13]
e Silva JP, Sousa SC, Costa P, et al. Development of probiotic tablets using microparticles: viability studies and stability studies. AAPS Pharm SciTech 2013; 14(1): 121-7.
[http://dx.doi.org/10.1208/s12249-012-9898-9] [PMID: 23233282]
[14]
Haghshenas B, Abdullah N, Nami Y, Radiah D, Rosli R, Khosroushahi AY. Microencapsulation of probiotic bacteria Lactobacillus plantarum 15HN using alginate-psyllium-fenugreek polymeric blends. J Appl Microbiol 2015; 118(4): 1048-57.
[http://dx.doi.org/10.1111/jam.12762] [PMID: 25619628]
[15]
Fazeli M, Toliyat T, Samadi N, Hajjaran S, Jamalifar H. Viability of Lactobacillus acidophilus in various vaginal tablet formulations. Daru 2006; 14(4): 172-8.
[16]
Silva KCG, Cezarino EC, Michelon M, Sato ACK. Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival. LWT - Food Sci Technol 2018; 89: 503-9.
[http://dx.doi.org/10.1016/j.lwt.2017.11.026]
[17]
Wang Q, Liu X, Fu J, et al. Substrate sustained release-based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912. Microb Cell Fact 2018; 17(1): 80.
[http://dx.doi.org/10.1186/s12934-018-0919-6]
[18]
Shlezinger M, Friedman M, Houri-Haddad Y, Hazan R, Beyth N. Phages in a thermoreversible sustained-release formulation targeting E. faecalis in vitro and in vivo. PLoS One 2019; 14(7) e0219599
[http://dx.doi.org/10.1371/journal.pone.0219599] [PMID: 31291645]
[19]
Su J, Wang X, Li W, et al. Enhancing the viability of Lactobacillus plantarum as probiotics through encapsulation with high internal phase emulsions stabilized with whey protein isolate microgels. J Agric Food Chem 2018; 66(46): 12335-43.
[http://dx.doi.org/10.1021/acs.jafc.8b03807] [PMID: 30380846]
[20]
Ansari F, Pourjafar H, Jodat V, Sahebi J, Ataei A. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus. AMB Express 2017; 7(1): 144.
[http://dx.doi.org/10.1186/s13568-017-0442-x] [PMID: 28687035]
[21]
Dimitrellou D, Kandylis P, Lević S, et al. Encapsulation of Lactobacillus casei ATCC 393 in alginate capsules for probiotic fermented milk production. LWT - Food Sci Technol 2019; 116: 108501
[http://dx.doi.org/10.1016/j.lwt.2019.108501]
[22]
da Silva TM, de Deus C, de Souza Fonseca B, et al. The effect of enzymatic crosslinking on the viability of probiotic bacteria (Lactobacillus acidophilus) encapsulated by complex coacervation. Food Res Int 2019; 5: 108577
[http://dx.doi.org/10.1016/j.foodres.2019.108577] [PMID: 31554127]
[23]
Falco CY, Amadei F, Dhayal SK, Cárdenas M, Tanaka M, Risbo J. Hybrid coating of alginate microbeads based on protein-biopolymer multilayers for encapsulation of probiotics. Biotechnol Prog 2019; 35(3) e2806
[http://dx.doi.org/10.1002/btpr.2806] [PMID: 30884190]
[24]
Rahmati F. Microencapsulation of Lactobacillus acidophilus and Lactobacillus plantarum in Eudragit S100 and alginate chitosan under gastrointestinal and normal conditions. Appl Nanosci 2020; 10(2): 391-9.
[http://dx.doi.org/10.1007/s13204-019-01174-3]
[25]
Yonekura L, Sun H, Soukoulis C, Fisk I. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. J Funct Foods 2014; 6(100): 205-14.
[http://dx.doi.org/10.1016/j.jff.2013.10.008] [PMID: 24748900]
[26]
Shu G, He Y, Chen L, Song Y, Meng J, Chen H. Microencapsulation of Lactobacillus acidophilus by xanthan-chitosan and its stability in yoghurt. Polymers (Basel) 2017; 9(12): 733.
[http://dx.doi.org/10.3390/polym9120733] [PMID: 30966036]
[27]
Menezes MFdSC Silva TMd, Etchepare MdA. Improvement of the viability of probiotics (Lactobacillus acidophilus) by multilayer encapsulation. Cienc Rural 2019; 49(9) e20181020
[http://dx.doi.org/10.1590/0103-8478cr20181020]
[28]
Liu Y, Rafailovich MH, Malal R, Cohn D, Chidambaram D. Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proc Natl Acad Sci USA 2009; 106(34): 14201-6.
[http://dx.doi.org/10.1073/pnas.0903238106] [PMID: 19667172]
[29]
San Keskin NO, Celebioglu A, Sarioglu OF, Uyar T, Tekinay T. Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloids Surf B Biointerfaces 2018; 161: 169-76.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.047] [PMID: 29078166]
[30]
Wang J, Windbergs M. Functional electrospun fibers for the treatment of human skin wounds. Eur J Pharm Biopharm 2017; 119: 283-99.
[http://dx.doi.org/10.1016/j.ejpb.2017.07.001] [PMID: 28690200]
[31]
Rim NG, Shin CS, Shin H. Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater 2013; 8(1) 014102
[http://dx.doi.org/10.1088/1748-6041/8/1/014102] [PMID: 23472258]
[32]
Ghafoor B, Aleem A, Najabat Ali M, Mir M. Review of the fabrication techniques and applications of polymeric electrospun nanofibers for drug delivery systems. J Drug Deliv Sci Technol 2018; 48: 82-7.
[http://dx.doi.org/10.1016/j.jddst.2018.09.005]
[33]
Wu J, Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater 2016; 1(1): 56-64.
[http://dx.doi.org/10.1016/j.bioactmat.2016.07.001] [PMID: 29744395]
[34]
Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 2010; 28(3): 325-47.
[http://dx.doi.org/10.1016/j.biotechadv.2010.01.004] [PMID: 20100560]
[35]
Jiang H, Wang L, Zhu K. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents. J Control Release 2014; 193: 296-303.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.025] [PMID: 24780265]
[36]
López-Rubio A, Sanchez E, Wilkanowicz S, Sanz Y, Lagaron JM. Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocoll 2012; 28(1): 159-67.
[http://dx.doi.org/10.1016/j.foodhyd.2011.12.008]
[37]
Reksamunandar RP, Edikresnha D, Munir MM, Damayanti S. Encapsulation of β-carotene in poly (vinylpyrrolidone)(PVP) by electrospinning technique. Procedia Eng 2017; 170: 19-23.
[http://dx.doi.org/10.1016/j.proeng.2017.03.004]
[38]
Horuz Tİ, Belibağlı KB. Nanoencapsulation of carotenoids extracted from tomato peels into zein fibers by electrospinning. J Sci Food Agric 2019; 99(2): 759-66.
[http://dx.doi.org/10.1002/jsfa.9244] [PMID: 29999536]
[39]
Sinha-Ray S, Pelot D, Zhou Z, Rahman A, Wu X-F, Yarin A. Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J Mater Chem 2012; 22(18): 9138-46.
[http://dx.doi.org/10.1039/c2jm15696b]
[40]
Wen P, Wen Y, Zong M-H, Linhardt RJ, Wu H. Encapsulation of bioactive compound in electrospun fibers and its potential application. J Agric Food Chem 2017; 65(42): 9161-79.
[http://dx.doi.org/10.1021/acs.jafc.7b02956] [PMID: 28949530]
[41]
McCann JT, Marquez M, Xia Y. Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett 2006; 6(12): 2868-72.
[http://dx.doi.org/10.1021/nl0620839] [PMID: 17163721]
[42]
Nada AA, Hassabo A G, Mohamed A L, Zaghloul S. Encapsulation of nicotinamide into cellulose based electrospun fibers. J Appl Pharmac Sci 2016; 6(8): 013-21.
[43]
Khanal S, Bhattarai SR, Sankar J, et al. Nano-fibre integrated microcapsules: A nano-in-micro platform for 3D cell culture. Sci Rep - UK 2019; 9(1): 1-12.
[44]
Saallah S, Naim MN, Lenggoro IW, Mokhtar MN, Abu Bakar NF, Gen M. Immobilisation of cyclodextrin glucanotransferase into polyvinyl alcohol (PVA) nanofibres via electrospinning. Biotechnol Rep (Amst) 2016; 10: 44-8.
[http://dx.doi.org/10.1016/j.btre.2016.03.003] [PMID: 28352523]
[45]
Lee CH, Chang SH, Chen WJ, et al. Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes. J Colloid Interface Sci 2015; 439: 88-97.
[http://dx.doi.org/10.1016/j.jcis.2014.10.028] [PMID: 25463179]
[46]
Lee H-J, Lim J-M, Kim H-W, et al. Electrospun polyetherimide nanofiber mat-reinforced, permselective polyvinyl alcohol composite separator membranes: A membrane-driven step closer toward rechargeable zinc–air batteries. J Membr Sci 2016; 499: 526-37.
[http://dx.doi.org/10.1016/j.memsci.2015.10.038]
[47]
Correia DM, Ribeiro C, Botelho G, et al. Superhydrophilic poly(l-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment. Appl Surf Sci 2016; 371: 74-82.
[http://dx.doi.org/10.1016/j.apsusc.2016.02.121]
[48]
Kenawy R, Bowlin GL, Mansfield K, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 2002; 81(1-2): 57-64.
[http://dx.doi.org/10.1016/S0168-3659(02)00041-X] [PMID: 11992678]
[49]
Dukali RM, Radović IM, Stojanović DB, et al. Electrospinning of the laser dye rhodamine B-doped poly (methyl methacrylate) nanofibers. J Serb Chem Soc 2014; 79(7): 867.
[http://dx.doi.org/10.2298/JSC131014011D]
[50]
Wen Y, Wen P, Hu T-G, et al. Encapsulation of phycocyanin by prebiotics and polysaccharides-based electrospun fibers and improved colon cancer prevention effects. Int J Biol Macromol 2020; 149: 672-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.189] [PMID: 31981665]
[51]
Jenab A, Roghanian R, Ghorbani N, Ghaedi K, Emtiazi G. The efficacy of electrospun PAN/Kefiran nanofiber and kefir in mammalian cell culture: Promotion of PC12 cell growth, anti-MCF7 breast cancer cells activities, and cytokine production of PBMC. Int J Nanomedicine 2020; 15: 717-28.
[http://dx.doi.org/10.2147/IJN.S232264] [PMID: 32099360]
[52]
Jain R, Shetty S, Yadav KS. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers. J Drug Deliv Sci Technol 2020; 2020: 101604
[http://dx.doi.org/10.1016/j.jddst.2020.101604]
[53]
Zhang C, Li Y, Wang P, Zhang H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr Rev Food Sci Food Saf 2020; 19(2): 479-502.
[http://dx.doi.org/10.1111/1541-4337.12536]
[54]
Phoem AN, Mayiding A, Saedeh F, Permpoonpattana P. Evaluation of Lactobacillus plantarum encapsulated with Eleutherine americana oligosaccharide extract as food additive in yoghurt. Braz J Microbiol 2019; 50(1): 237-46.
[http://dx.doi.org/10.1007/s42770-018-0017-2] [PMID: 30637638]
[55]
Chandramouli V, Kailasapathy K, Peiris P, Jones M. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 2004; 56(1): 27-35.
[http://dx.doi.org/10.1016/j.mimet.2003.09.002] [PMID: 14706748]
[56]
Khoshnevisan K, Maleki H, Samadian H, et al. Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydr Polym 2018; 198: 131-41.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.072] [PMID: 30092983]
[57]
Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol Adv 2019; 37(1): 109-31.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.008] [PMID: 30472307]
[58]
Angel N, Guo L, Yan F, Wang H, Kong L. Effect of processing parameters on the electrospinning of cellulose acetate studied by response surface methodology. J Agr Food Res 2020; 2100015
[http://dx.doi.org/10.1016/j.jafr.2019.100015]
[59]
Heunis TD, Botes M, Dicks LM. Encapsulation of Lactobacillus plantarum 423 and its bacteriocin in nanofibers. Probiotics Antimicrob Proteins 2010; 2(1): 46-51.
[http://dx.doi.org/10.1007/s12602-009-9024-9] [PMID: 26780900]
[60]
Fung WY, Yuen KH, Liong MT. Agrowaste-based nanofibers as a probiotic encapsulant: fabrication and characterization. J Agric Food Chem 2011; 59(15): 8140-7.
[http://dx.doi.org/10.1021/jf2009342] [PMID: 21711050]
[61]
Hu MX, Li JN, Guo Q, Zhu YQ, Niu HM. Probiotics Biofilm-Integrated Electrospun Nanofiber Membranes: A New Starter Culture for Fermented Milk Production. J Agric Food Chem 2019; 67(11): 3198-208.
[http://dx.doi.org/10.1021/acs.jafc.8b05024] [PMID: 30838858]
[62]
Lancuški A, Abu Ammar A, Avrahami R, Vilensky R, Vasilyev G, Zussman E. Design of starch-formate compound fibers as encapsulation platform for biotherapeutics. Carbohydr Polym 2017; 158: 68-76.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.003] [PMID: 28024544]
[63]
Amna T, Hassan MS, Pandeya DR, Khil MS, Hwang IH. Classy non-wovens based on animate L. gasseri-inanimate poly(vinyl alcohol): upstream application in food engineering. Appl Microbiol Biotechnol 2013; 97(10): 4523-31.
[http://dx.doi.org/10.1007/s00253-012-4666-z] [PMID: 23306644]
[64]
Ceylan Z, Uslu E, İspirli H, et al. A novel perspective for Lactobacillus reuteri: Nanoencapsulation to obtain functional fish fillets. LWT 2019; 115: 108427
[http://dx.doi.org/10.1016/j.lwt.2019.108427]
[65]
Ceylan Z, Meral R, Karakaş CY, Dertli E, Yilmaz MT. A novel strategy for probiotic bacteria: Ensuring microbial stability of fish fillets using characterized probiotic bacteria-loaded nanofibers. Innov Food Sci Emerg Technol 2018; 48: 212-8.
[http://dx.doi.org/10.1016/j.ifset.2018.07.002]
[66]
López-Rubio A, Sanchez E, Sanz Y, Lagaron JM. Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromolecules 2009; 10(10): 2823-9.
[http://dx.doi.org/10.1021/bm900660b] [PMID: 19817490]
[67]
Feng K, Zhai MY, Zhang Y, et al. Development of electrospun nanofibers that enable high loading and long-term viability of probiotics. Eur J Pharm Biopharm 2018; 136: 108-19.
[68]
Škrlec K, Zupančič Š, Prpar Mihevc S, Kocbek P, Kristl J, Berlec A. Development of electrospun nanofibers that enable high loading and long-term viability of probiotics. Eur J Pharm Biopharm 2019; 136: 108-19.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.013] [PMID: 30660693]
[69]
Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer (Guildf) 2001; 42(1): 261-72.
[http://dx.doi.org/10.1016/S0032-3861(00)00250-0]
[70]
Beachley V, Wen X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Eng C 2009; 29(3): 663-8.
[http://dx.doi.org/10.1016/j.msec.2008.10.037] [PMID: 21461344]
[71]
Neo YP, Ray S, Easteal AJ, Nikolaidis MG, Quek SY. Influence of solution and processing parameters towards the fabrication of electrospun zein fibers with sub-micron diameter. J Food Eng 2012; 109(4): 645-51.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.11.032]
[72]
Niu B, Shao P, Luo Y, Sun P. Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application. Food Hydrocoll 2020; 99: 105376
[http://dx.doi.org/10.1016/j.foodhyd.2019.105376]
[73]
Kavitake D, Kandasamy S, Devi PB, Shetty PH. Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods: A review. Food Biosci 2018; 21: 34-44.
[http://dx.doi.org/10.1016/j.fbio.2017.11.003]
[74]
Nagy ZK, Wagner I, Suhajda Á, et al. Nanofibrous solid dosage form of living bacteria prepared by electrospinning. Express Polym Lett 2014; 8(5): 352-61.
[http://dx.doi.org/10.3144/expresspolymlett.2014.39]
[75]
Miao S, Mills S, Stanton C, Fitzgerald GF, Roos Y, Ross RP. Effect of disaccharides on survival during storage of freeze dried probiotics. Dairy Sci Technol 2008; 88(1): 19-30.
[http://dx.doi.org/10.1051/dst:2007003]
[76]
Pehkonen KS, Roos YH, Miao S, Ross RP, Stanton C. State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG). J Appl Microbiol 2008; 104(6): 1732-43.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03719.x] [PMID: 18248378]
[77]
Tripathi MK, Giri SK. Probiotic functional foods: Survival of probiotics during processing and storage. J Funct Foods 2014; 9: 225-41.
[http://dx.doi.org/10.1016/j.jff.2014.04.030]
[78]
Kurtmann L, Carlsen CU, Risbo J, Skibsted LH. Storage stability of freeze-dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate. Cryobiology 2009; 58(2): 175-80.
[http://dx.doi.org/10.1016/j.cryobiol.2008.12.001] [PMID: 19111715]
[79]
Miller KS, Krochta JM. Oxygen and aroma barrier properties of edible films: A review. Trends Food Sci Technol 1997; 8(7): 228-37.
[http://dx.doi.org/10.1016/S0924-2244(97)01051-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy