Abstract
Objectives: To investigate the effect of Danggui-Shaoyao-San (DSS)-containing serum on the renal tubular Epithelial-Mesenchymal Transition (EMT) of Diabetic Nephropathy (DN) in high glucose- induced HK-2 cells and its mechanism.
Methods: 20 rats were randomly divided into four groups: blank control group, DSS low dose group (DSS-L), DSS middle dose group (DSS-M), and DSS high dose group (DSS-H). DSS was administrated to the corresponding group (7g/kg/d, 14g/kg/d and 21g/kg/d) for 7 consecutive days, and the same volume of saline was given to the blank control group by gavage. The rat drug-containing serum was successfully prepared. HK-2 cells were divided into five groups: blank control group, model group, DSS-L, DSS-M, DSS-H, according to the corresponding drug and dose of each treatment group. Protein and mRNA levels of Jagged1, Notch1, Hes5, Notch Intracellular Domain (NICD), E-cadherin, alpha- Smooth Muscle Actin (α-SMA) and vimentin at 24h, 48h and 72h were detected by Western Blot and RT-qPCR.
Results: The protein and mRNA levels of Jagged1, Notch1, Hes5, NICD, α-SMA and vimentin in the treatment groups were remarkably decreased compared with the model group (P<0.05), and the protein and mRNA levels of E-cadherin were notably increased (P<0.05) by Western Blot and RT-qPCR.
Conclusion: Our results demonstrated that DSS could prevent DN by ameliorating renal tubular EMT through inhibition of the Notch signaling pathway.
Keywords: Diabetic nephropathy, Notch signalling pathway, Renal tubular epithelial-mesenchymal transition, Danggui- Shaoyao-San-containing serum, Renal fibrosis, diabetes mellitus.
Graphical Abstract
[http://dx.doi.org/10.1007/s13277-016-5035-9 ] [PMID: 27059734]
[http://dx.doi.org/10.3390/ijms20102454 ] [PMID: 31108984]
[http://dx.doi.org/10.1017/S0031182018001919 ] [PMID: 30427300]
[http://dx.doi.org/10.1007/s00580-016-2317-y]
[http://dx.doi.org/10.1016/j.bmcl.2019.04.045 ] [PMID: 31054863]
[http://dx.doi.org/10.1016/j.tiv.2019.05.004 ] [PMID: 31077746]
[http://dx.doi.org/10.1002/chem.202000335]
[http://dx.doi.org/10.1016/j.cell.2009.06.034 ] [PMID: 19682730]
[http://dx.doi.org/10.1016/j.canlet.2011.07.016 ] [PMID: 21835542]
[http://dx.doi.org/10.3892/ol.2016.4906 ] [PMID: 27625708]
[http://dx.doi.org/10.3390/molecules24203778 ] [PMID: 31640154]
[http://dx.doi.org/10.1016/j.bbrc.2009.10.042 ] [PMID: 19835841]
[PMID: 23564786]
[http://dx.doi.org/10.1016/0022-4731(90)90306-D ] [PMID: 2362428]
[http://dx.doi.org/10.2174/1389201020666190911113611] [PMID: 31544715]
[http://dx.doi.org/10.1002/elps.201300461 ] [PMID: 24338489]
[http://dx.doi.org/10.3892/or.2013.2241 ] [PMID: 23338561]
[http://dx.doi.org/10.5468/ogs.2016.59.4.261 ] [PMID: 27462592]
[http://dx.doi.org/10.3892/or.2018.6513 ] [PMID: 29989650]
[http://dx.doi.org/10.1016/j.ygyno.2013.03.005 ] [PMID: 23500085]
[http://dx.doi.org/10.1016/j.ccell.2016.12.007 ] [PMID: 28073002]
[PMID: 30320345]
[http://dx.doi.org/10.3802/jgo.2017.28.e14 ] [PMID: 27894167]
[http://dx.doi.org/10.21873/anticanres.11507 ] [PMID: 28373437]
[http://dx.doi.org/10.3324/haematol.2015.131854 ] [PMID: 26565002]
[http://dx.doi.org/10.2147/CMAR.S154608 ] [PMID: 29535553]
[http://dx.doi.org/10.1097/CEJ.0000000000000453] [PMID: 29847456]
[http://dx.doi.org/10.1186/s12935-016-0326-1 ] [PMID: 27340370]
[http://dx.doi.org/10.1186/s13046-015-0174-1 ] [PMID: 26024660]
[http://dx.doi.org/10.1007/s11064-016-2132-5 ] [PMID: 27995497]
[http://dx.doi.org/10.1016/j.stemcr.2020.01.001 ] [PMID: 32004494]
[http://dx.doi.org/10.3390/cancers11030332 ] [PMID: 30857153]
[http://dx.doi.org/10.1261/rna.068692.118 ] [PMID: 30333195]
[http://dx.doi.org/10.1007/s00018-018-2940-7 ] [PMID: 30374521]
[http://dx.doi.org/10.1038/sj.cdd.4401962 ] [PMID: 16710363]
[http://dx.doi.org/10.1016/j.rvsc.2016.02.004 ] [PMID: 27033920]
[http://dx.doi.org/10.1080/01443615.2018.1437717] [PMID: 29560769]
[http://dx.doi.org/10.1007/s10103-016-2016-6 ] [PMID: 27365110]
[http://dx.doi.org/10.1007/s10616-017-0149-5 ] [PMID: 28988392]