Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Effective Dye Degradation Using Sol-Gel Synthesized Titania Nanostructures

Author(s): Priyanka Karathan Parakkandy, Kagalagodu Manjunthiah Balakrishna and Thomas Varghese*

Volume 17, Issue 5, 2021

Published on: 09 April, 2020

Page: [668 - 676] Pages: 9

DOI: 10.2174/1573411016999200409122724

Price: $65

conference banner
Abstract

Background: The organic effluents from industry remain one of the reasons for water contamination. By the natural degradation process, it is difficult to remove this; hence finding an effective solution for this is inevitable. TiO2-based materials have received enormous attention in the area of semiconductor photocatalysis, particularly for the degradation of organic dyes. This work emphasizes on the degradation of two industrial dyes methylene blue and rhodamine blue by visible light irradiation of TiO2 based nanoparticles.

Methods: In the present study, pristine and La3+ and Ce3+ doped nanotitania were synthesized by the sol-gel method. The samples under investigation were characterized using X-ray diffraction, Transmission electron microscopy to study the variation of crystallite size and UV-Visible absorption spectroscopy.

Results: The increase in crystallite size for the pristine samples calcined at various temperatures confirms the effect of calcination temperature. Also, the doping reduced the size of the synthesized nanotitania. Visible light extended absorption spectra have been observed for the calcined samples and Ce3+ doped nanotitania. The La3+ doped sample showed a blue shift in the absorption confirming quantum confinement. The photocatalytic activity in the context of degradation of certain industrial dyes such as methylene blue and rhodamine blue has been investigated for the samples.

Conclusion: The studies found that nanotitania consisting of mixed anatase-rutile phase exhibits higher degradation efficiency than that of pure anatase or rutile samples. Besides, photocatalytic dye degradation has been significantly improved for Ce3+ doped nanotitania compared to the pristine sample.

Keywords: Anatase, nanotitania, photocatalysis, photocatalytic activity, rutile, sol-gel synthesis.

Graphical Abstract

[1]
Chen, S.W.; Lee, J.M.; Lu, K.T.; Pao, C.W.; Lee, J.F.; Chan, T.S.; Chen, J.M. Band-gap narrowing of TiO2 doped with Ce probed with x-ray absorption spectroscopy. Appl. Phys. Lett., 2010, 97, 012104.
[http://dx.doi.org/10.1063/1.3460916]
[2]
Postai, D.L.; Demarchi, C.A.; Zanatta, F.; Melo, D.C.C.; Rodrigues, C.A. Adsorption of rhodamine B and methylene blue dyes using waste of seeds of AleuritesMoluccana, a low cost adsorbent. Alexandria Engg. J., 2016, 55, 1713-1723.
[http://dx.doi.org/10.1016/j.aej.2016.03.017]
[3]
Gupta, V.K.; Ali, I.; Saini, V.K. Removal of Rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Ind. Eng. Chem. Res., 2004, 43, 1740-1747.
[http://dx.doi.org/10.1021/ie034218g]
[4]
Priyanka, K.P.; Revathy, V.R.; Rosmin, P.; Thrivedu, B.; Elsa, K.M.; Nimmymol, J.; Balakrishna, K.M.; Varghese, T. Influence of La doping on structural and optical properties of TiO2 nanocrystals. Mater. Charact., 2016, 113, 144-151.
[http://dx.doi.org/10.1016/j.matchar.2016.01.015]
[5]
Priyanka, K.P.; Tresa, S.A.; Jaseentha, O.P.; Varghese, T. Cerium doped nanotitania-extended spectral response for enhanced photocatalysis. Mater. Res. Express, 2014., 1015003.
[http://dx.doi.org/10.1088/2053-1591/1/1/015003]
[6]
Priyanka, K.P.; Sankararaman, S.; Balakrishna, K.M.; Varghese, T. Enhanced visible light photocatalysis using TiO2/phthalocyanine nanocomposites for the degradation of selected industrial dyes. J. Alloys Compd., 2017, 720, 541-549.
[http://dx.doi.org/10.1016/j.jallcom.2017.05.308]
[7]
Priyanka, K.P.; Sheena, P.A.; Sabu, N.A.; George, T.; Balakrishna, K.M.; Varghese, T. Characterization of nanophase TiO2 synthesized by sol–gel method. Indian J. Phys., 2014, 88, 657-663.
[http://dx.doi.org/10.1007/s12648-014-0475-9]
[8]
Cullity, B.D. Elements of X-ray Diffraction; Addison-Wesley: Reading, MA, 1967.
[9]
Spurr, R.A.; Myers, H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal. Chem., 1957, 29, 760-762.
[http://dx.doi.org/10.1021/ac60125a006]
[10]
Kandiel, T.A.; Robben, L.; Alkaim, A.; Bahnemann, D. Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities. Photochem. Photobiol. Sci., 2013, 12(4), 602-609.
[http://dx.doi.org/10.1039/C2PP25217A] [PMID: 22945758]
[11]
Ohno, Y.; Sarukawa, K.; Matsumura, M. Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J. Phys. Chem. B, 2014, 105, 2417-2420.
[http://dx.doi.org/10.1021/jp003211z]
[12]
Ohtani, B.; Mahaney, O.O.P.; Li, D.; Abe, R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. Chem., 2010, 216, 179-182.
[http://dx.doi.org/10.1016/j.jphotochem.2010.07.024]
[13]
Hanaor, D.A.H.; Sorrel, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci., 2011, 46, 855-874.
[http://dx.doi.org/10.1007/s10853-010-5113-0]
[14]
Ohno, T.; Tokieda, K.; Higashida, S.; Matsumura, M. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal. A., 2003, 244, 383-391.
[http://dx.doi.org/10.1016/S0926-860X(02)00610-5]
[15]
Hurum, D.C.; Agrios, A.G.; Gray, K.A.; Rajh, T.; Thurnauer, M.C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B, 2003, 107, 4545-4549.
[http://dx.doi.org/10.1021/jp0273934]
[16]
Zhang, H.; Banfield, J.F. Phase transformation of nanocrystallineanatase-to-rutile via combined interface and surface nucleation. J. Mater. Res., 2000, 15, 437-448.
[http://dx.doi.org/10.1557/JMR.2000.0067]
[17]
Paul, S.; Choudhury, A. Investigation of the optical property and photocatalytic activity of mixed phase nanocrystallinetitania. Appl. Nanosci., 2014, 4, 839-847.
[http://dx.doi.org/10.1007/s13204-013-0264-3]
[18]
Pal, M.; Pal, U.; Jiménez, J.M.; Pérez-Rodríguez, F.; Rodríguez, F.P. Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors. Nanoscale Res. Lett., 2012, 7(1), 1.
[http://dx.doi.org/10.1186/1556-276X-7-1] [PMID: 22214494]
[19]
Gautam, A.; Kshirsagar, A.; Biswas, R.; Banerjee, S.; Khanna, P.K. Photodegradation of organic dyes based on anatase and rutile TiO2 nanoparticles. RSC Advances, 2016, 6, 2746-2759.
[http://dx.doi.org/10.1039/C5RA20861K]
[20]
Banerjee, A.N.; Joo, S.W.; Min, B.K. Photocatalytic degradation of organic dye by sol-gel-derived gallium-doped anatase titanium oxide nanoparticles for environmental remediation. J. Nanomater., 2012, C, 201492.
[http://dx.doi.org/10.1155/2012/201492]
[21]
Rahman, M.M.; Roy, D.; Mukit, M.S.H. Investigation on the relative degradation of MB and RB dyes under UV-visible light using thermally trated commercial and doped TiO2/ZnOphotocatalysts. Int. J. Integrated Sci. Technol., 2016, 2, 14-18.
[22]
Wang, L.; Cai, Y.; Song, L.Y.; Nie, W.Y.; Zhou, Y.F.; Chena, P. High efficient photocatalyst of spherical TiO2 particles synthesized by a sol–gel method modified with glycol. Colloids Surf. A Physicochem. Eng. Asp., 2014, 461, 195-201.
[http://dx.doi.org/10.1016/j.colsurfa.2014.07.050]
[23]
Zhang, T.; Oyama, T.; Aoshima, A.; Hidaka, H.; Zhao, J.; Serpone, N. Photocatalytic destruction of Methylene Blue on Ag@TiO2 with core/shell structure. J. Photochem. Photobiol. Chem., 2001, 140, 163-172.
[http://dx.doi.org/10.1016/S1010-6030(01)00398-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy