Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Molecular Mechanisms Involved in the Progression and Protection of Osteoarthritis

Author(s): Yoshifumi Takahata*, Tomohiko Murakami, Kenji Hata and Riko Nishimura

Volume 14, Issue 2, 2021

Published on: 17 April, 2020

Page: [165 - 169] Pages: 5

DOI: 10.2174/1874467213666200417122933

Price: $65

Abstract

Objective: Osteoarthritis is a common disease of the joint cartilage. Since the molecular pathogenesis of osteoarthritis is not clearly understood, early diagnostic markers and effective therapeutic agents have not been developed.

Methods and Results: In recent years, there are several studies to elucidate the molecular aspects based on mouse genetics by using a stress-induced mechanical load model. Chondrocyte hypertrophy, which is usually seen in growth plate chondrocyte, is also induced in articular cartilage and involved in the onset of osteoarthritis. Additionally, signal molecules involved in inflammatory cytokine and matrix proteinase are expected to be target molecules for the fundamental treatment of early osteoarthritis. Some additional signal molecules, transcription factors and compounds have been reported to be involved in cartilage homeostasis.

Conclusion: This review sheds light on the current status of various signal molecules for the management of osteoarthritis.

Keywords: Osteoarthris, transcription factor, matrix metaroproteinase, cartilage homeostasis.

Graphical Abstract

[1]
Bijlsma, J.W.; Berenbaum, F.; Lafeber, F.P. Osteoarthritis: an update with relevance for clinical practice. Lancet, 2011, 377(9783), 2115-2126.
[2]
Wang, M.; Shen, J.; Jin, H.; Im, H.J.; Sandy, J.; Chen, D. Recent progress in understanding molecular mechanisms of cartilage degeneration during osteoarthritis. Ann. N. Y. Acad. Sci., 2011, 1240, 61-69.
[3]
Nagase, H.; Kashiwagi, M. Aggrecanases and cartilage matrix degradation. Arthritis Res. Ther., 2003, 5(2), 94-103.
[4]
Rhee, D.K.; Marcelino, J.; Baker, M.; Gong, Y.; Smits, P.; Lefebvre, V.; Jay, G.D.; Stewart, M.; Wang, H.; Warman, M.L.; Carpten, J.D. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J. Clin. Invest., 2005, 115(3), 622-631.
[5]
Kozhemyakina, E.; Zhang, M.; Ionescu, A.; Ayturk, U.M.; Ono, N.; Kobayashi, A.; Kronenberg, H.; Warman, M.L.; Lassar, A.B. Identification of a Prg4-expressing articular cartilage progenitor cell population in mice. Arthritis Rheumatol., 2015, 67(5), 1261-1273.
[6]
LeBlanc, K.T.; Walcott, M.E.; Gaur, T.; O’Connell, S.L.; Basil, K.; Tadiri, C.P.; Mason-Savas, A.; Silva, J.A.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Ayers, D.C.; Lian, J.B.; Fanning, P.J. Runx1 Activities in Superficial Zone Chondrocytes, Osteoarthritic Chondrocyte Clones and Response to Mechanical Loading. J. Cell. Physiol., 2015, 230(2), 440-448.
[7]
Masuya, H.; Nishida, K.; Furuichi, T.; Toki, H.; Nishimura, G.; Kawabata, H.; Yokoyama, H.; Yoshida, A.; Tominaga, S.; Nagano, J.; Shimizu, A.; Wakana, S.; Gondo, Y.; Noda, T.; Shiroishi, T.; Ikegawa, S. A novel dominant-negative mutation in Gdf5 generated by ENU mutagenesis impairs joint formation and causes osteoarthritis in mice. Hum. Mol. Genet., 2007, 16(19), 2366-2375.
[8]
Borden, P.; Solymar, D.; Sucharczuk, A.; Lindman, B.; Cannon, P.; Heller, R.A. Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes. J. Biol. Chem., 1996, 271(38), 23577-23581.
[9]
Mengshol, J.A.; Vincenti, M.P.; Coon, C.I.; Barchowsky, A.; Brinckerhoff, C.E. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum., 2000, 43(4), 801-811.
[10]
Vincenti, M.P.; Coon, C.I.; Mengshol, J.A.; Yocum, S.; Mitchell, P.; Brinckerhoff, C.E. Cloning of the gene for interstitial collagenase-3 (matrix metalloproteinase-13) from rabbit synovial fibroblasts: differential expression with collagenase-1 (matrix metalloproteinase-1). Biochem. J., 1998, 331(Pt 1), 341-346.
[11]
Roach, H.I.; Yamada, N.; Cheung, K.S.; Tilley, S.; Clarke, N.M.; Oreffo, R.O.; Kokubun, S.; Bronner, F. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum., 2005, 52(10), 3110-3124.
[12]
Glasson, S.S.; Blanchet, T.J.; Morris, E.A. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage, 2007, 15(9), 1061-1069.
[13]
Little, C.B.; Barai, A.; Burkhardt, D.; Smith, S.M.; Fosang, A.J.; Werb, Z.; Shah, M.; Thompson, E.W. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum., 2009, 60(12), 3723-3733.
[14]
Wang, M.; Sampson, E.R.; Jin, H.; Li, J.; Ke, Q.H. Im, H. J.; Chen, D., MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res. Ther., 2013, 15(1), R5.
[15]
Johnson, A.R.; Pavlovsky, A.G.; Ortwine, D.F.; Prior, F.; Man, C.F.; Bornemeier, D.A.; Banotai, C.A.; Mueller, W.T.; McConnell, P.; Yan, C.; Baragi, V.; Lesch, C.; Roark, W.H.; Wilson, M.; Datta, K.; Guzman, R.; Han, H.K.; Dyer, R.D. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J. Biol. Chem., 2007, 282(38), 27781-27791.
[16]
Neuhold, L.A.; Killar, L.; Zhao, W.; Sung, M.L.; Warner, L.; Kulik, J.; Turner, J.; Wu, W.; Billinghurst, C.; Meijers, T.; Poole, A.R.; Babij, P.; DeGennaro, L.J. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest., 2001, 107(1), 35-44.
[17]
Kelwick, R.; Desanlis, I.; Wheeler, G.N.; Edwards, D.R. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol., 2015, 16, 113.
[18]
Tortorella, M.D.; Malfait, A.M.; Deccico, C.; Arner, E. The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation. Osteoarthritis Cartilage, 2001, 9(6), 539-552.
[19]
Yang, C.Y.; Chanalaris, A.; Troeberg, L. ADAMTS and ADAM metalloproteinases in osteoarthritis - looking beyond the ‘usual suspects’. Osteoarthritis Cartilage, 2017, 25(7), 1000-1009.
[20]
Tortorella, M.D.; Liu, R.Q.; Burn, T.; Newton, R.C.; Arner, E. Characterization of human aggrecanase 2 (ADAM-TS5): substrate specificity studies and comparison with aggrecanase 1 (ADAM-TS4). Matrix Biol., 2002, 21(6), 499-511.
[21]
Stanton, H.; Rogerson, F.M.; East, C.J.; Golub, S.B.; Lawlor, K.E.; Meeker, C.T.; Little, C.B.; Last, K.; Farmer, P.J.; Campbell, I.K.; Fourie, A.M.; Fosang, A.J. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature, 2005, 434(7033), 648-652.
[22]
Glasson, S.S.; Askew, R.; Sheppard, B.; Carito, B.A.; Blanchet, T.; Ma, H.L.; Flannery, C.R.; Kanki, K.; Wang, E.; Peluso, D.; Yang, Z.; Majumdar, M.K.; Morris, E.A. Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. Arthritis Rheum., 2004, 50(8), 2547-2558.
[23]
Glasson, S.S.; Askew, R.; Sheppard, B.; Carito, B.; Blanchet, T.; Ma, H.L.; Flannery, C.R.; Peluso, D.; Kanki, K.; Yang, Z.; Majumdar, M.K.; Morris, E.A. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature, 2005, 434(7033), 644-648.
[24]
Botter, S.M.; Glasson, S.S.; Hopkins, B.; Clockaerts, S.; Weinans, H.; van Leeuwen, J.P.; van Osch, G.J. ADAMTS5-/- mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage and subchondral bone changes. Osteoarthritis Cartilage, 2009, 17(5), 636-645.
[25]
Cai, L.; Yin, J.P.; Starovasnik, M.A.; Hogue, D.A.; Hillan, K.J.; Mort, J.S.; Filvaroff, E.H. Pathways by which interleukin 17 induces articular cartilage breakdown in vitro and in vivo. Cytokine, 2001, 16(1), 10-21.
[26]
Flannery, C.R.; Little, C.B.; Hughes, C.E.; Caterson, B. Expression of ADAMTS homologues in articular cartilage. Biochem. Biophys. Res. Commun., 1999, 260(2), 318-322.
[27]
Bau, B.; Gebhard, P.M.; Haag, J.; Knorr, T.; Bartnik, E.; Aigner, T. Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheum., 2002, 46(10), 2648-2657.
[28]
Yatabe, T.; Mochizuki, S.; Takizawa, M.; Chijiiwa, M.; Okada, A.; Kimura, T.; Fujita, Y.; Matsumoto, H.; Toyama, Y.; Okada, Y. Hyaluronan inhibits expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic chondrocytes. Ann. Rheum. Dis., 2009, 68(6), 1051-1058.
[29]
Fukai, A.; Kamekura, S.; Chikazu, D.; Nakagawa, T.; Hirata, M.; Saito, T.; Hosaka, Y.; Ikeda, T.; Nakamura, K.; Chung, U.I.; Kawaguchi, H. Lack of a chondroprotective effect of cyclooxygenase 2 inhibition in a surgically induced model of osteoarthritis in mice. Arthritis Rheum., 2012, 64(1), 198-203.
[30]
Taniguchi, Y.; Kawata, M.; Ho Chang, S.; Mori, D.; Okada, K.; Kobayashi, H.; Sugita, S.; Hosaka, Y.; Inui, H.; Taketomi, S.; Yano, F.; Ikeda, T.; Akiyama, H.; Mills, A.A.; Chung, U.I.; Tanaka, S.; Kawaguchi, H.; Saito, T. Regulation of Chondrocyte Survival in Mouse Articular Cartilage by p63. Arthritis Rheumatol., 2017, 69(3), 598-609.
[31]
Hirata, M.; Kugimiya, F.; Fukai, A.; Saito, T.; Yano, F.; Ikeda, T.; Mabuchi, A.; Sapkota, B.R.; Akune, T.; Nishida, N.; Yoshimura, N.; Nakagawa, T.; Tokunaga, K.; Nakamura, K.; Chung, U.I.; Kawaguchi, H. C/EBPβ and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2α as the inducer in chondrocytes. Hum. Mol. Genet., 2012, 21(5), 1111-1123.
[32]
Saito, T.; Fukai, A.; Mabuchi, A.; Ikeda, T.; Yano, F.; Ohba, S.; Nishida, N.; Akune, T.; Yoshimura, N.; Nakagawa, T.; Nakamura, K.; Tokunaga, K.; Chung, U.I.; Kawaguchi, H. Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat. Med., 2010, 16(6), 678-686.
[33]
Sugita, S.; Hosaka, Y.; Okada, K.; Mori, D.; Yano, F.; Kobayashi, H.; Taniguchi, Y.; Mori, Y.; Okuma, T.; Chang, S.H.; Kawata, M.; Taketomi, S.; Chikuda, H.; Akiyama, H.; Kageyama, R.; Chung, U.I.; Tanaka, S.; Kawaguchi, H.; Ohba, S.; Saito, T. Transcription factor Hes1 modulates osteoarthritis development in cooperation with calcium/calmodulin-dependent protein kinase 2. Proc. Natl. Acad. Sci. USA, 2015, 112(10), 3080-3085.
[34]
Hirata, M.; Kugimiya, F.; Fukai, A.; Ohba, S.; Kawamura, N.; Ogasawara, T.; Kawasaki, Y.; Saito, T.; Yano, F.; Ikeda, T.; Nakamura, K.; Chung, U.I.; Kawaguchi, H. C/EBPbeta Promotes transition from proliferation to hypertrophic differentiation of chondrocytes through transactivation of p57. PLoS One, 2009, 4(2)e4543
[35]
Hosaka, Y.; Saito, T.; Sugita, S.; Hikata, T.; Kobayashi, H.; Fukai, A.; Taniguchi, Y.; Hirata, M.; Akiyama, H.; Chung, U.I.; Kawaguchi, H. Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc. Natl. Acad. Sci. USA, 2013, 110(5), 1875-1880.
[36]
Yasuhara, R.; Ohta, Y.; Yuasa, T.; Kondo, N.; Hoang, T.; Addya, S.; Fortina, P.; Pacifici, M.; Iwamoto, M.; Enomoto-Iwamoto, M. Roles of β-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab. Invest., 2011, 91(12), 1739-1752.
[37]
Takahata, Y.; Nakamura, E.; Hata, K.; Wakabayashi, M.; Murakami, T.; Wakamori, K.; Yoshikawa, H.; Matsuda, A.; Fukui, N.; Nishimura, R. Sox4 is involved in osteoarthritic cartilage deterioration through induction of ADAMTS4 and ADAMTS5. FASEB J., 2019, 33(1), 619-630.
[38]
Bhattaram, P.; Muschler, G.; Wixler, V.; Lefebvre, V. Inflammatory Cytokines Stabilize SOXC Transcription Factors to Mediate the Transformation of Fibroblast-Like Synoviocytes in Arthritic Disease. Arthritis Rheumatol., 2018, 70(3), 371-382.
[39]
Ogawa, H.; Kozhemyakina, E.; Hung, H.H.; Grodzinsky, A.J.; Lassar, A.B. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways. Genes Dev., 2014, 28(2), 127-139.
[40]
Kahn, A.J. FOXO3 and related transcription factors in development, aging, and exceptional longevity. J. Gerontol. A Biol. Sci. Med. Sci., 2015, 70(4), 421-425.
[41]
Jia, H.; Ma, X.; Tong, W.; Doyran, B.; Sun, Z.; Wang, L.; Zhang, X.; Zhou, Y.; Badar, F.; Chandra, A.; Lu, X.L.; Xia, Y.; Han, L.; Enomoto-Iwamoto, M.; Qin, L. EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation. Proc. Natl. Acad. Sci. USA, 2016, 113(50), 14360-14365.
[42]
Akasaki, Y.; Hasegawa, A.; Saito, M.; Asahara, H.; Iwamoto, Y.; Lotz, M.K. Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthritis Cartilage, 2014, 22(1), 162-170.
[43]
Matsuzaki, T.; Alvarez-Garcia, O.; Mokuda, S.; Nagira, K.; Olmer, M.; Gamini, R.; Miyata, K.; Akasaki, Y.; Su, A.I.; Asahara, H.; Lotz, M.K. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci. Transl. Med., 2018, 10(428)
[44]
Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics--developing a new class of drugs. Nat. Rev. Drug Discov., 2014, 13(10), 759-780.
[45]
Mokuda, S.; Nakamichi, R.; Matsuzaki, T.; Ito, Y.; Sato, T.; Miyata, K.; Inui, M.; Olmer, M.; Sugiyama, E.; Lotz, M.; Asahara, H. Wwp2 maintains cartilage homeostasis through regulation of Adamts5. Nat. Commun., 2019, 10(1), 2429.
[46]
Collins, J.A.; Diekman, B.O.; Loeser, R.F. Targeting aging for disease modification in osteoarthritis. Curr. Opin. Rheumatol., 2018, 30(1), 101-107.
[47]
Malaise, O.; Tachikart, Y.; Constantinides, M.; Mumme, M.; Ferreira-Lopez, R.; Noack, S.; Krettek, C.; Noël, D.; Wang, J.; Jorgensen, C.; Brondello, J.M. Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging (Albany NY), 2019, 11(20), 9128-9146.
[48]
Sun, K.; Luo, J.; Jing, X.; Guo, J.; Yao, X.; Hao, X.; Ye, Y.; Liang, S.; Lin, J.; Wang, G.; Guo, F. Astaxanthin protects against osteoarthritis via Nrf2: a guardian of cartilage homeostasis. Aging (Albany NY), 2019, 11(22), 10513-10531.
[49]
Allas, L.; Rochoux, Q.; Leclercq, S.; Boumédiene, K.; Baugé, C. Development of a simple osteoarthritis model useful to predict in vitro the anti-hypertrophic action of drugs. Lab. Invest., 2019.
[50]
Yahara, Y.; Takemori, H.; Okada, M.; Kosai, A.; Yamashita, A.; Kobayashi, T.; Fujita, K.; Itoh, Y.; Nakamura, M.; Fuchino, H.; Kawahara, N.; Fukui, N.; Watanabe, A.; Kimura, T.; Tsumaki, N. Pterosin B prevents chondrocyte hypertrophy and osteoarthritis in mice by inhibiting Sik3. Nat. Commun., 2016, 7, 10959.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy