Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

Organocatalysed Synthesis of Selenium Containing Scaffolds

Author(s): Amol D. Sonawane and Mamoru Koketsu*

Volume 8, Issue 1, 2021

Published on: 14 April, 2020

Page: [5 - 26] Pages: 22

DOI: 10.2174/2213337207999200414143605

Price: $65

Abstract

The synthesis of organoselenium compounds continues to be a very active research area, due to their distinct chemical, physical and biological properties. Selenium-based methods have developed rapidly over the past few years and organoselenium chemistry has become a very powerful tool in the hands of organic chemists. This review describes the synthesis of organocatalysed bioactive selenium scaffolds especially including transition metal-catalysed diaryl selenide synthesis, Cu-catalysed selenium scaffolds, Pd-catalysed selenium scaffolds, asymmetric catalysis, Nickel catalysed selenium scaffolds and Rh-catalysed selenium scaffolds.

Keywords: Organocatalyst, selenium scaffolds, asymmetric catalysis, Pd-Ni- Rh-cu-catalyst, organoselenium, metal-catalysed.

Graphical Abstract

[1]
Wirth, T. Organoselenium chemistry in stereoselective reactions. Angew. Chem. Int. Ed. Engl., 2000, 39(21), 3740-3749.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3740:AID-ANIE3740>3.0.CO;2-N ] [PMID: 11091451]
[2]
Ranu, B.C.; Dey, R.; Chatterjee, T.; Ahammed, S. Copper nanoparticle-catalyzed carbon-carbon and carbon-heteroatom bond formation with a greener perspective. ChemSusChem, 2012, 5(1), 22-44.
[http://dx.doi.org/10.1002/cssc.201100348 ] [PMID: 22213696]
[3]
Rampon, D.S.; Luz, E.Q.; Lima, D.B.; Balaguez, R.A.; Schneider, P.H.; Alves, D. Transition metal catalysed direct selanylation of arenes and heteroarenes. Dalton Trans., 2019, 48(27), 9851-9905.
[http://dx.doi.org/10.1039/C9DT00473D ] [PMID: 31120472]
[4]
Perin, G.; Roehrs, J.A.; Hellwig, P.S.; Stach, G.; Barcellos, T.; Lenardao, E.J.; Jacob, R.G.; Luz, E.Q. Synthesis of 2-organylchalcogenyl-benzo[b]selenophenes: 1-(2,2-dibromovinyl)-2-butylselenanylbenzenes as precursors to access alkynes susceptible to cyclization. ChemistrySelect, 2017, 2, 4561-4566.
[http://dx.doi.org/10.1002/slct.201700948]
[5]
Singh, R.S.; Gupta, R.K.; Paitandi, R.P.; Dubey, M.; Sharma, G.; Koch, B.; Pandey, D.S. Morphological tuning via structural modulations in AIE luminogens with the minimum number of possible variables and their use in live cell imaging. Chem. Commun. (Camb.), 2015, 51(44), 9125-9128.
[http://dx.doi.org/10.1039/C5CC02488A ] [PMID: 25939874]
[6]
Takimiya, K.; Kunugi, Y.; Konda, Y.; Niihara, N.; Otsubo, T. 2,6-Diphenylbenzo[1,2-b:4,5-b′]dichalcogenophenes: a new class of high-performance semiconductors for organic field-effect transistors. J. Am. Chem. Soc., 2004, 126(16), 5084-5085.
[http://dx.doi.org/10.1021/ja0496930 ] [PMID: 15099088]
[7]
Takimiya, K.; Kunugi, Y.; Konda, Y.; Ebata, H.; Toyoshima, Y.; Otsubo, T. 2,7-diphenyl[1]benzoselenopheno[3,2-b][1]benzoselenophene as a stable organic semiconductor for a high-performance field-effect transistor. J. Am. Chem. Soc., 2006, 128(9), 3044-3050.
[http://dx.doi.org/10.1021/ja057641k ] [PMID: 16506786]
[8]
Yamamoto, T.; Takimiya, K. Facile synthesis of highly π-extended heteroarenes, dinaphtho[2,3-b:2′,3′-f]chalcogenopheno[3,2-b]chal-cogenophenes, and their application to field-effect transistors. J. Am. Chem. Soc., 2007, 129(8), 2224-2225.
[http://dx.doi.org/10.1021/ja068429z ] [PMID: 17279756]
[9]
Mohamed, E.; Wafaa, S.H.; Hanafi, H.Z. Recent advances in the chemistry of selenium-containing heterocycles: five-membered ring systems. Coord. Chem. Rev., 2016, 312, 149-177.
[http://dx.doi.org/10.1016/j.ccr.2016.01.003]
[10]
Mohamed, E.; Wafaa, S.H.; Hanafi, H.Z. Recent advances in the chemistry of selenium-containing heterocycles: six-membered ring systems. Coord. Chem. Rev., 2017, 330, 110-126.
[http://dx.doi.org/10.1016/j.ccr.2016.09.016]
[11]
Sonawane, A.D.; Koketsu, M. Recent advances on C-Se bond-forming reactions at low and room temperature. Curr. Org. Chem., 2019, 23, 1.
[12]
Banerjee, B.; Koketsu, M. Recent developments in the synthesis of biologically relevant selenium-containing scaffolds. Coord. Chem. Rev., 2017, 339, 104-127.
[http://dx.doi.org/10.1016/j.ccr.2017.03.008]
[13]
Ninomiya, M.; Garud, D.R.; Koketsu, M. Biologically significant selenium-containing heterocycles. Coord. Chem. Rev., 2011, 255, 2968-2990.
[http://dx.doi.org/10.1016/j.ccr.2011.07.009]
[14]
Ivanova, A.; Arsenyan, P. Rise of diselenides: recent advances in the synthesis of heteroarylselenides. Coord. Chem. Rev., 2018, 370, 55-68.
[http://dx.doi.org/10.1016/j.ccr.2018.05.015]
[15]
Santoro, S.; Azeredo, J.B.; Nascimento, V.; Sancineto, L.; Braga, A.L.; Santi, C. The green side of the moon: ecofriendly aspects of organoselenium chemistry. RSC Advances, 2014, 4, 31521-31535.
[http://dx.doi.org/10.1039/C4RA04493B]
[16]
Perin, G.; Lenardão, E.J.; Jacob, R.G.; Panatieri, R.B. Synthesis of vinyl selenides. Chem. Rev., 2009, 109(3), 1277-1301.
[http://dx.doi.org/10.1021/cr8004394 ] [PMID: 19222199]
[17]
Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev., 2011, 111(4), 2937-2980.
[http://dx.doi.org/10.1021/cr100214d ] [PMID: 21425870]
[18]
Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6285.
[http://dx.doi.org/10.1021/cr0406559 ] [PMID: 15584701]
[19]
Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev., 2011, 111(3), 1596-1636.
[http://dx.doi.org/10.1021/cr100347k ] [PMID: 21391564]
[20]
Beletskaya, I.P.; Cheprakov, A.V. Copper in cross-coupling reactions. Coord. Chem. Rev., 2004, 248, 2337-2364.
[http://dx.doi.org/10.1016/j.ccr.2004.09.014]
[21]
Gujadhur, R.K.; Venkataraman, D. A general method for the formation of diaryl selenides using copper(I) catalysts. Tetrahedron Lett., 2003, 44, 81-84.
[http://dx.doi.org/10.1016/S0040-4039(02)02480-2]
[22]
Cristau, H.J.; Chabaud, B.; Labaudiniere, R.; Christol, H. Synthesis of aryl phenyl and heteroaryl phenyl selenides by nickel(II)-catalyzed arylation of sodium benzeneselenolate. Organometallics, 1985, 4, 657-661.
[http://dx.doi.org/10.1021/om00123a007]
[23]
Zhao, H.; Hao, W.; Xi, Z.; Cai, M. Palladium-catalyzed cross-coupling of PhSeSnBu3 with aryl and alkyl halides in ionic liquids: a practical synthetic method of diorganyl selenides. New J. Chem., 2011, 35, 2661-2665.
[http://dx.doi.org/10.1039/c1nj20514e]
[24]
Beletskaya, I.P.; Sigeev, A.S.; Peregudov, A.S.; Petrovskii, P.V. New approaches to the synthesis of unsymmetrical diaryl selenides. J. Organomet. Chem., 2000, 605, 96-101.
[http://dx.doi.org/10.1016/S0022-328X(00)00265-5]
[25]
Nishiyama, Y.; Tokunaga, K.; Sonoda, N. New synthetic method of diorganyl selenides: palladium-catalyzed reaction of PhSeSnBu3 with aryl and alkyl halides. Org. Lett., 1999, 1, 1725-1727.
[http://dx.doi.org/10.1021/ol990233z]
[26]
Reddy, K.H.V.; Satish, G.; Ramesh, K.; Karnakar, K.; Nageswar, Y.V.D. Magnetically separable CuFe2O4 nanoparticle catalyzed C-Se cross-coupling in reusable PEG medium. Chem. Lett., 2012, 41, 585-587.
[http://dx.doi.org/10.1246/cl.2012.585]
[27]
Freitas, C.S.; Barcellos, A.M.; Ricordi, V.G.; Pena, J.M.; Perin, G.; Jacob, R.G.; Lenardao, E.J.; Alves, D. Synthesis of diaryl selenides using electrophilic selenium species and nucleophilic boron reagents in ionic liquids. Green Chem., 2011, 13, 2931-2938.
[http://dx.doi.org/10.1039/c1gc15725f]
[28]
Bhadra, S.; Saha, A.; Al Ranu, B.C. (2)O(3)-supported Cu-Catalyzed Electrophilic Substitution by PhSeBr in Organoboranes, Organosilanes, and Organostannanes. A protocol for the synthesis of unsymmetrical diaryl and alkyl aryl selenides. J. Org. Chem., 2010, 75(14), 4864-4867.
[http://dx.doi.org/10.1021/jo100755g ] [PMID: 20560558]
[29]
Swapna, K.; Murthy, S.N.; Nageswar, Y.V.D. Magnetically separable and reusable copper ferrite nanoparticles for cross-coupling of aryl halides with diphenyl diselenide. Eur. J. Org. Chem., 2011, 2011, 1940-1946.
[http://dx.doi.org/10.1002/ejoc.201001639]
[30]
Li, Y.; Wang, H.; Li, X.; Chen, T.; Zhao, D. CuS/Fe: a novel and highly efficient catalyst system for coupling reaction of aryl halides with diaryl diselenides. Tetrahedron, 2010, 66, 8583-8586.
[http://dx.doi.org/10.1016/j.tet.2010.09.061]
[31]
Murthy, S.N.; Madhav, B.; Reddy, V.P.; Nageswar, Y.V.D. Lanthanum(III) oxide as a recyclable catalyst for the synthesis of diaryl sulfides and diaryl selenides. Eur. J. Org. Chem., 2009, 2009, 5902-5905.
[http://dx.doi.org/10.1002/ejoc.200900989]
[32]
Saha, A.; Saha, D.; Ranu, B.C. Copper nano-catalyst: sustainable phenyl-selenylation of aryl iodides and vinyl bromides in water under ligand free conditions. Org. Biomol. Chem., 2009, 7(8), 1652-1657.
[http://dx.doi.org/10.1039/b819137a ] [PMID: 19343253]
[33]
Singh, D.; Alberto, E.E.; Rodrigues, O.E.D.; Braga, A.L. Eco-friendly crosscoupling of diaryl diselenides with aryl and alkyl bromides catalyzed by CuO nanopowder in ionic liquid. Green Chem., 2009, 11, 1521-1524.
[http://dx.doi.org/10.1039/b916266f]
[34]
Reddy, V.P.; Kumar, A.V.; Swapna, K.; Rao, K.R. Copper oxide nanoparticle-catalyzed coupling of diaryl diselenide with aryl halides under ligand-free conditions. Org. Lett., 2009, 11(4), 951-953.
[http://dx.doi.org/10.1021/ol802734f ] [PMID: 19182886]
[35]
Durandetti, M.; Gosmini, C.; Perichon, J. Ni-catalyzed activation of α-chloroesters: a simple method for the synthesis of αarylesters and β-hydroxyesters. Tetrahedron, 2007, 63, 1146-1153.
[http://dx.doi.org/10.1016/j.tet.2006.11.055]
[36]
Fukuzawa, S-i.; Tanihara, D.; Kikuchi, S. Palladium-catalyzed coupling reaction of diaryl dichalcogenide with aryl bromide leading to the synthesis of unsymmetrical aryl chalcogenide. Synlett, 2006, 2006, 2145-2147.
[http://dx.doi.org/10.1055/s-2006-949607]
[37]
Kumar, S.; Engman, L. Microwave-assisted copper-catalyzed preparation of diaryl chalcogenides. J. Org. Chem., 2006, 71(14), 5400-5403.
[http://dx.doi.org/10.1021/jo060690a ] [PMID: 16808537]
[38]
Taniguchi, N.; Onami, T. Magnesium-induced copper-catalyzed synthesis of unsymmetrical diaryl chalcogenide compounds from aryl iodide via cleavage of the Se-Se or S-S bond. J. Org. Chem., 2004, 69(3), 915-920.
[http://dx.doi.org/10.1021/jo030300+ ] [PMID: 14750822]
[39]
Taniguchi, N.; Onami, T. Copper-catalyzed synthesis of diaryl selenide from aryl iodide and diphenyl diselenide using magnesium metal. Synlett, 2003, 829-832.
[http://dx.doi.org/10.1055/s-2003-38749]
[40]
Millois, C.; Diaz, P. Solution-phase synthesis of diaryl selenides using polymer-supported borohydride. Org. Lett., 2000, 2(12), 1705-1708.
[http://dx.doi.org/10.1021/ol0058184 ] [PMID: 10880206]
[41]
Goldani, B.; Ricordi, V.G.; Seus, N.; Lenardão, E.J.; Schumacher, R.F.; Alves, D. Silver-catalyzed synthesis of diaryl selenides by reaction of diaryl diselenides with aryl boronic acids. J. Org. Chem., 2016, 81(22), 11472-11476.
[http://dx.doi.org/10.1021/acs.joc.6b02108 ] [PMID: 27731643]
[42]
Zhao, H.; Jiang, Y.; Chen, Q.; Cai, M. A highly efficient and reusable MCM-41-immobilized bipyridine copper(I) catalyst for the C-Se coupling of organoboronic acids with diaryl diselenides. New J. Chem., 2015, 39, 2106-2115.
[http://dx.doi.org/10.1039/C4NJ01687D]
[43]
Mohan, B.; Yoon, C.; Jang, S.; Park, K.H. Copper nanoparticles catalyzed Se(Te)-Se(Te) bond activation: a straightforward route towards unsymmetrical organochalcogenides from boronic acids. ChemCatChem, 2015, 7, 405-412.
[http://dx.doi.org/10.1002/cctc.201402867]
[44]
Roy, S.; Chatterjee, T.; Banerjee, B.; Salam, N.; Bhaumik, A.; Islam, S.M. Cu(II) anchored nitrogen-rich covalent imine network (CuII-CIN-1): an efficient and recyclable heterogeneous catalyst for the synthesis of organoselenides from aryl boronic acids in a green solvent. RSC Advances, 2014, 4, 46075-46083.
[http://dx.doi.org/10.1039/C4RA08909J]
[45]
Kumar, A.; Kumar, S. A convenient and efficient copper-catalyzed synthesis of unsymmetrical and symmetrical diaryl chalcogenides from arylboronic acids in ethanol at room temperature. Tetrahedron, 2014, 70, 1763-1772.
[http://dx.doi.org/10.1016/j.tet.2014.01.030]
[46]
Kundu, D.; Mukherjee, N.; Ranu, B.C. A general and green procedure for the synthesis of organochalcogenides by CuFe2O4 nanoparticle catalysed coupling of organoboronic acids and dichalcogenides in PEG-400. RSC Advances, 2013, 3, 117-125.
[http://dx.doi.org/10.1039/C2RA22415A]
[47]
Zheng, B.; Gong, Y.; Xu, H-J. Copper-catalyzed C-Se coupling of diphenyl diselenide with arylboronic acids at room temperature. Tetrahedron, 2013, 69, 5342-5347.
[http://dx.doi.org/10.1016/j.tet.2013.04.124]
[48]
Ricordi, V.G.; Freitas, C.S.; Perin, G.; Lenardao, E.J.; Jacob, R.G.; Savegnago, L.; Alves, D. Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids. Green Chem., 2012, 14, 1030-1034.
[http://dx.doi.org/10.1039/c2gc16427b]
[49]
Wang, M.; Ren, K.; Wang, L. Iron-catalyzed ligand-free carbon-selenium (or tellurium) coupling of arylboronic acids with diselenides and ditellurides. Adv. Synth. Catal., 2009, 351, 1586-1594.
[http://dx.doi.org/10.1002/adsc.200900095]
[50]
Alves, D.; Santos, C.G.; Paixao, M.W.; Soares, L.C.; Souza, D.d.; Rodrigues, O.E.D.; Braga, A.L. CuO nanoparticles: an efficient and recyclable catalyst for cross-coupling reactions of organic diselenides with aryl boronic acids. Tetrahedron Lett., 2009, 50, 6635-6638.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.052]
[51]
Taniguchi, N. Convenient synthesis of unsymmetrical organochalcogenides using organoboronic acids with dichalcogenides via cleavage of the S-S, Se-Se, or Te-Te bond by a copper catalyst. J. Org. Chem., 2007, 72(4), 1241-1245.
[http://dx.doi.org/10.1021/jo062131+ ] [PMID: 17288374]
[52]
Wang, L.; Wang, M.; Huang, F. A simple copper salt-catalyzed synthesis of unsymmetrical diaryl selenides and tellurides from arylboronic acids with diphenyl diselenide and ditelluride. Synlett, 2005, 13, 2007-2010.
[http://dx.doi.org/10.1055/s-2005-871936]
[53]
Wang, H.; Chen, S.; Liu, G.; Guan, H.; Zhong, D.; Cai, J.; Zheng, Z.; Mao, J.; Walsh, P.J. Synthesis of diaryl selenides via palladium-catalyzed debenzylative cross-coupling of aryl benzyl selenides with aryl bromides nickel-catalyzed selenium scaffolds. Organometallics, 2018, 37, 4086-4091.
[http://dx.doi.org/10.1021/acs.organomet.8b00644]
[54]
Movassagh, B.; Hosseinzadeh, Z. A highly efficient copper catalyzed synthesis of unsymmetrical diaryl- and aryl alkyl chalcogenides from aryl iodides and diorganyl disulfides and diselenides. Synlett, 2016, 27, 777-781.
[http://dx.doi.org/10.1055/s-0035-1561268]
[55]
Chatterjee, T.; Ranu, B.C. Solvent-controlled halo-selective selenylation of aryl halides catalyzed by Cu(II) supported on Al2O3. A general protocol for the synthesis of unsymmetrical organo mono- and bis-selenides. J. Org. Chem., 2013, 78(14), 7145-7153.
[http://dx.doi.org/10.1021/jo401062k ] [PMID: 23786642]
[56]
Mandal, A.; Sahoo, H.; Baidya, M. Copper-catalyzed 8-aminoquinoline-directed selenylation of arene and heteroarene C-H bonds. Org. Lett., 2016, 18(13), 3202-3205.
[http://dx.doi.org/10.1021/acs.orglett.6b01420 ] [PMID: 27309343]
[57]
Reddy, C.R.; Ranjan, R.; Prajapti, S.K. Copper-catalyzed intramolecular chalcogenoamination of enynyl azides: synthesis of 5-selenyl/sulfenyl nicotinates. Org. Lett., 2019, 21(3), 623-626.
[http://dx.doi.org/10.1021/acs.orglett.8b03695 ] [PMID: 30629453]
[58]
Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Copper-catalyzed intramolecular dehydrogenative aminooxygenation: direct access to formyl-substituted aromatic N-heterocycles. Angew. Chem. Int. Ed. Engl., 2011, 50(25), 5678-5681.
[http://dx.doi.org/10.1002/anie.201100362 ] [PMID: 21544911]
[59]
Zhang, C.; Tang, C.; Jiao, N. Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process. Chem. Soc. Rev., 2012, 41(9), 3464-3484.
[http://dx.doi.org/10.1039/c2cs15323h ] [PMID: 22349590]
[60]
Narayanam, J.M.R.; Stephenson, C.R. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 2011, 40(1), 102-113.
[http://dx.doi.org/10.1039/B913880N ] [PMID: 20532341]
[61]
Sun, P.; Jiang, M.; Wei, W.; Min, Y.; Zhang, W.; Li, W.; Yang, D.; Wang, H. Copper-catalyzed selenylation of imidazo[1,2-a]pyridines with selenium powder via a radical pathway. J. Org. Chem., 2017, 82(6), 2906-2913.
[http://dx.doi.org/10.1021/acs.joc.6b02865 ] [PMID: 28220698]
[62]
Sattar, M.; Shareef, M.; Patidar, K.; Kumar, S. Copper-catalyzed 8-aminoquinoline assisted aryl chalcogenation of ferroceneamide with aryl disulfides, diselenides, and ditellurides. J. Org. Chem., 2018, 83(15), 8241-8249.
[http://dx.doi.org/10.1021/acs.joc.8b00974 ] [PMID: 29878778]
[63]
Sattar, M.; Patidar, K.; Thorat, R.A.; Kumar, S. Copper-mediated selective mono- and sequential organochalcogenation of C-H bonds: synthesis of hybrid unsymmetrical aryl ferrocene chalcogenides. J. Org. Chem., 2019, 84(11), 6669-6678.
[http://dx.doi.org/10.1021/acs.joc.9b00311 ] [PMID: 31074284]
[64]
Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative coupling between two hydrocarbons: an update of recent C-H functionalizations. Chem. Rev., 2015, 115(22), 12138-12204.
[http://dx.doi.org/10.1021/cr500431s ] [PMID: 26558751]
[65]
Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T.S.A.; Liu, X. Recent advances in C-S bond formation via C-H bond functionalization and decarboxylation. Chem. Soc. Rev., 2015, 44(1), 291-314.
[http://dx.doi.org/10.1039/C4CS00239C ] [PMID: 25309983]
[66]
Goulart, T.A.C.; Back, D.F.; Zeni, G. Copper-catalyzed carbon-nitrogen/carbon-selenium bonds formation: synthesis of 2-(organochalcogenyl)-indolizines. Adv. Synth. Catal., 2017, 359, 1901-1911.
[http://dx.doi.org/10.1002/adsc.201700166]
[67]
Huang, S.; Chen, Z.; Mao, H.; Hu, F.; Li, D.; Tan, Y.; Yang, F.; Qin, W. Metal-free difunctionalization of alkynes to access tetrasubstituted olefins through spontaneous selenosulfonylation of vinylidene ortho-quinone methide (VQM). Org. Biomol. Chem., 2019, 17(5), 1121-1129.
[http://dx.doi.org/10.1039/C8OB02967A ] [PMID: 30633284]
[68]
Kawaguchi, S.; Shirai, T.; Ohe, T.; Nomoto, A.; Sonoda, M.; Ogawa, A. Highly regioselective simultaneous introduction of phosphino and seleno groups into unsaturated bonds by the novel combination of (Ph2P)2 and (PhSe)2 upon photoirradiation. J. Org. Chem., 2009, 74(4), 1751-1754.
[http://dx.doi.org/10.1021/jo8020067 ] [PMID: 19173555]
[69]
Liu, Y.; Zheng, G.; Zhang, Q.; Li, Y.; Zhang, Q. Copper-catalyzed three component regio- and stereospecific selenosulfonation of alkynes: synthesis of (E)-β-selenovinyl sulfones. J. Org. Chem., 2017, 82(4), 2269-2275.
[http://dx.doi.org/10.1021/acs.joc.6b03049 ] [PMID: 28124912]
[70]
Taniguchi, T.; Sugiura, Y.; Zaimoku, H.; Ishibashi, H. Iron-catalyzed oxidative addition of alkoxycarbonyl radicals to alkenes with carbazates and air. Angew. Chem. Int. Ed. Engl., 2010, 49(52), 10154-10157.
[http://dx.doi.org/10.1002/anie.201005574 ] [PMID: 21125551]
[71]
Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Copper-catalyzed direct oxysulfonylation of alkenes with dioxygen and sulfonylhydrazides leading to β-ketosulfones. Chem. Commun. (Camb.), 2013, 49(87), 10239-10241.
[http://dx.doi.org/10.1039/c3cc45803b ] [PMID: 24064594]
[72]
Zhu, J.; Xu, B.; Yu, J.; Ren, Y.; Wang, J.; Xie, P.; Pittman, C.U.; Zhou, A. Copper-catalyzed generation of flavone selenide and thioether derivatives using KSeCN and KSCN via C-H functionalization. Org. Biomol. Chem., 2018, 16(33), 5999-6005.
[http://dx.doi.org/10.1039/C8OB01398E ] [PMID: 30083694]
[73]
Cui, F.H.; Chen, J.; Mo, Z.Y.; Su, S.X.; Chen, Y.Y.; Ma, X.L.; Tang, H.T.; Wang, H.S.; Pan, Y.M.; Xu, Y.L. Copper-catalyzed decarboxylative/click cascade reaction: regioselective assembly of 5-selenotriazole anticancer agents. Org. Lett., 2018, 20(4), 925-929.
[http://dx.doi.org/10.1021/acs.orglett.7b03734 ] [PMID: 29388780]
[74]
Stefani, H.A.; Vasconcelos, S.N.S.; Manarin, F.; Leal, D.M.; Souza, F.B.; Madureira, L.S.; Zukerman-Schpector, J.; Eberlin, M.N.; Godoi, M.N.; de Souza Galaverna, R. Synthesis of 5-organotellanyl-1H-1,2,3-triazoles: functionalization of the 5-position scaffold by the sonogashira cross‐coupling reaction. Eur. J. Org. Chem., 2013, 2013, 3780-3785.
[http://dx.doi.org/10.1002/ejoc.201300009]
[75]
Chen, J.; Su, S-X.; Hu, D-C.; Cui, F-H.; Xu, Y-L.; Chen, Y-Y.; Ma, X-L.; Pan, Y-M.; Liang, Y. Copper-catalyzed bis- or trifunctionalization of alkynyl carboxylic acids: an efficient route to bis- and tris-selenide alkenes. Asian J. Org. Chem., 2018, 7, 892-896.
[http://dx.doi.org/10.1002/ajoc.201800086]
[76]
Yuan, C.; Jie, L.; Fanmin, L.; Lvqi, J.; Wenbin, Y. Copper-catalyzed direct and odorless selenylation with sodium Selenite-based reagent. Org. Chem. Front., 2019, 6, 825-829.
[http://dx.doi.org/10.1039/C8QO01355A]
[77]
Kaname, M.; Minoura, M.; Sashida, H. One-pot copper-catalyzed tandem addition-cyclization of 2-iodoanilines with isoselenocyanates for the practical preparation of 2-aminobenzoselenazoles. Tetrahedron Lett., 2011, 52, 505-508.
[http://dx.doi.org/10.1016/j.tetlet.2010.11.092]
[78]
Guo, Y.J.; Tang, R.Y.; Zhong, P.; Li, J.H. Copper-catalyzed tandem reactions of 2-halobenzenamines with isothiocyanates under ligand- and base-free conditions. Tetrahedron Lett., 2010, 51, 649-652.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.086]
[79]
Fujiwara, S.; Asanuma, Y.; Shin-ike, T.; Kambe, N. Copper(I)-catalyzed highly efficient synthesis of benzoselenazoles and benzotellurazoles. J. Org. Chem., 2007, 72(21), 8087-8090.
[http://dx.doi.org/10.1021/jo7013164 ] [PMID: 17867702]
[80]
Gu, R.; Wang, X.; Yang, Z.; Han, S. Se-mediated one-pot synthesis of 2-substituted benzoselenazole derivatives from 2-iodoanilines and arylacetic acids/arylmethyl chlorides. Tetrahedron Lett., 2018, 59, 2835-2838.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.027]
[81]
Tao, S.; Shishun, X.; Bifu, L.; Jun, Y.; Ling, H.; Xingshu, L. Copper-catalyzed three-component one-pot synthesis of substituted 2-aryl-1,3-benzoselenazoles. Synlett, 2015, 26, 215-220.
[82]
Meiyun, Z.; Zhaojun, W.; Yiqun, L.; Wenjie, Z.; Shengbin, J.; Hua, Z. Carbon-supported copper one-pot catalytic synthesis of benzoselenazole derivatives. Youji Huaxue, 2015, 35, 1270-1275.
[http://dx.doi.org/10.6023/cjoc201412021]
[83]
Satheesh, V.; Srivastava, H.K.; Kumar, S.V.; Sengoden, M.; Punniyamurthy, T. Stereospecific Al-catalysed tandem C-N/C-Se bond formation of isoselenocyanates with aziridines: synthesis and DFT study. Adv. Synth. Catal., 2019, 361, 55-58.
[http://dx.doi.org/10.1002/adsc.201801116]
[84]
Sengoden, M.; Irie, R.; Punniyamurthy, T. Enantiospecific aluminum-catalyzed (3+2) cycloaddition of unactivated aziridines with isothiocyanates. J. Org. Chem., 2016, 81(22), 11508-11513.
[http://dx.doi.org/10.1021/acs.joc.6b02190 ] [PMID: 27731640]
[85]
Luo, S.; Zhang, N.; Wang, Z.; Yan, H. Enantioselective addition of selenosulfonates to α,β-unsaturated ketones. Org. Biomol. Chem., 2018, 16(16), 2893-2901.
[http://dx.doi.org/10.1039/C8OB00359A ] [PMID: 29616275]
[86]
Marcos, V.; Alemán, J.; Ruano, J.L.G.; Marini, F.; Tiecco, M. Asymmetric synthesis of α-alkyl α-selenocarbonyl compounds catalyzed by bifunctional organocatalysts. Org. Lett., 2011, 13(12), 3052-3055.
[http://dx.doi.org/10.1021/ol200923p ] [PMID: 21591622]
[87]
Uchiyama, M.; Satoh, S.; Ohta, A. Asymmetric methoxyselenenylation of alkyl vinyl ethers: a new route to chiral acetals. Tetrahedron Lett., 2001, 42, 1559-1562.
[http://dx.doi.org/10.1016/S0040-4039(00)02285-1]
[88]
Shi, Y.L.; Shi, M. DABCO catalyzed addition of selenosulfonates to α,β-unsaturated ketones. Org. Biomol. Chem., 2005, 3(9), 1620-1621.
[http://dx.doi.org/10.1039/b501942g ] [PMID: 15858640]
[89]
Tang, E.; Wang, W.; Zhao, Y.; Zhang, M.; Dai, X. Catalytic and atom-economic intermolecular amidoselenenylation of alkenes. Org. Lett., 2016, 18(2), 176-179.
[http://dx.doi.org/10.1021/acs.orglett.5b03157 ] [PMID: 26704901]
[90]
Tang, E.; Zhao, Y.; Li, W.; Wang, W.; Zhang, M.; Dai, X. Catalytic selenium-promoted intermolecular friedel-crafts alkylation with simple alkenes. Org. Lett., 2016, 18(5), 912-915.
[http://dx.doi.org/10.1021/acs.orglett.5b03579 ] [PMID: 26882088]
[91]
See, J.Y.; Yang, H.; Zhao, Y.; Wong, M.W.; Ke, Z.; Yeung, Y.Y. Desymmetrizing enantio- and diastereoselective selenoetherification through supramolecular catalysis. ACS Catal., 2018, 82, 850-858.
[http://dx.doi.org/10.1021/acscatal.7b03510]
[92]
Khokhar, S.S.; Wirth, T. Selenocyclizations: control by coordination and by the counterion. Angew. Chem. Int. Ed. Engl., 2004, 43(5), 631-633.
[http://dx.doi.org/10.1002/anie.200352884 ] [PMID: 14743424]
[93]
Fragale, G.; Neuburger, M.; Wirth, T. New and efficient selenium reagents for stereoselective selenenylation reactions. Chem. Commun. (Camb.), 1998, 1867-1868.
[http://dx.doi.org/10.1039/a804264k]
[94]
Back, T.G.; Dyck, B.P. Asymmetric cyclization of unsaturated alcohols and carboxylic acids with camphor-based selenium electrophiles. Chem. Commun. (Camb.), 1996, 2567-2568.
[http://dx.doi.org/10.1039/cc9960002567]
[95]
Guan, H.; Wang, H.; Huang, D.; Shi, Y. Enantioselective oxysulfenylation and oxyselenenylation of olefins catalyzed by chiral bronsted acids. Tetrahedron, 2012, 68, 2728-2735.
[http://dx.doi.org/10.1016/j.tet.2012.01.006]
[96]
Wei, Q.; Wang, Y.Y.; Du, Y.L.; Gong, L.Z. Organocatalytic asymmetric selenofunctionalization of tryptamine for the synthesis of hexahydropyrrolo[2,3-b]indole derivatives. Beilstein J. Org. Chem., 2013, 9, 1559-1564.
[http://dx.doi.org/10.3762/bjoc.9.177 ] [PMID: 23946855]
[97]
Denmark, S.E.; Kalyani, D.; Collins, W.R. Preparative and mechanistic studies toward the rational development of catalytic, enantioselective selenoetherification reactions. J. Am. Chem. Soc., 2010, 132(44), 15752-15765.
[http://dx.doi.org/10.1021/ja106837b ] [PMID: 20961070]
[98]
Niu, W.; Yeung, Y.Y. Catalytic and highly enantioselective selenolactonization. Org. Lett., 2015, 17(7), 1660-1663.
[http://dx.doi.org/10.1021/acs.orglett.5b00377 ] [PMID: 25763679]
[99]
Denmark, S.E.; Collins, W.R. Lewis base activation of Lewis acids: development of a Lewis base catalyzed selenolactonization. Org. Lett., 2007, 9(19), 3801-3804.
[http://dx.doi.org/10.1021/ol701617d ] [PMID: 17705396]
[100]
Wirth, T., Ed.; Organoselenium Chemistry: Synthesis and Reactions; Wiley-VCH: Weinheim, Germany, 2012.
[101]
Zhang, H.; Lin, S.; Jacobsen, E.N. Enantioselective selenocyclization via dynamic kinetic resolution of seleniranium ions by hydrogen-bond donor catalysts. J. Am. Chem. Soc., 2014, 136(47), 16485-16488.
[http://dx.doi.org/10.1021/ja510113s ] [PMID: 25380129]
[102]
You, Y.; Wu, Z.J.; Wang, Z.H.; Xu, X.Y.; Zhang, X.M.; Yuan, W.C. Enantioselective synthesis of 3,3-disubstituted oxindoles bearing two different heteroatoms at the C3 position by organocatalyzed sulfenylation and selenenylation of 3-pyrrolyl-oxindoles. J. Org. Chem., 2015, 80(16), 8470-8477.
[http://dx.doi.org/10.1021/acs.joc.5b01491 ] [PMID: 26252841]
[103]
Tiecco, M.; Carlone, A.; Sternativo, S.; Marini, F.; Bartoli, G.; Melchiorre, P. Organocatalytic asymmetric α-selenenylation of aldehydes. Angew. Chem. Int. Ed. Engl., 2007, 46(36), 6882-6885.
[http://dx.doi.org/10.1002/anie.200702318 ] [PMID: 17680576]
[104]
Wang, J.; Li, H.; Mei, Y.; Lou, B.; Xu, D.; Xie, D.; Guo, H.; Wang, W. Direct, facile aldehyde and ketone α-selenenylation reactions promoted by L-prolinamide and pyrrolidine sulfonamide organocatalysts. J. Org. Chem., 2005, 70(14), 5678-5687.
[http://dx.doi.org/10.1021/jo0506940 ] [PMID: 15989353]
[105]
Giacalone, F.; Gruttadauria, M.; Marculescu, A.M.; Noto, R. Polystyrene-supported proline and prolinamide. Versatile heterogeneous organocatalysts both for asymmetric aldol reaction in water and α-selenenylation of aldehydes. Tetrahedron Lett., 2007, 48, 255-259.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.040]
[106]
Armstrong, A.; Emmerson, D.P.G. Enantioselective synthesis of α-alkyl,α-vinyl amino acids via [2,3]-sigmatropic rearrangement of selenimides. Org. Lett., 2011, 13(5), 1040-1043.
[http://dx.doi.org/10.1021/ol1030926 ] [PMID: 21275415]
[107]
Burés, J.; Dingwall, P.; Armstrong, A.; Blackmond, D.G. Rationalization of an unusual solvent-induced inversion of enantiomeric excess in organocatalytic selenylation of aldehydes. Angew. Chem. Int. Ed. Engl., 2014, 53(33), 8700-8704.
[http://dx.doi.org/10.1002/anie.201404327 ] [PMID: 25044727]
[108]
Sunden, H.; Rios, R.; Cordova, A. Organocatalytic highly enantioselective α-selenenylation of aldehydes. Tetrahedron Lett., 2007, 48, 7865-7869.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.125]
[109]
Wang, W.; Wang, J.; Li, H. A simple and efficient L-prolinamide-catalyzed α-selenenylation reaction of aldehydes. Org. Lett., 2004, 6(16), 2817-2820.
[http://dx.doi.org/10.1021/ol0488946 ] [PMID: 15281777]
[110]
Qiao, H.; Sun, B.; Yu, Q.; Huang, Y-Y.; Zhou, Y.; Zhang, F-L. Palladium-catalyzed direct ortho-C-H selenylation of benzaldehydes using benzidine as a transient directing group. Org. Lett., 2019, 21, 6914-6918.
[http://dx.doi.org/10.1021/acs.orglett.9b02530 ] [PMID: 31448617]
[111]
Iwasaki, M.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. Chelate-assisted direct selenation of aryl C-H bonds with diselenides catalyzed by palladium. Org. Lett., 2014, 16(18), 4920-4923.
[http://dx.doi.org/10.1021/ol502439m ] [PMID: 25207677]
[112]
Fan, X.; Gu, Z. Palladium/norbornene-catalyzed ortho-acylation and ipso- selenation via C(O)-Se bond cleavage: synthesis of α-carbonyl selane. Org. Lett., 2018, 20(4), 1187-1190.
[http://dx.doi.org/10.1021/acs.orglett.8b00112 ] [PMID: 29392946]
[113]
Wang, J. D., G. Palladium/norbornene cooperative catalysis. Chem. Rev., 2019, 119, 7478-7528.
[http://dx.doi.org/10.1021/acs.chemrev.9b00079]
[114]
Gu, L.; Fang, X.; Weng, Z.; Song, Y.; Ma, W. Ligand-free palladium(II)-catalyzed ortho-C-H chalcogenations of N-arylsulfonamide via weak coordination. Eur. J. Org. Chem., 2019, 2019, 1825-1829.
[http://dx.doi.org/10.1002/ejoc.201900050]
[115]
Iwasaki, M.; Miki, N.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. Synthesis of benzoisoselenazolone derivatives by nickel-catalyzed dehydrogenative direct selenation of C(sp2)-H bonds with elemental selenium in air. Org. Lett., 2017, 19(5), 1092-1095.
[http://dx.doi.org/10.1021/acs.orglett.7b00116 ] [PMID: 28211695]
[116]
Corbet, M.; De Campo, F. 8-Aminoquinoline: a powerful directing group in metal-catalyzed direct functionalization of C-H bonds. Angew. Chem. Int. Ed. Engl., 2013, 52(38), 9896-9898.
[http://dx.doi.org/10.1002/anie.201303556 ] [PMID: 23939922]
[117]
Rouquet, G.; Chatani, N. Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups. Angew. Chem. Int. Ed. Engl., 2013, 52(45), 11726-11743.
[http://dx.doi.org/10.1002/anie.201301451 ] [PMID: 24105797]
[118]
Castro, L.C.M.; Chatani, N. Nickel catalysts/N,N′-bidentate directing groups: an excellent partnership in directed C–H activation reactions. Chem. Lett., 2015, 44, 410-421.
[http://dx.doi.org/10.1246/cl.150024]
[119]
Müller, T.; Ackermann, L. Nickel-catalyzed C-H chalcogenation of anilines. Chemistry, 2016, 22(40), 14151-14154.
[http://dx.doi.org/10.1002/chem.201603092 ] [PMID: 27501081]
[120]
Aihara, Y.; Tobisu, M.; Fukumoto, Y.; Chatani, N. Ni(II)-catalyzed oxidative coupling between C(sp(2))-H in benzamides and C(sp(3))-H in toluene derivatives. J. Am. Chem. Soc., 2014, 136(44), 15509-15512.
[http://dx.doi.org/10.1021/ja5095342 ] [PMID: 25347731]
[121]
Yokota, A.; Chatani, N. Ni(II)-catalyzed sulfonylation of ortho C-H bonds in aromatic amides utilizing an N,N-bidentate directing group. Chem. Lett., 2015, 44, 902-904.
[http://dx.doi.org/10.1246/cl.150239]
[122]
Yan, Q.; Chen, Z.; Yu, W.; Yin, H.; Liu, Z.; Zhang, Y. Nickel-catalyzed direct amination of arenes with alkylamines. Org. Lett., 2015, 17(10), 2482-2485.
[http://dx.doi.org/10.1021/acs.orglett.5b00990 ] [PMID: 25942045]
[123]
Aihara, Y.; Chatani, N. Nickel-catalyzed reaction of C-H bonds in amides with I2: ortho-iodination via the cleavage of C(sp2)-H bonds and oxidative cyclization to β-lactams via the cleavage of C(sp3)-H bonds. ACS Catal., 2016, 6, 4323-4329.
[http://dx.doi.org/10.1021/acscatal.6b00964]
[124]
Zhu, J.; Zhu, W.; Xie, P.; Pittman, C.U., Jr; Zhou, A. Nickel-catalyzed C(sp2)-H selenation of imidazo[1,2-α]pyridines with arylboronic acids or alkyl reagents using selenium powder. Tetrahedron, 2018, 74, 6569-6576.
[http://dx.doi.org/10.1016/j.tet.2018.09.037]
[125]
Yu, S.; Wan, B.; Li, X. Rh(III)-catalyzed selenylation of arenes with selenenyl chlorides/diselenides via C-H activation. Org. Lett., 2015, 17(1), 58-61.
[http://dx.doi.org/10.1021/ol503231p ] [PMID: 25515149]
[126]
Ng, K-H.; Zhou, Z.; Yu, W-Y. Rhodium(III)-catalyzed intermolecular direct amination of aromatic C-H bonds with N-chloroamines. Org. Lett., 2012, 14(1), 272-275.
[http://dx.doi.org/10.1021/ol203046n ] [PMID: 22149646]
[127]
Grohmann, C.; Wang, H.; Glorius, F. Rh[III]-catalyzed direct C-H amination using N-chloroamines at room temperature. Org. Lett., 2012, 14(2), 656-659.
[http://dx.doi.org/10.1021/ol203353a ] [PMID: 22196134]
[128]
Ng, K-H.; Zhou, Z.; Yu, W-Y. [Cp*RhCl2]2-catalyzed ortho-C-H bond amination of acetophenone o-methyloximes with primary N-chloroalkylamines: convenient synthesis of N-alkyl-2-acylanilines. Chem. Commun. (Camb.), 2013, 49(63), 7031-7033.
[http://dx.doi.org/10.1039/c3cc42937g ] [PMID: 23765053]
[129]
Hwang, H.; Kim, J.; Jeong, J.; Chang, S. Regioselective introduction of heteroatoms at the C-8 position of quinoline N-oxides: remote C-H activation using N-oxide as a stepping stone. J. Am. Chem. Soc., 2014, 136(30), 10770-10776.
[http://dx.doi.org/10.1021/ja5053768 ] [PMID: 25029667]
[130]
Jeong, J.; Patel, P.; Hwang, H.; Chang, S. Rhodium(III)-catalyzed C-C bond formation of quinoline N-oxides at the C-8 position under mild conditions. Org. Lett., 2014, 16(17), 4598-4601.
[http://dx.doi.org/10.1021/ol502173d ] [PMID: 25141216]
[131]
Zhang, X.; Qi, Z.; Li, X. Rhodium(III)-catalyzed C-C and C-O coupling of quinoline N-oxides with alkynes: combination of C-H activation with O-atom transfer. Angew. Chem. Int. Ed. Engl., 2014, 53(40), 10794-10798.
[http://dx.doi.org/10.1002/anie.201406747 ] [PMID: 25125142]
[132]
Xie, W.; Li, B.; Wang, B. Rh(III)-catalyzed C7-thiolation and selenation of Indolines. J. Org. Chem., 2016, 81(2), 396-403.
[http://dx.doi.org/10.1021/acs.joc.5b01943 ] [PMID: 26686383]
[133]
Vats, T.K.; Mishra, A.; Deb, I. Rhodium-catalyzed direct and selective ortho C-H chalcogenation of N-(hetero)aryl-7-azaindoles. Adv. Synth. Catal., 2018, 360, 2291-2296.
[http://dx.doi.org/10.1002/adsc.201800090]
[134]
Jardim, G.A.M.; Bower, J.F.; da Silva Júnior, E.N. da, S. Rh-catalyzed reactions of 1,4-benzoquinones with electrophiles: C-H iodination, bromination, and phenylselenation. Org. Lett., 2016, 18(18), 4454-4457.
[http://dx.doi.org/10.1021/acs.orglett.6b01586 ] [PMID: 27599589]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy