Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Oxidative Stress-induced Toxicity and DNA Stability in Some Agri-field Based Livestock/Insect by Widely used Pesticides

Author(s): Balaram Manna, Sangita M. Dutta, Subrata Dalapati and Smarajit Maiti*

Volume 23, Issue 9, 2020

Page: [972 - 980] Pages: 9

DOI: 10.2174/1386207323666200415110745

Price: $65

Abstract

Aim and Objective: Humans continuously use pesticides in the field to control the pest population and weeds for considerable agricultural productivity. Side-by species like grazinganimals, insects and other species are adversely affected by or become resistant to pesticides. Insects, birds and cattle are highly abundant dwellers of the agriculture-field and represent three distinct phyla having versatile physiological features. Besides higher agricultural-productivity, protection to several species will maintain ecological/environmental balance. Studies on the effect of widely used pesticides on their DNA-stability and important enzymatic-activities are insufficient.

Materials and Methods: Antioxidant-activity (Superoxide-dismutase; SOD/Catalase- by gelzymogram- assay) and DNA-stability (fragmentation-assay) in hepatic/gut tissues were studied after in vitro exposure of Chlorpyrifos, Fenvalerate, Nimbecidine or Azadirachtin to goat/cow/poultry-hen/insect.

Results: In general, all pesticides were found to impair enzymatic-activities. However, lower organisms were affected more than higher vertebrates by azadirachtin-treatment. DNA fragmentation was found more in insects/poultry-birds than that of the cattle in hepatic/gut tissues. Inversely, toxicity/antioxidant marker-enzymes were more responsive in insect gut-tissues. However, mitochondrialtoxicity revealed variable effects on different species. It has been noticed that chlorpyrifos is the most toxic pesticide, followed by Fenvalerate/Nimbecidine (Azadirachtin, AZT). Nevertheless, AZT revealed its higher DNA-destabilizing effects on the field-insects as compared to the other animals.

Conclusion: Field-insects are highly integrated into the ecosystem and the local bio-geo-chemical cycle, which may be impaired. Pesticides may have toxic effects on higher vertebrates and may sustain in the soil after being metabolized into their different derivatives. Some of the sensitive biochemical parameters of this organism may be used as a biomarker for pesticide toxicity.

Keywords: Pesticides, oxidative stress toxicity, livestock, insect, agriculture, DNA stability.

[1]
al-Saleh, I.A. Pesticides: a review article. J. Environ. Pathol. Toxicol. Oncol., 1994, 13(3), 151-161.
[PMID: 7722882]
[2]
Pajoumand, A.; Jalali, N.; Abdollahi, M.; Shadnia, S. Survival following severe aluminum phosphide poisoning. J. Pharm. Pract. Res., 2002, 32, 297-299.
[http://dx.doi.org/10.1002/jppr2002324297]
[3]
Butterfield, D.A.; Lauderback, C.M. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic. Biol. Med., 2002, 32(11), 1050-1060.
[http://dx.doi.org/10.1016/S0891-5849(02)00794-3] [PMID: 12031889]
[4]
Zarkovic, N. 4-hydroxynonenal as a bioactive marker of pathophysiological processes. Mol. Aspects Med., 2003, 24(4-5), 281-291.
[http://dx.doi.org/10.1016/S0098-2997(03)00023-2] [PMID: 12893006]
[5]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[6]
Zerbetto, E.; Vergani, L.; Dabbeni-Sala, F. Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels. Electrophoresis, 1997, 18(11), 2059-2064.
[http://dx.doi.org/10.1002/elps.1150181131] [PMID: 9420170]
[7]
Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc., 2010, 5(1), 51-66.
[http://dx.doi.org/10.1038/nprot.2009.197] [PMID: 20057381]
[8]
Compton, M.M. A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metastasis Rev., 1992, 11(2), 105-119.
[http://dx.doi.org/10.1007/BF00048058] [PMID: 1327565]
[9]
Sakamuru, S.; Attene-Ramos, M.S.; Xia, M. Mitochondrial Membrane Potential Assay. Methods Mol. Biol., 2016, 1473, 17-22.
[http://dx.doi.org/10.1007/978-1-4939-6346-1_2] [PMID: 27518619]
[10]
Stevenson, D.E.; Kehrer, J.P.; Kolaja, K.L.; Walborg, E.F., Jr; Klaunig, J.E. Effect of dietary antioxidants on dieldrin-induced hepatotoxicity in mice. Toxicol. Lett., 1995, 75(1-3), 177-183.
[http://dx.doi.org/10.1016/0378-4274(94)03178-A] [PMID: 7863524]
[11]
Li, R.; Jia, Z.; Trush, M.A. Defining ROS in biology and medicine. React. Oxyg. Species (Apex), 2016, 1(1), 9-21.
[http://dx.doi.org/10.20455/ros.2016.803] [PMID: 29707643]
[12]
Huc, L.; Tekpli, X.; Holme, J.A.; Rissel, M.; Solhaug, A.; Gardyn, C.; Le Moigne, G.; Gorria, M.; Dimanche-Boitrel, M.T.; Lagadic-Gossmann, D. c-Jun NH2-terminal kinase-related Na+/H+ exchanger isoform 1 activation controls hexokinase II expression in benzo(a)pyrene-induced apoptosis. Cancer Res., 2007, 67(4), 1696-1705.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2327] [PMID: 17308111]
[13]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[14]
Maiti, P.K.; Kar, A.; Gupta, P.; Chaurasia, S.S. Loss of membrane integrity and inhibition of type-I iodothyronine 5′-monodeiodinase activity by fenvalerate in female mouse. Biochem. Biophys. Res. Commun., 1995, 214(3), 905-909.
[http://dx.doi.org/10.1006/bbrc.1995.2372] [PMID: 7575562]
[15]
Maiti, P.K.; Gupta, P.; Chaurasia, S.S.; Kar, A. Dimethoate induced lipid peroxidation and inhibition of type-I iodothyronine 5′-monodeiodinase activity in young cockerel. Bull. Environ. Contam. Toxicol., 1996, 57(2), 335-340.
[http://dx.doi.org/10.1007/s001289900195] [PMID: 8661918]
[16]
Tripathi, G.; Verma, P. Fenvalerate-induced changes in a catfish, Clarias batrachus: metabolic enzymes, RNA and protein. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2004, 138(1), 75-79.
[http://dx.doi.org/10.1016/j.cca.2004.05.005] [PMID: 15313449]
[17]
Naveed, A.; Janaiah, C. Effect of Triazophos on protein metabolism in the fish. Channapunctatus. Curr. Res. J. Biol. Sci., 2011, 3, 124-128.
[18]
Tripathi, G.; Singh, H. Impact of alphamethrin on biochemical parameters of Channa punctatus. J. Environ. Biol., 2013, 34(2), 227-230.
[PMID: 24620583]
[19]
Vioque-Fernández, A.; de Almeida, E.A.; López-Barea, J. Biochemical and proteomic effects in Procambarus clarkii after chlorpyrifos or carbaryl exposure under sublethal conditions. Biomarkers, 2009, 14(5), 299-310.
[http://dx.doi.org/10.1080/13547500902913211] [PMID: 19476409]
[20]
Hai, D.Q.; Varga, S.I.; Matkovics, B. Organophosphate effects on antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus). Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 1997, 117(1), 83-88.
[http://dx.doi.org/10.1016/S0742-8413(96)00234-4] [PMID: 9206589]
[21]
Yang, Z.P.; Morrow, J.W.U. A.; Roberts, L.J.; Dettbarn, W.D. Diisopropyl phosphoro fluorodate-induced muscle hyperactivity associated with enhanced lipid peroxidation in vivo. Biochem. Pharmacol., 1996, 52, 357-361.
[http://dx.doi.org/10.1016/0006-2952(96)00214-6] [PMID: 8694861]
[22]
Ondreicka, R.; Beno, I.; Cerná, O.; Grancicová, E.; Staruchová, M.; Volkovová, K.; Bobek, P.; Tatara, M. Relation between levels of vitamins C, E, A and beta-carotene and activity of antioxidant enzymes in the blood. Bratisl. Lek Listy, 1998, 99(5), 250-254.
[PMID: 9673039s]
[23]
Ho, Y.S.H.; Gargano, M.; Cao, J.; Bronson, R.T.; Heimler, I.; Hutz, R.J. Reduced fertility in female mice lacking copper-zinc superoxide dismutase. J. Biol. Chem., 1998, 273(13), 7765-7769.
[http://dx.doi.org/10.1074/jbc.273.13.7765] [PMID: 9516486]
[24]
Schwarzbacherová, V.; Wnuk, M.; Lewinska, A.; Potocki, L.; Zebrowski, J.; Koziorowski, M.; Holečková, B.; Šiviková, K.; Dianovský, J. Evaluation of cytotoxic and genotoxic activity of fungicide formulation Tango(®) Super in bovine lymphocytes. Environ. Pollut. 2017, 220((Pt A)), 255-263.
[25]
Šiviková, K.; Holečková, B.; Schwarzbacherová, V.; Galdíková, M.; Dianovský, J. Potential chromosome damage, cell-cycle kinetics/and apoptosis induced by epoxiconazole in bovine peripheral lymphocytes in vitro. Chemosphere, 2018, 193, 82-88.
[http://dx.doi.org/10.1016/j.chemosphere.2017.11.008] [PMID: 29127838]
[26]
Hodgson, E. A Textbook of Modern Toxicology, 3rd ed.; John Wiley and Sons: Inc New Jersey; , 2004, pp. 203-211.
[http://dx.doi.org/10.1002/0471646776]
[27]
Ender, Y.; Onder, C. Effects of dichlorvos on lipid peroxidation in mice on subacute and subchronic periods. Pestic. Biochem. Physiol., 2006, 86, 106-109.
[http://dx.doi.org/10.1016/j.pestbp.2006.02.002]
[28]
Rahman, M.F.; Mahboob, M.; Danadevi, K.; Saleha Banu, B.; Grover, P. Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutat. Res., 2002, 516(1-2), 139-147.
[http://dx.doi.org/10.1016/S1383-5718(02)00033-5] [PMID: 11943619]
[29]
Karpeta-Kaczmarek, J.; Kubok, M.; Dziewięcka, M.; Sawczyn, T.; Augustyniak, M. The level of DNA damage in adult grasshoppers Chorthippus biguttulus (Orthoptera, Acrididae) following dimethoate exposure is dependent on the insects’ habitat. Environ. Pollut., 2016, 215, 266-272.
[http://dx.doi.org/10.1016/j.envpol.2016.05.032] [PMID: 27213568]
[30]
Mishra, M.; Sharma, A.; Shukla, A.K.; Kumar, R.; Dwivedi, U.N.; Kar Chowdhuri, D. Genotoxicity of dichlorvos in strains of Drosophila melanogaster defective in DNA repair. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2014, 766(766), 35-41.
[http://dx.doi.org/10.1016/j.mrgentox.2014.02.004] [PMID: 24614193]
[31]
Sharma, D.; Saxena, P.; Singh, V.; Sharma, R. Assessment of DNA degradation in lymphocytes of albino rat (Rattusnorvegicus) under lambda cyhalothrin stress. World Appl. Sci. J., 2010, 11, 24-28.
[32]
Hussien, H.M.; Abdou, H.M.; Yousef, M.I. Cypermethrin induced damage in genomic DNA and histopathological changes in brain and haematotoxicity in rats: The protective effect of sesame oil. Brain Res. Bull., 2011, 92, 76-83.
[http://dx.doi.org/10.1016/j.brainresbull.2011.10.020] [PMID: 22085743]
[33]
Liu, J.J.; Guo, C.; Wang, B.; Shi, M.X.; Yang, Y.; Yu, Z.; Meng, X.H.; Xu, D.X. Maternal fenvalerate exposure during pregnancy impairs growth and neurobehavioral development in mouse offspring. PLoS One, 2018, 13(10), e0205403.
[http://dx.doi.org/10.1371/journal.pone.0205403] [PMID: 30321209]
[34]
Zhu, J.; Xia, R.; Liu, Z.; Shen, J.; Gong, X.; Hu, Y.; Chen, H.; Yu, Y.; Gao, W.; Wang, C.; Wang, S.L. Fenvalerate triggers Parkinson-like symptom during zebrafish development through initiation of autophagy and p38 MAPK/mTOR signaling pathway. Chemosphere, 2020, 243, 125336.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125336] [PMID: 31734597]
[35]
Cui, Z.G.; Jin, Y.J.; Sun, L.; Zakki, S.A.; Li, M.L.; Feng, Q.W.; Kondo, T.; Ogawa, R.; Inadera, H. Potential hazards of fenvalerate in massive pollution influence the apoptosis sensitivity. J. Appl. Toxicol., 2018, 38(2), 240-247.
[http://dx.doi.org/10.1002/jat.3517] [PMID: 28949029]
[36]
Denamur, E.; Matic, I. Evolution of mutation rates in bacteria. Mol. Microbiol., 2006, 60(4), 820-827.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05150.x] [PMID: 16677295]
[37]
Bromham, L. Why do species vary in their rate of molecular evolution? Biol. Lett., 2009, 5(3), 401-404.
[http://dx.doi.org/10.1098/rsbl.2009.0136] [PMID: 19364710]
[38]
Ha, M.H.; Choi, J. Effects of environmental contaminants on hemoglobin gene expression in Daphnia magna: a potential biomarker for freshwater quality monitoring. Arch. Environ. Contam. Toxicol., 2009, 57(2), 330-337.
[http://dx.doi.org/10.1007/s00244-007-9079-0] [PMID: 19471991]
[39]
Zhao, T.; Lai, D.; Zhou, Y.; Xu, H.; Zhang, Z.; Kuang, S.; Shao, X. Azadirachtin A inhibits the growth and development of Bactrocera dorsalis larvae by releasing cathepsin in the midgut. Ecotoxicol. Environ. Saf., 2019, 183, 109512.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109512] [PMID: 31398584]
[40]
Zhang, J.; Liu, H.; Sun, Z.; Xie, J.; Zhong, G.; Yi, X. Azadirachtin induced apoptosis in the prothoracic gland in Bombyx mori and a pronounced Ca2+ release effect in Sf9 cells. Int. J. Biol. Sci., 2017, 13(12), 1532-1539.
[http://dx.doi.org/10.7150/ijbs.22175] [PMID: 29230101]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy