Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Targeted Delivery of Therapeutics to Urological Cancer Stem Cells

Author(s): Qiang Liu, Jian Gu, E Zhang, Lili He* and Zhi-xiang Yuan*

Volume 26, Issue 17, 2020

Page: [2038 - 2056] Pages: 19

DOI: 10.2174/1381612826666200403131514

Price: $65

Abstract

Urological cancer refers to cancer in organs of the urinary system and the male reproductive system. It mainly includes prostate cancer, bladder cancer, renal cancer, etc., seriously threatening patients’ survival. Although there are many advances in the treatment of urological cancer, approved targeted therapies often result in tumor recurrence and therapy failure. An increasing amount of evidence indicated that cancer stem cells (CSCs) with tumor-initiating ability were the source of treatment failure in urological cancer. The development of CSCstargeted strategy can provide a possibility for the complete elimination of urological cancer. This review is based on a search of PubMed, Google scholar and NIH database (http://ClinicalTrials.gov/) for English language articles containing the terms: “biomarkers”, “cancer stem cells”, “targeting/targeted therapy”, “prostate cancer”, bladder cancer” and “kidney cancer”. We summarized the biomarkers and stem cell features of the prostate, bladder and renal CSCs, outlined the targeted strategies for urological CSCs from signaling pathways, cytokines, angiogenesis, surface markers, elimination therapy, differentiation therapy, immunotherapy, microRNA, nanomedicine, etc., and highlighted the prospects and future challenges in this research field.

Keywords: Urological cancer, targeted delivery, cancer stem cells, signal pathways, biomarkers, microRNA.

[1]
Heppner GH. Tumor heterogeneity. Cancer Res 1984; 44(6): 2259-65.
[PMID: 6372991]
[2]
Kern SE, Shibata D. The fuzzy math of solid tumor stem cells: a perspective. Cancer Res 2007; 67(19): 8985-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1971] [PMID: 17908998]
[3]
Lawson JC, Blatch GL, Edkins AL. Cancer stem cells in breast cancer and metastasis. Breast Cancer Res Treat 2009; 118(2): 241-54.
[http://dx.doi.org/10.1007/s10549-009-0524-9] [PMID: 19731012]
[4]
Yu J, Alharbi A, Shan H, et al. TAZ induces lung cancer stem cell properties and tumorigenesis by up-regulating ALDH1A1. Oncotarget 2017; 8(24): 38426-43.
[http://dx.doi.org/10.18632/oncotarget.16430] [PMID: 28415606]
[5]
Lin H, Wang B, Yu J, Wang J, Li Q, Cao B. Protein arginine methyltransferase 8 gene enhances the colon cancer stem cell (CSC) function by upregulating the pluripotency transcription factor. J Cancer 2018; 9(8): 1394-402.
[http://dx.doi.org/10.7150/jca.23835] [PMID: 29721049]
[6]
Yu K. Cancer stem cells and tumour associated macrophages in glioblastoma multiforme. United Kingdom: the university of manchester 2016. Available at:. https://www.research.manchester.ac.uk/portal/en/theses/cancer-stem-cells-and-tumour-asso ciated-macrophages-in-glioblastoma-multiforme(4b35d26b-3962-41c1-b944-f779e165e9ed).html
[7]
Wang JX, Zhou JF, Huang FK, et al. GLI2 induces PDGFRB expression and modulates cancer stem cell properties of gastric cancer. Eur Rev Med Pharmacol Sci 2017; 21(17): 3857-65.
[PMID: 28975979]
[8]
Ying C, Xiao BD, Qin Y, et al. GOLPH2-regulated oncolytic adenovirus, GD55, exerts strong killing effect on human prostate cancer stem-like cells in vitro and in vivo. Acta Pharmacol Sin 2018; 39(3): 405-14.
[http://dx.doi.org/10.1038/aps.2017.91] [PMID: 28880012]
[9]
Wang D, Kong X, Li Y, et al. Curcumin inhibits bladder cancer stem cells by suppressing Sonic Hedgehog pathway. Biochem Biophys Res Commun 2017; 493(1): 521-7.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.158] [PMID: 28870814]
[10]
Luo Z, Li Y, Zuo M, et al. Effect of NR5A2 inhibition on pancreatic cancer stem cell (CSC) properties and epithelial-mesenchymal transition (EMT) markers. Mol Carcinog 2017; 56(5): 1438-48.
[http://dx.doi.org/10.1002/mc.22604] [PMID: 27996162]
[11]
Ruiu R, Rolih V, Bolli E, et al. Fighting breast cancer stem cells through the immune-targeting of the xCT cystine-glutamate antiporter. Cancer Immunol Immunother 2019; 68(1): 131-41.
[http://dx.doi.org/10.1007/s00262-018-2185-1] [PMID: 29947961]
[12]
Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006; 5(1): 67.
[http://dx.doi.org/10.1186/1476-4598-5-67] [PMID: 17140455]
[13]
Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444(7120): 756-60.
[http://dx.doi.org/10.1038/nature05236] [PMID: 17051156]
[14]
Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104(3): 973-8.
[http://dx.doi.org/10.1073/pnas.0610117104] [PMID: 17210912]
[15]
Wadosky KM, Shourideh M, Goodrich DW, Koochekpour S. Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgen-dependent and castration-resistant prostate cancer cells. Prostate 2019; 79(2): 140-50.
[http://dx.doi.org/10.1002/pros.23719] [PMID: 30280407]
[16]
Lee CH, Decker AM, Cackowski FC, Taichman RS. Bone microenvironment signaling of cancer stem cells as a therapeutic target in metastatic prostate cancer. Cell Biol Toxicol 2019; 1-16.
[http://dx.doi.org/10.1007/s10565-019-09483-7] [PMID: 31250347]
[17]
Wong MCS, Fung FDH, Leung C, Cheung WWL, Goggins WB, Ng CF. The global epidemiology of bladder cancer: a joinpoint regression analysis of its incidence and mortality trends and projection. Sci Rep 2018; 8(1): 1129.
[http://dx.doi.org/10.1038/s41598-018-19199-z] [PMID: 29348548]
[18]
Gislefoss RE, Stenehjem JS, Hektoen HH, et al. Vitamin D, obesity and leptin in relation to bladder cancer incidence and survival: prospective protocol study. BMJ Open 2018; 8(3) e019309
[http://dx.doi.org/10.1136/bmjopen-2017-019309] [PMID: 29602840]
[19]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1): 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[20]
Shigeta K, Kikuchi E, Hagiwara M, et al. The conditional survival with time of intravesical recurrence of upper tract urothelial carcinoma. J Urol 2017; 198(6): 1278-85.
[http://dx.doi.org/10.1016/j.juro.2017.06.073] [PMID: 28634017]
[21]
Maccalli C, De Maria R. Cancer stem cells: perspectives for therapeutic targeting. Cancer Immunol Immunother 2015; 64(1): 91-7.
[http://dx.doi.org/10.1007/s00262-014-1592-1] [PMID: 25104304]
[22]
Hofner T, Macher-Goeppinger S, Klein C, et al. Expression and prognostic significance of cancer stem cell markers CD24 and CD44 in urothelial bladder cancer xenografts and patients undergoing radical cystectomy. Urol Oncol 2014; 32(5): 678-86.
[http://dx.doi.org/10.1016/j.urolonc.2014.01.001] [PMID: 24631171]
[23]
Xiao W, Gao Z, Duan Y, Yuan W, Ke Y. Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J Exp Clin Cancer Res 2017; 36(1): 41.
[http://dx.doi.org/10.1186/s13046-017-0507-3] [PMID: 28279221]
[24]
Ni J, Cozzi P, Hao J, et al. Cancer stem cells in prostate cancer chemoresistance. Curr Cancer Drug Targets 2014; 14(3): 225-40.
[http://dx.doi.org/10.2174/1568009614666140328152459] [PMID: 24720286]
[25]
Cramer SD. Stem cells and prostate cancer. Spiringer 2013; pp. 127-48.
[http://dx.doi.org/10.1007/978-1-4614-6498-3]
[26]
Güler G, Guven U, Oktem G. Characterization of CD133+/CD44+ human prostate cancer stem cells with ATR-FTIR spectroscopy. Analyst (Lond) 2019; 144(6): 2138-49.
[http://dx.doi.org/10.1039/C9AN00093C] [PMID: 30742170]
[27]
Soner BC, Aktug H, Acikgoz E, et al. Induced growth inhibition, cell cycle arrest and apoptosis in CD133+/CD44+ prostate cancer stem cells by flavopiridol. Int J Mol Med 2014; 34(5): 1249-56.
[http://dx.doi.org/10.3892/ijmm.2014.1930] [PMID: 25216351]
[28]
Oktem G, Bilir A, Uslu R, et al. Expression profiling of stem cell signaling alters with spheroid formation in CD133high/CD44high prostate cancer stem cells. Oncol Lett 2014; 7(6): 2103-9.
[http://dx.doi.org/10.3892/ol.2014.1992] [PMID: 24932297]
[29]
Botchkina GI, Ju J, Savitt AG, et al. Abstract 3331: New-generation taxoid SB-T-1214 inhibits stem cell-related gene expression in colon and prostate CSCs. Cancer Res 2011; 70(8): 3331.
[30]
Erdogan S, Turkekul K, Serttas R, Erdogan Z. The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy. Biomed Pharmacother 2017; 88(88): 210-7.
[http://dx.doi.org/10.1016/j.biopha.2017.01.056] [PMID: 28107698]
[31]
Kalantari E, Asgari M, Nikpanah S, Salarieh N, Asadi Lari MH, Madjd Z. Co-Expression of putative cancer stem cell markers CD44 and CD133 in prostate carcinomas. Pathol Oncol Res 2017; 23(4): 793-802.
[http://dx.doi.org/10.1007/s12253-016-0169-z] [PMID: 28083789]
[32]
Pellacani D, Oldridge EE, Collins AT, Maitland NJ. Prominin-1 (CD133) expression in the prostate and prostate cancer: a marker for quiescent stem cells. Adv Exp Med Biol 2013; 777: 167-84.
[http://dx.doi.org/10.1007/978-1-4614-5894-4_11] [PMID: 23161082]
[33]
Kanwal R, Shukla S, Walker E, Gupta S. Acquisition of tumorigenic potential and therapeutic resistance in CD133+ subpopulation of prostate cancer cells exhibiting stem-cell like characteristics. Cancer Lett 2018; 430: 25-33.
[http://dx.doi.org/10.1016/j.canlet.2018.05.014] [PMID: 29775627]
[34]
Cojoc M, Peitzsch C, Kurth I, et al. Aldehyde dehydrogenase is regulated by β-Catenin/TCF and promotes radioresistance in prostate cancer progenitor cells. Cancer Res 2015; 75(7): 1482-94.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1924] [PMID: 25670168]
[35]
Matsika A, Srinivasan B, Day C, et al. Cancer stem cell markers in prostate cancer: an immunohistochemical study of ALDH1, SOX2 and EZH2. Pathology 2015; 47(7): 622-8.
[http://dx.doi.org/10.1097/PAT.0000000000000325] [PMID: 26517640]
[36]
Sabnis NG, Miller A, Titus MA, Huss WJ. The efflux transporter ABCG2 maintains prostate stem cells. Mol Cancer Res 2017; 15(2): 128-40.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0270-T] [PMID: 27856956]
[37]
Guzel E, Karatas OF, Duz MB, Solak M, Ittmann M, Ozen M. Differential expression of stem cell markers and ABCG2 in recurrent prostate cancer. Prostate 2014; 74(15): 1498-505.
[http://dx.doi.org/10.1002/pros.22867] [PMID: 25175483]
[38]
Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG. Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 2007; 67(14): 6796-805.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0490] [PMID: 17638891]
[39]
Sottnik JL, Daignault-Newton S, Zhang X, et al. Integrin alpha2beta 1 (α2β1) promotes prostate cancer skeletal metastasis. Clin Exp Metastasis 2013; 30(5): 569-78.
[http://dx.doi.org/10.1007/s10585-012-9561-6] [PMID: 23242739]
[40]
Ryu S, Park KM, Lee SH. Gleditsia sinensis thorn attenuates the collagen-based migration of PC3 prostate cancer cells through the suppression of α2β1 integrin expression. Int J Mol Sci 2016; 17(3): 328.
[http://dx.doi.org/10.3390/ijms17030328] [PMID: 26950116]
[41]
Hao J, Madigan MC, Khatri A, et al. In vitro and in vivo prostate cancer metastasis and chemoresistance can be modulated by expression of either CD44 or CD147. PLoS One 2012; 7(8) e40716
[http://dx.doi.org/10.1371/journal.pone.0040716] [PMID: 22870202]
[42]
Peng X, Zhou Y, Tian H, et al. Sulforaphane inhibits invasion by phosphorylating ERK1/2 to regulate E-cadherin and CD44v6 in human prostate cancer DU145 cells. Oncol Rep 2015; 34(3): 1565-72.
[http://dx.doi.org/10.3892/or.2015.4098] [PMID: 26134113]
[43]
Peng Y, Prater AR, Deutscher SL. Targeting aggressive prostate cancer-associated CD44v6 using phage display selected peptides. Oncotarget 2017; 8(49): 86747-68.
[http://dx.doi.org/10.18632/oncotarget.21421] [PMID: 29156833]
[44]
Erdogan S, Doganlar ZB, Doganlar O, Turkekul K, Serttas R. Inhibition of midkine suppresses prostate cancer CD133+ stem cell growth and migration. Am J Med Sci 2017; 354(3): 299-309.
[http://dx.doi.org/10.1016/j.amjms.2017.04.019] [PMID: 28918838]
[45]
Wang D, Zhu H, Zhu Y, et al. CD133(+)/CD44(+)/Oct4(+)/Nestin(+) stem-like cells isolated from Panc-1 cell line may contribute to multi-resistance and metastasis of pancreatic cancer. Acta Histochem 2013; 115(4): 349-56.
[http://dx.doi.org/10.1016/j.acthis.2012.09.007] [PMID: 23036582]
[46]
Trerotola M, Rathore S, Goel HL, et al. CD133, Trop-2 and alpha2beta1 integrin surface receptors as markers of putative human prostate cancer stem cells. Am J Transl Res 2010; 2(2): 135-44.
[PMID: 20407603]
[47]
Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65(23): 10946-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2018] [PMID: 16322242]
[48]
Rybak AP, Bristow RG, Kapoor A. Prostate cancer stem cells: deciphering the origins and pathways involved in prostate tumorigenesis and aggression. Oncotarget 2015; 6(4): 1900-19.
[http://dx.doi.org/10.18632/oncotarget.2953] [PMID: 25595909]
[49]
van den Hoogen C, van der Horst G, Cheung H, et al. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 2010; 70(12): 5163-73.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3806] [PMID: 20516116]
[50]
Kalantari E, Saadi FH, Asgari M, et al. Increased expression of ALDH1A1 in prostate cancer is correlated with tumor aggressiveness. applied immunohistochemistry & molecular morphology. AIMM 2016; 25(8): 592-8.
[51]
Kerr CL, Hussain A. Regulators of prostate cancer stem cells. Curr Opin Oncol 2014; 26(3): 328-33.
[http://dx.doi.org/10.1097/CCO.0000000000000080] [PMID: 24651383]
[52]
Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 2013; 34(6): 732-40.
[http://dx.doi.org/10.1038/aps.2013.27] [PMID: 23685952]
[53]
Zhang W, Meng Y, Liu N, Wen XF, Yang T. Insights into chemoresistance of prostate cancer. Int J Biol Sci 2015; 11(10): 1160-70.
[http://dx.doi.org/10.7150/ijbs.11439] [PMID: 26327810]
[54]
Pascal LE, Oudes AJ, Petersen TW, et al. Molecular and cellular characterization of ABCG2 in the prostate. BMC Urol 2007; 7(1): 6.
[http://dx.doi.org/10.1186/1471-2490-7-6] [PMID: 17425799]
[55]
Li W-J, Chen X-H, Zeng J-C, Duan LL, Liu ZH, Sheng XH. Theoretical insight into the multiple interactions of quinazoline inhibitors with breast cancer resistance protein (BCRP/ABCG2). J Biomol Struct Dyn 2019; 1-8.
[http://dx.doi.org/10.1080/07391102.2019.1677503] [PMID: 31594454]
[56]
Bruhn O, Cascorbi I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Expert Opin Drug Metab Toxicol 2014; 10(10): 1337-54.
[http://dx.doi.org/10.1517/17425255.2014.952630] [PMID: 25162314]
[57]
Shishido Y, Ueno S, Yamazaki R, Nagaoka M, Matsuzaki T. ABCG2 inhibitor YHO-13351 sensitizes cancer stem/initiating-like side population cells to irinotecan. Anticancer Res 2013; 33(4): 1379-86.
[PMID: 23564776]
[58]
Pires MM, Emmert DM, Chmielewski JA, et al. ABCB1 and ABCG2: deciphering the role of human efflux proteins in cellular and tissue permeability. 2011; 85-126.
[59]
Miyata H, Takada T, Toyoda Y, Matsuo H, Ichida K, Suzuki H. Identification of febuxostat as a new strong ABCG2 inhibitor: potential applications and risks in clinical situations. Front Pharmacol 2016; 7: 518.
[http://dx.doi.org/10.3389/fphar.2016.00518] [PMID: 28082903]
[60]
Toyoda Y, Takada T, Suzuki H. Inhibitors of human ABCG2: from technical background to recent updates with clinical implications. Front Pharmacol 2019; 10: 208.
[http://dx.doi.org/10.3389/fphar.2019.00208] [PMID: 30890942]
[61]
Deng Z, Wu Y, Ma W, Zhang S, Zhang YQ. Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen Ep- CAM. BMC Immunol 2015; 16(1): 1-9.
[http://dx.doi.org/10.1186/s12865-014-0064-x] [PMID: 25636521]
[62]
Eyvazi S, Farajnia S, Dastmalchi S, Kanipour F, Zarredar H, Bandehpour M. Antibody based EpCAM targeted therapy of cancer, review and update. Curr Cancer Drug Targets 2018; 18(9): 857-68.
[http://dx.doi.org/10.2174/1568009618666180102102311] [PMID: 29295696]
[63]
Shigdar S, Lin J, Yu Y, Pastuovic M, Wei M, Duan W. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci 2011; 102(5): 991-8.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01897.x] [PMID: 21281402]
[64]
Wong N, Major P, Kapoor A, et al. Amplification of MUC1 in prostate cancer metastasis and CRPC development. Oncotarget 2016; 7(50): 83115-33.
[http://dx.doi.org/10.18632/oncotarget.13073] [PMID: 27825118]
[65]
Bellone M, Caputo S. Crosstalk between prostate cancer stem cells and immune cells: implications for tumor progression and resistance to immunotherapy cancer stem cell resistance to targeted therapy. Springer 2019; pp. 173-221.
[66]
Asadzadeh Z, Mansoori B, Mohammadi A, et al. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J Cell Physiol 2019; 234(7): 10002-17.
[http://dx.doi.org/10.1002/jcp.27885] [PMID: 30537109]
[67]
Hu Z, Zhou S, Luo H, et al. miRNA-17 promotes nasopharyngeal carcinoma radioresistance by targeting PTEN/AKT. Int J Clin Exp Pathol 2019; 12(1): 229-40.
[PMID: 31933738]
[68]
Jeter CR, Tang DG. Prostate tissue stem cells and prostate cancer progression. Translational medicine. Cancer 2016; 2: 215.
[69]
Meng X, Marquez R, Smith A, et al. Abstract 5692: Targeted inhibition of cancer stem cells by self-assembled miRNA-nanovectors. Cancer Res 2012; 72(8): 5692.
[70]
Lee SO, Ma Z, Yeh C-R, et al. New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells. J Mol Cell Biol 2013; 5(1): 14-26.
[http://dx.doi.org/10.1093/jmcb/mjs042] [PMID: 22831834]
[71]
Vidal SJ, Rodriguez-Bravo V, Galsky M, Cordon-Cardo C, Domingo-Domenech J. Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene 2014; 33(36): 4451-63.
[http://dx.doi.org/10.1038/onc.2013.411] [PMID: 24096485]
[72]
Lu H, Shi S, Tao G, et al. Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B 2013; 3(2): 65-75.
[http://dx.doi.org/10.1016/j.apsb.2013.02.006]
[73]
Suzman DL, Antonarakis ES. Clinical implications of hedgehog pathway signaling in prostate cancer. Cancers (Basel) 2015; 7(4): 1983-93.
[http://dx.doi.org/10.3390/cancers7040871] [PMID: 26426053]
[74]
Zhou Y, Yang J, Kopeček J. Selective inhibitory effect of HPMA copolymer-cyclopamine conjugate on prostate cancer stem cells. Biomaterials 2012; 33(6): 1863-72.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.029] [PMID: 22138033]
[75]
Qin W, Zheng Y, Qian BZ, Zhao M. Prostate cancer stem cells and nanotechnology: a focus on wnt signaling. Front Pharmacol 2017; 8: 153.
[http://dx.doi.org/10.3389/fphar.2017.00153] [PMID: 28400729]
[76]
Wang M, Jiang S, Zhou L, et al. Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signaling pathways and miRNAs. Int J Biol Sci 2019; 15(6): 1200-14.
[http://dx.doi.org/10.7150/ijbs.33710] [PMID: 31223280]
[77]
Liu T, Chi H, Chen J, et al. Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene 2017; 631: 29-38.
[http://dx.doi.org/10.1016/j.gene.2017.08.008] [PMID: 28843521]
[78]
Yang DR, Ding XF, Luo J, et al. Increased chemosensitivity via targeting testicular nuclear receptor 4 (TR4)-Oct4-interleukin 1 receptor antagonist (IL1Ra) axis in prostate cancer CD133+ stem/progenitor cells to battle prostate cancer. J Biol Chem 2013; 288(23): 16476-83.
[http://dx.doi.org/10.1074/jbc.M112.448142] [PMID: 23609451]
[79]
Papazoglou I, Varkarakis I, Chrisofos M, et al. Efficacy of hexaminolevulinate photodynamic diagnosis of non-muscle invasive bladder cancer. Med Sur Urol 2017; 6(180): 2.
[http://dx.doi.org/10.4172/2168-9857.1000180]
[80]
McConkey DJ, Choi W, Marquis L, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev 2009; 28(3-4): 335-44.
[81]
Ohishi T, Koga F, Migita T. Bladder cancer stem-like cells: their origin and therapeutic perspectives. Int J Mol Sci 2015; 17(1): 43.
[http://dx.doi.org/10.3390/ijms17010043] [PMID: 26729098]
[82]
Garg M. Urothelial cancer stem cells and epithelial plasticity: current concepts and therapeutic implications in bladder cancer. Cancer Metastasis Rev 2015; 34(4): 691-701.
[http://dx.doi.org/10.1007/s10555-015-9589-6] [PMID: 26328525]
[83]
Ho PL, Kurtova A, Chan KS. Normal and neoplastic urothelial stem cells: getting to the root of the problem. Nat Rev Urol 2012; 9(10): 583-94.
[http://dx.doi.org/10.1038/nrurol.2012.142] [PMID: 22890301]
[84]
Wu CT, Lin WY, Chang YH, Chen WC, Chen MF. Impact of CD44 expression on radiation response for bladder cancer. J Cancer 2017; 8(7): 1137-44.
[http://dx.doi.org/10.7150/jca.18297] [PMID: 28607587]
[85]
Koukourakis MI, Kakouratos C, Kalamida D, et al. Hypoxia-inducible proteins HIF1α and lactate dehydrogenase LDH5, key markers of anaerobic metabolism, relate with stem cell markers and poor post-radiotherapy outcome in bladder cancer. Int J Radiat Biol 2016; 92(7): 353-63.
[http://dx.doi.org/10.3109/09553002.2016.1162921] [PMID: 27010533]
[86]
Kobayashi K, Matsumoto H, Matsuyama H, et al. Clinical significance of CD44 variant 9 expression as a prognostic indicator in bladder cancer. Oncol Rep 2016; 36(5): 2852-60.
[http://dx.doi.org/10.3892/or.2016.5061] [PMID: 27599396]
[87]
Golshani R, Lopez L, Estrella V, Kramer M, Iida N, Lokeshwar VB. Hyaluronic acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44. Cancer Res 2008; 68(2): 483-91.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2140] [PMID: 18199543]
[88]
Huang P, Watanabe M, Kaku H, et al. Cancer stem cell-like characteristics of a CD133+ subpopulation in the J82 human bladder cancer cell line. Mol Clin Oncol 2013; 1(1): 180-4.
[http://dx.doi.org/10.3892/mco.2012.29] [PMID: 24649144]
[89]
Overdevest JB, Knubel KH, Duex JE, et al. CD24 expression is important in male urothelial tumorigenesis and metastasis in mice and is androgen regulated. Proc Natl Acad Sci USA 2012; 109(51): E3588-96.
[http://dx.doi.org/10.1073/pnas.1113960109] [PMID: 23012401]
[90]
Liu C, Zheng S, Shen H, et al. Clinical significance of CD24 as a predictor of bladder cancer recurrence. Oncol Lett 2013; 6(1): 96-100.
[http://dx.doi.org/10.3892/ol.2013.1357] [PMID: 23946784]
[91]
Gai JW, Wahafu W, Song L, et al. Expression of CD74 in bladder cancer and its suppression in association with cancer proliferation, invasion and angiogenesis in HT-1376 cells. Oncol Lett 2018; 15(5): 7631-8.
[http://dx.doi.org/10.3892/ol.2018.8309] [PMID: 29731899]
[92]
Peek EM, Li DR, Zhang H, et al. Stromal modulation of bladder cancer-initiating cells in a subcutaneous tumor model. Am J Cancer Res 2012; 2(6): 745-51.
[PMID: 23226620]
[93]
Zhu F, Qian W, Zhang H, et al. SOX2 is a marker for stem-like tumor cells in bladder cancer. Stem Cell Reports 2017; 9(2): 429-37.
[http://dx.doi.org/10.1016/j.stemcr.2017.07.004] [PMID: 28793245]
[94]
Papafotiou G, Paraskevopoulou V, Vasilaki E, Kanaki Z, Paschalidis N, Klinakis A. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat Commun 2016; 7: 11914.
[http://dx.doi.org/10.1038/ncomms11914] [PMID: 27320313]
[95]
Su Y, Qiu Q, Zhang X, et al. Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev 2010; 19(2): 327-37.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0865] [PMID: 20142235]
[96]
Lu CS, Shieh GS, Wang CT, et al. Chemotherapeutics-induced Oct4 expression contributes to drug resistance and tumor recurrence in bladder cancer. Oncotarget 2017; 8(19): 30844-58.
[http://dx.doi.org/10.18632/oncotarget.9602] [PMID: 27244887]
[97]
Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med 2015; 4(9): 1033-43.
[http://dx.doi.org/10.5966/sctm.2015-0048] [PMID: 26136504]
[98]
Li C, Du Y, Yang Z, et al. GALNT1-mediated glycosylation and activation of sonic hedgehog signaling maintains the self-renewal and tumor-initiating capacity of bladder cancer stem cells. Cancer Res 2016; 76(5): 1273.
[99]
Sedaghat S, Gheytanchi E, Asgari M, Roudi R, Keymoosi H, Madjd Z. Expression of cancer stem cell markers OCT4 and CD133 in transitional cell carcinomas. Appl Immunohistochem Mol Morphol 2017; 25(3): 196-202.
[http://dx.doi.org/10.1097/PAI.0000000000000291] [PMID: 26945449]
[100]
Zhang Q, Xu B, Chen J, Chen F, Chen Z. Clinical significance of CD133 and Nestin in astrocytic tumor: The correlation with pathological grade and survival. J Clin Lab Anal 2020; 34(3) e23082
[http://dx.doi.org/10.1002/jcla.23082] [PMID: 31677196]
[101]
Wasfy RE, El-Guindy DM. CD133 and CD44 as cancer stem cell markers in bladder carcinoma: an immunohistochemical study. Egyp J Pathol 2017; 37(1): 204-8.
[http://dx.doi.org/10.1097/01.XEJ.0000520912.41715.09]
[102]
Bao Z, Zhan Y, He S, et al. Increased expression of SOX2 predicts a poor prognosis and promotes malignant phenotypes in upper tract urothelial carcinoma. Cancer Manag Res 2019; 11: 9095-106.
[http://dx.doi.org/10.2147/CMAR.S219568] [PMID: 31695499]
[103]
Volkmer JP, Sahoo D, Chin RK, et al. Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc Natl Acad Sci USA 2012; 109(6): 2078-83.
[http://dx.doi.org/10.1073/pnas.1120605109] [PMID: 22308455]
[104]
Gener P, Gouveia LP, Sabat GR, et al. Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells. Nanomedicine (Lond) 2015; 11(8): 1883-92.
[http://dx.doi.org/10.1016/j.nano.2015.07.009] [PMID: 26238079]
[105]
Keymoosi H, Gheytanchi E, Asgari M, Shariftabrizi A, Madjd Z. ALDH1 in combination with CD44 as putative cancer stem cell markers are correlated with poor prognosis in urothelial carcinoma of the urinary bladder. Asian Pac J Cancer Prev 2014; 15(5): 2013-20.
[http://dx.doi.org/10.7314/APJCP.2014.15.5.2013] [PMID: 24716927]
[106]
Vitale D, Kumar Katakam S, Greve B, et al. Proteoglycans and glycosaminoglycans as regulators of cancer stem cell function and therapeutic resistance. FEBS J 2019; 286(15): 2870-82.
[http://dx.doi.org/10.1111/febs.14967] [PMID: 31230410]
[107]
Atlasi Y, Mowla SJ, Ziaee SAM, Bahrami AR. OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int J Cancer 2007; 120(7): 1598-602.
[http://dx.doi.org/10.1002/ijc.22508] [PMID: 17205510]
[108]
Sun X, Song J, Li E, et al. (‑)‑Epigallocatechin‑3‑gallate inhibits bladder cancer stem cells via suppression of sonic hedgehog pathway. Oncol Rep 2019; 42(1): 425-35.
[http://dx.doi.org/10.3892/or.2019.7170] [PMID: 31180522]
[109]
Guo J, Zhou J, Ying X, et al. Effects of stealth liposomal daunorubicin plus tamoxifen on the breast cancer and cancer stem cells. J Pharm Pharm Sci 2010; 13(2): 136-51.
[http://dx.doi.org/10.18433/J3P88Z] [PMID: 20816001]
[110]
Manu MJ, Suraj KG, Bridging TTS. ‘Green’ with nanoparticles: biosynthesis approaches for cancer management and targeting of cancer stem cells. Curr Nanosci 2015; 12(1): 47-62.
[http://dx.doi.org/10.2174/1573413711666150624170401]
[111]
Ganesan K, Xu B. Telomerase inhibitors from natural products and their anticancer potential. Int J Mol Sci 2017; 19(1): 13.
[http://dx.doi.org/10.3390/ijms19010013] [PMID: 29267203]
[112]
Yuan X, Larsson C, Xu D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene 2019; 38(34): 6172-83.
[http://dx.doi.org/10.1038/s41388-019-0872-9] [PMID: 31285550]
[113]
Hosen I, Rachakonda PS, Heidenreich B, et al. Mutations in TERT promoter and FGFR3 and telomere length in bladder cancer. Int J Cancer 2015; 137(7): 1621-9.
[http://dx.doi.org/10.1002/ijc.29526] [PMID: 25809917]
[114]
Li C, Wu S, Wang H, et al. The C228T mutation of TERT promoter frequently occurs in bladder cancer stem cells and contributes to tumorigenesis of bladder cancer. Oncotarget 2015; 6(23): 19542-51.
[http://dx.doi.org/10.18632/oncotarget.4295] [PMID: 26143634]
[115]
Massari F, Ciccarese C, Santoni M, et al. The route to personalized medicine in bladder cancer: where do we stand? Target Oncol 2015; 10(3): 325-36.
[http://dx.doi.org/10.1007/s11523-015-0357-x] [PMID: 25634607]
[116]
Tatokoro M, Koga F, Yoshida S, et al. Potential role of Hsp90 inhibitors in overcoming cisplatin resistance of bladder cancer-initiating cells. Int J Cancer 2012; 131(4): 987-96.
[http://dx.doi.org/10.1002/ijc.26475] [PMID: 21964864]
[117]
Zhu D, Wan X, Huang H, et al. Knockdown of Bmi1 inhibits the stemness properties and tumorigenicity of human bladder cancer stem cell-like side population cells. Oncol Rep 2014; 31(2): 727-36.
[http://dx.doi.org/10.3892/or.2013.2919] [PMID: 24337040]
[118]
Dong F, Xu T, Shen Y, et al. Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure. Oncotarget 2017; 8(16): 27547-68.
[http://dx.doi.org/10.18632/oncotarget.15173]
[119]
Wang M, Chu H, Li P, et al. Genetic variants in miRNAs predict bladder cancer risk and recurrence. Cancer Res 2012; 72(23): 6173-82.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0688] [PMID: 22846912]
[120]
Garg M, Singh R. Epithelial-to-mesenchymal transition: Event and core associates in bladder cancer. Front Biosci (Elite Ed) 2019; 11: 150-65.
[http://dx.doi.org/10.2741/e853] [PMID: 31136970]
[121]
Luo H, Yang R, Li C, et al. MicroRNA-139-5p inhibits bladder cancer proliferation and self-renewal by targeting the Bmi1 oncogene. Tumour Biol 2017; 39(7) 1010428317718414
[http://dx.doi.org/10.1177/1010428317718414] [PMID: 28720065]
[122]
Gilyazova IR, Klimentova EA, Bulygin KV, et al. MicroRNA-200 family expression analysis in metastatic clear cell renal cell carcinoma patients. Cancer Gene Ther 2019; 1-5
[http://dx.doi.org/10.1038/s41417-019-0149-z] [PMID: 31680118]
[123]
Zhuang J, Shen L, Yang L, et al. TGFβ1 promotes gemcitabine resistance through regulating the LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer. Theranostics 2017; 7(12): 3053-67.
[http://dx.doi.org/10.7150/thno.19542] [PMID: 28839463]
[124]
Wu K, Ning Z, Zeng J, et al. Silibinin inhibits β-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial-mesenchymal transition and stemness. Cell Signal 2013; 25(12): 2625-33.
[http://dx.doi.org/10.1016/j.cellsig.2013.08.028] [PMID: 24012496]
[125]
Islam SS, Mokhtari RB, Noman AS, et al. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer. Mol Carcinog 2016; 55(5): 537-51.
[http://dx.doi.org/10.1002/mc.22300] [PMID: 25728352]
[126]
Yang Y, Zhang N, Zhu J, et al. Downregulated connexin32 promotes EMT through the Wnt/β-catenin pathway by targeting Snail expression in hepatocellular carcinoma. Int J Oncol 2017; 50(6): 1977-88.
[http://dx.doi.org/10.3892/ijo.2017.3985] [PMID: 28498415]
[127]
Weng J, Zhang H, Wang C, et al. miR-373-3p Targets DKK1 to promote EMT-induced metastasis via the Wnt/β-Catenin pathway in tongue squamous cell carcinoma. BioMed Res Int 2017; 2017(2) 6010926
[http://dx.doi.org/10.1155/2017/6010926] [PMID: 28337453]
[128]
Zhou J, Yun E-J, Chen W, et al. Targeting 3-phosphoinositide-dependent protein kinase 1 associated with drug-resistant renal cell carcinoma using new oridonin analogs. Cell Death Dis 2017; 8(3) e2701
[http://dx.doi.org/10.1038/cddis.2017.121] [PMID: 28333136]
[129]
Iskender B, Izgi K, Canatan H. Novel anti-cancer agent myrtucommulone-A and thymoquinone abrogate epithelial-mesenchymal transition in cancer cells mainly through the inhibition of PI3K/AKT signalling axis. Mol Cell Biochem 2016; 416(1-2): 71-84.
[http://dx.doi.org/10.1007/s11010-016-2697-y] [PMID: 27032769]
[130]
Iskender B, Izgi K, Hizar E, et al. Inhibition of epithelial-mesenchymal transition in bladder cancer cells via modulation of mTOR signalling. Tumour Biol 2016; 37(6): 8281-91.
[http://dx.doi.org/10.1007/s13277-015-4695-1] [PMID: 26718217]
[131]
Y S, MK C, TR G. Inhibition of STAT signalling in bladder cancer by diindolylmethane- relevance to cell adhesion, migration and proliferation. Curr Cancer Drug Targets 2013; 13(1): 57-68.
[132]
Pan Q, Yang GL, Yang JH, et al. Metformin can block precancerous progression to invasive tumors of bladder through inhibiting STAT3-mediated signaling pathways. J Exp Clin Cancer Res 2015; 34(1): 77.
[http://dx.doi.org/10.1186/s13046-015-0183-0] [PMID: 26245871]
[133]
Molenaar RJ, van Hattum JW, Brummelhuis IS, et al. Study protocol of a phase II clinical trial of oral metformin for the intravesical treatment of non-muscle invasive bladder cancer. BMC Cancer 2019; 19(1): 1133.
[http://dx.doi.org/10.1186/s12885-019-6346-1] [PMID: 31752752]
[134]
Kurtova AV, Xiao J, Mo Q, et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 2015; 517(7533): 209-13.
[http://dx.doi.org/10.1038/nature14034] [PMID: 25470039]
[135]
Dalong C, Dingwei Y. Advances and future prospects of immunotherapy in bladder cancer. China Oncology 2018; 28(2): 81-7.
[136]
Zhu YT, Zhao Z, Fu XY, et al. The granulocyte macrophage-colony stimulating factor surface modified MB49 bladder cancer stem cells vaccine against metastatic bladder cancer. Stem Cell Res (Amst) 2014; 13(1): 111-22.
[http://dx.doi.org/10.1016/j.scr.2014.04.006] [PMID: 24874290]
[137]
Shi X, Zhang X, Li J, et al. PD-1 blockade enhances the antitumor efficacy of GM-CSF surface-modified bladder cancer stem cells vaccine. Int J Cancer 2018; 142(10): 2106-17.
[http://dx.doi.org/10.1002/ijc.31219] [PMID: 29243219]
[138]
Chan KS, Volkmer J-P, Weissman I. Cancer stem cells in bladder cancer: a revisited and evolving concept. Curr Opin Urol 2010; 20(5): 393-7.
[http://dx.doi.org/10.1097/MOU.0b013e32833cc9df] [PMID: 20657288]
[139]
Nazio F, Bordi M, Cianfanelli V, Locatelli F, Cecconi F. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ 2019; 26(4): 690-702.
[http://dx.doi.org/10.1038/s41418-019-0292-y] [PMID: 30728463]
[140]
Yang MC, Wang HC, Hou YC, Tung HL, Chiu TJ, Shan YS. Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 2015; 14(1): 179.
[http://dx.doi.org/10.1186/s12943-015-0449-3] [PMID: 26458814]
[141]
Ojha R, Jha V, Singh SK. Gemcitabine and mitomycin induced autophagy regulates cancer stem cell pool in urothelial carcinoma cells. Biochim Biophys Acta 2016; 1863(2): 347-59.
[http://dx.doi.org/10.1016/j.bbamcr.2015.12.002] [PMID: 26658162]
[142]
Ojha R, Singh SK, Bhattacharyya S. JAK-mediated autophagy regulates stemness and cell survival in cisplatin resistant bladder cancer cells. BBA - Gen Subjects 2016; 1860(11): 2484-97.
[143]
Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma. Nat Rev Dis Primers 2017; 3(1): 17009.
[http://dx.doi.org/10.1038/nrdp.2017.9] [PMID: 28276433]
[144]
Patil S, Manola J, Elson P, et al. Improvement in overall survival of patients with advanced renal cell carcinoma: prognostic factor trend analysis from an international data set of clinical trials. J Urol 2012; 188(6): 2095-100.
[http://dx.doi.org/10.1016/j.juro.2012.08.026] [PMID: 23083849]
[145]
Moch H. An overview of renal cell cancer: pathology and genetics. Semin Cancer Biol 2013; 23(1): 3-9.
[http://dx.doi.org/10.1016/j.semcancer.2012.06.006] [PMID: 22722066]
[146]
Creighton CJ, Morgan M, Gunaratne PH, et al. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013; 499(7456): 43-9.
[http://dx.doi.org/10.1038/nature12222] [PMID: 23792563]
[147]
Linehan WM, Spellman PT, Ricketts CJ, et al. Cancer genome atlas research network. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med 2016; 374(2): 135-45.
[http://dx.doi.org/10.1056/NEJMoa1505917] [PMID: 26536169]
[148]
Song J, Czerniak S, Wang T, et al. Characterization and fate of telomerase-expressing epithelia during kidney repair. J Am Soc Nephrol 2011; 22(12): 2256-65.
[http://dx.doi.org/10.1681/ASN.2011050447] [PMID: 22021716]
[149]
Buti S, Bersanelli M, Sikokis A, et al. Chemotherapy in metastatic renal cell carcinoma today? A systematic review. Anticancer Drugs 2013; 24(6): 535-54.
[PMID: 23552469]
[150]
Su D, Stamatakis L, Singer EA, Srinivasan R. Renal cell carcinoma: molecular biology and targeted therapy. Curr Opin Oncol 2014; 26(3): 321-7.
[http://dx.doi.org/10.1097/CCO.0000000000000069] [PMID: 24675233]
[151]
Matak D, Szymanski L, Szczylik C, et al. Biology of renal tumour cancer stem cells applied in medicine. Contemp Oncol (Pozn) 2015; 19(1A): A44-51.
[http://dx.doi.org/10.5114/wo.2014.47128] [PMID: 25691821]
[152]
Bussolati B, Camussi G. Cancer stem cells and renal carcinoma 2012; 211-0.
[153]
Myszczyszyn A, Czarnecka AM, Matak D, et al. The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis. Stem Cell Rev Rep 2015; 11(6): 919-43.
[http://dx.doi.org/10.1007/s12015-015-9611-y] [PMID: 26210994]
[154]
Yun EJ, Zhou J, Lin CJ, et al. Abstract 3078: Epigenetic regulation of miR-138 confers cancer stem cell characteristics of renal cell carcinoma. Cancer Res 2015; 75(15): 3078.
[155]
Salehi PM, Foroutan T, Javeri A, Taha MF. Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells. Iran J Basic Med Sci 2017; 20(11): 1200-6.
[PMID: 29299196]
[156]
Ohnishi K, Semi K, Yamada Y. Epigenetic regulation leading to induced pluripotency drives cancer development in vivo. Biochem Biophys Res Commun 2014; 455(1-2): 10-5.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.020] [PMID: 25019993]
[157]
Bu Y, Cao D. The origin of cancer stem cells. Front Biosci (Schol Ed) 2012; 4(3): 819-30.
[PMID: 22202093]
[158]
Lai WD, Gu RG. Research progress of side population cells and renal cell carcinoma stem cells. ResearchGate 2015; 22: 1161-4.
[159]
Bussolati B, Dekel B, Azzarone B, Camussi G. Human renal cancer stem cells. Cancer Lett 2013; 338(1): 141-6.
[http://dx.doi.org/10.1016/j.canlet.2012.05.007] [PMID: 22587951]
[160]
Khan MI, Czarnecka AM, Helbrecht I, Bartnik E, Lian F, Szczylik C. Current approaches in identification and isolation of human renal cell carcinoma cancer stem cells. Stem Cell Res Ther 2015; 6(1): 178.
[http://dx.doi.org/10.1186/s13287-015-0177-z] [PMID: 26377541]
[161]
Bruno S, Bussolati B, Grange C, et al. CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol 2006; 169(6): 2223-35.
[http://dx.doi.org/10.2353/ajpath.2006.060498] [PMID: 17148683]
[162]
D’Alterio C, Cindolo L, Portella L, et al. Differential role of CD133 and CXCR4 in renal cell carcinoma. Cell Cycle 2010; 9(22): 4492-500.
[http://dx.doi.org/10.4161/cc.9.22.13680] [PMID: 21127401]
[163]
Micucci C, Matacchione G, Valli D, Orciari S, Catalano A. HIF2α is involved in the expansion of CXCR4-positive cancer stem-like cells in renal cell carcinoma. Br J Cancer 2015; 113(8): 1178-85.
[http://dx.doi.org/10.1038/bjc.2015.338] [PMID: 26439684]
[164]
Ueda K, Ogasawara S, Akiba J, et al. Aldehyde dehydrogenase 1 identifies cells with cancer stem cell-like properties in a human renal cell carcinoma cell line. PLoS One 2013; 8(10) e75463
[http://dx.doi.org/10.1371/journal.pone.0075463] [PMID: 24116047]
[165]
Li W, Ma H, Zhang J, Zhu L, Wang C, Yang Y. Author Correction: Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep 2018; 8(1): 4276.
[http://dx.doi.org/10.1038/s41598-018-22220-0] [PMID: 29511206]
[166]
Mikami S, Mizuno R, Kosaka T, Saya H, Oya M, Okada Y. Expression of TNF-α and CD44 is implicated in poor prognosis, cancer cell invasion, metastasis and resistance to the sunitinib treatment in clear cell renal cell carcinomas. Int J Cancer 2015; 136(7): 1504-14.
[http://dx.doi.org/10.1002/ijc.29137] [PMID: 25123505]
[167]
Moskvina LV, Andreeva IuIu, Frank GA, Zavalishina LÉ, Petrov AN, Mal’kov PG. [Prognostic value of the expression of adhesion molecules for non-clear-cell variants of renal cell carcinoma]. Arkh Patol 2013; 75(4): 3-8.
[PMID: 24313184]
[168]
Peired AJ, Sisti A, Romagnani P. Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells Inter 2016; 2016(3): 1-22.
[http://dx.doi.org/10.1155/2016/4798639]
[169]
Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 2008; 22(10): 3696-705.
[http://dx.doi.org/10.1096/fj.08-102590] [PMID: 18614581]
[170]
Hu J, Guan W, Liu P, et al. Endoglin is essential for the maintenance of self-renewal and chemoresistance in renal cancer stem cells. Stem Cell Reports 2017; 9(2): 464-77.
[http://dx.doi.org/10.1016/j.stemcr.2017.07.009] [PMID: 28793246]
[171]
Saeednejad Zanjani L, Madjd Z, Abolhasani M, Shariftabrizi A, Rasti A, Asgari M. Expression of CD105 cancer stem cell marker in three subtypes of renal cell carcinoma. Cancer Biomark 2018; 21(4): 821-37.
[http://dx.doi.org/10.3233/CBM-170755] [PMID: 29286924]
[172]
Barzegar Behrooz A, Syahir A, Ahmad S. CD133: beyond a cancer stem cell biomarker. J Drug Target 2019; 27(3): 257-69.
[http://dx.doi.org/10.1080/1061186X.2018.1479756] [PMID: 29911902]
[173]
Kim K, Ihm H, Ro JY, Cho YM. High-level expression of stem cell marker CD133 in clear cell renal cell carcinoma with favorable prognosis. Oncol Lett 2011; 2(6): 1095-100.
[PMID: 22848273]
[174]
Peired AJ, Sisti A, Romagnani P. Renal cancer stem cells: characterization and targeted therapies. Stem Cells Int 2016; 2016(12) 8342625
[http://dx.doi.org/10.1155/2016/8342625] [PMID: 27293448]
[175]
Corrò C, Moch H. Biomarker discovery for renal cancer stem cells. J Pathol Clin Res 2018; 4(1): 3-18.
[http://dx.doi.org/10.1002/cjp2.91] [PMID: 29416873]
[176]
Richard CL, Blay J. CXCR4 in cancer and its regulation by PPARgamma. PPAR Res 2008; 2008(1) 769413
[PMID: 18779872]
[177]
Rasti A, Abolhasani M, Zanjani LS, Asgari M, Mehrazma M, Madjd Z. Reduced expression of CXCR4, a novel renal cancer stem cell marker, is associated with high-grade renal cell carcinoma. J Cancer Res Clin Oncol 2017; 143(1): 95-104.
[http://dx.doi.org/10.1007/s00432-016-2239-8] [PMID: 27638770]
[178]
Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res 2014; 124(2): 31-82.
[http://dx.doi.org/10.1016/B978-0-12-411638-2.00002-1] [PMID: 25287686]
[179]
Gassenmaier M, Chen D, Buchner A, et al. CXC chemokine receptor 4 is essential for maintenance of renal cell carcinoma-initiating cells and predicts metastasis. Stem Cells 2013; 31(8): 1467-76.
[http://dx.doi.org/10.1002/stem.1407] [PMID: 23630186]
[180]
Weiss ID, Huff LM, Evbuomwan MO, et al. Screening of cancer tissue arrays identifies CXCR4 on adrenocortical carcinoma: correlates with expression and quantification on metastases using 64Cu-plerixafor PET. Oncotarget 2017; 8(43): 73387-406.
[http://dx.doi.org/10.18632/oncotarget.19945] [PMID: 29088715]
[181]
Xu Z, Li P, Wei D, et al. NMMHC-IIA-dependent nuclear location of CXCR4 promotes migration and invasion in renal cell carcinoma. Oncol Rep 2016; 36(5): 2681-8.
[http://dx.doi.org/10.3892/or.2016.5082] [PMID: 27634189]
[182]
Tang B, Tang F, Li Y, et al. Clinicopathological significance of CXCR4 expression in renal cell carcinoma: a meta-analysis. Ann Surg Oncol 2015; 22(3): 1026-31.
[http://dx.doi.org/10.1245/s10434-014-4019-5] [PMID: 25249257]
[183]
Cheng B, Yang G, Jiang R, et al. Cancer stem cell markers predict a poor prognosis in renal cell carcinoma: a meta-analysis. Oncotarget 2016; 7(40): 65862-75.
[http://dx.doi.org/10.18632/oncotarget.11672] [PMID: 27588469]
[184]
Weitzenfeld P, Ben-Baruch A. The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett 2014; 352(1): 36-53.
[http://dx.doi.org/10.1016/j.canlet.2013.10.006] [PMID: 24141062]
[185]
Kumar R, Kannan RR, Verma AK, et al. Abstract 2788: High ALDH1, S phase fraction, p16 INK4A in esophageal squamous cell carcinoma could predict response to neoadjuvant chemotherapy. Cancer Res 2017; 77(13)(Suppl.): 2788.
[186]
Ozbek E, Calik G, Otunctemur A, et al. Stem cell markers aldehyde dehydrogenase type 1 and nestin expressions in renal cell. Cancer 2012; 84(1): 7-11.
[187]
Wang K, Chen X, Zhan Y, et al. Increased expression of ALDH1A1 protein is associated with poor prognosis in clear cell renal cell carcinoma. Med Oncol 2013; 30(2): 574.
[http://dx.doi.org/10.1007/s12032-013-0574-z] [PMID: 23585015]
[188]
Earwaker PL. Resistance mechanisms to mTOR inhibition in renal cancer. University of Oxford 2015.
[189]
Tian H, Huang JJ, Golzio C, et al. Endoglin interacts with VEGFR2 to promote angiogenesis. FASEB J 2018; 32(6): 2934-49.
[http://dx.doi.org/10.1096/fj.201700867RR] [PMID: 29401587]
[190]
Rosen LS, Gordon MS, Robert F, Matei DE. Endoglin for targeted cancer treatment. Curr Oncol Rep 2014; 16(2): 365-482.
[http://dx.doi.org/10.1007/s11912-013-0365-x] [PMID: 24445497]
[191]
Hong H, Wang F, Zhang Y, et al. Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting. ACS Appl Mater Interfaces 2015; 7(5): 3373-81.
[http://dx.doi.org/10.1021/am508440j] [PMID: 25607242]
[192]
Brossa A, Buono L, Bussolati B. Effect of the monoclonal antibody TRC105 in combination with Sunitinib on renal tumor derived endothelial cells. Oncotarget 2018; 9(32): 22680-92.
[http://dx.doi.org/10.18632/oncotarget.25206] [PMID: 29854307]
[193]
Choueiri TK, Michaelson MD, Posadas EM. A phase 1b doseescalation study of TRC105 (anti-Endoglin Antibody) in combination with axitinib in patients with metastatic renal cell carcinoma (mRCC). International Kidney Cancer Symposium Available at:. https://oncologypro.esmo.org/meeting-resources/esmo-2016/A-phase-1b-dose-escalation-study-of-TRC105-endoglin-antibody-in-combination-with-axitinib-in-patients-with-metastatic-renal-cell-carcinoma-mRCC
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.e15562]
[194]
Dorff TB, Longmate JA, Pal SK, et al. Bevacizumab alone or in combination with TRC105 for patients with refractory metastatic renal cell cancer. Cancer 2017; 123(23): 4566-73.
[http://dx.doi.org/10.1002/cncr.30942] [PMID: 28832978]
[195]
Duffy AG, Ma C, Ulahannan SV, et al. Phase I and preliminary phase II study of TRC105 in combination with sorafenib in hepatocellular carcinoma. Clin Cancer Res 2017; 23(16): 4633-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3171] [PMID: 28465443]
[196]
Fontanella R, Pelagalli A, Nardelli A, et al. A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion. Cancer Lett 2016; 370(1): 100-7.
[http://dx.doi.org/10.1016/j.canlet.2015.10.018] [PMID: 26517945]
[197]
Panka DJ, Arbeit RD, Mier JW. Abstract 4155: Regulation of MDSC trafficking and function in RCC by CXCR4 in the presence of a VEGF-R antagonist. Cancer Res 2016; 76(14): 4155.
[198]
Portella L, Vitale R, De Luca S, et al. Preclinical development of a novel class of CXCR4 antagonist impairing solid tumors growth and metastases. PLoS One 2013; 8(9) e74548
[http://dx.doi.org/10.1371/journal.pone.0074548] [PMID: 24058588]
[199]
Peng SB, Zhang X, Paul D, et al. Identification of LY2510924, a novel cyclic peptide CXCR4 antagonist that exhibits antitumor activities in solid tumor and breast cancer metastatic models. Mol Cancer Ther 2015; 14(2): 480-90.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0850] [PMID: 25504752]
[200]
Hainsworth JD, Reeves JA, Mace JR, et al. A randomized, open-label phase 2 study of the CXCR4 inhibitor LY2510924 in combination with sunitinib Versus sunitinib alone in patients with metastatic renal cell carcinoma (RCC). Target Oncol 2016; 11(5): 643-53.
[http://dx.doi.org/10.1007/s11523-016-0434-9] [PMID: 27154357]
[201]
Brossa A, Grange C, Mancuso L, et al. Sunitinib but not VEGF blockade inhibits cancer stem cell endothelial differentiation. Oncotarget 2015; 6(13): 11295-309.
[http://dx.doi.org/10.18632/oncotarget.3123] [PMID: 25948774]
[202]
Posadas EM, Limvorasak S, Figlin RA. Targeted therapies for renal cell carcinoma. Nat Rev Nephrol 2017; 13(8): 496-511.
[http://dx.doi.org/10.1038/nrneph.2017.82] [PMID: 28691713]
[203]
Chun-Xiong Z, Chun-Li L, Xiao-Hou W. Hypoxia promotes 786-O cells invasiveness and resistance to sorafenib via HIF-2α/COX-2. Med Oncol 2015; 32(1): 1-9.
[PMID: 26589606]
[204]
Bielecka ZF, Malinowska A, Brodaczewska KK, et al. Hypoxic 3D in vitro culture models reveal distinct resistance processes to TKIs in renal cancer cells. Cell Biosci 2017; 7(1): 71.
[http://dx.doi.org/10.1186/s13578-017-0197-8] [PMID: 29270287]
[205]
Ciamporcero E, Miles KM, Adelaiye R, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther 2015; 14(1): 101-10.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0094] [PMID: 25381264]
[206]
Pichler R, Heidegger I. Novel concepts of antiangiogenic therapies in metastatic renal cell cancer. Memo 2017; 10(4): 206-12.
[http://dx.doi.org/10.1007/s12254-017-0344-2] [PMID: 29250198]
[207]
Lai Y, Zhao Z, Zeng T, et al. Crosstalk between VEGFR and other receptor tyrosine kinases for TKI therapy of metastatic renal cell carcinoma. Cancer Cell Int 2018; 18(1): 31.
[http://dx.doi.org/10.1186/s12935-018-0530-2] [PMID: 29527128]
[208]
Gironmichel J, Azzi S, Khawam K, et al. Interleukin-15 plays a central role in human kidney physiology and cancer through the γc signaling pathway. PLoS One 2012; 7(2): 1-14.
[209]
Giron-Michel J, Azzi S, Ferrini S, et al. Interleukin-15 is a major regulator of the cell-microenvironment interactions in human renal homeostasis. Cytokine Growth Factor Rev 2013; 24(1): 13-22.
[http://dx.doi.org/10.1016/j.cytogfr.2012.08.006] [PMID: 22981349]
[210]
Conlon KC, Lugli E, Welles HC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol 2015; 33(1): 74-82.
[http://dx.doi.org/10.1200/JCO.2014.57.3329] [PMID: 25403209]
[211]
Codd AS, Kanaseki T, Torigo T, Tabi Z. Cancer stem cells as targets for immunotherapy. Immunology 2018; 153(3): 304-14.
[http://dx.doi.org/10.1111/imm.12866] [PMID: 29150846]
[212]
Luna JI, Grossenbacher SK, Murphy WJ, Canter RJ. Targeting cancer stem cells with natural killer cell immunotherapy. Expert Opin Biol Ther 2017; 17(3): 313-24.
[http://dx.doi.org/10.1080/14712598.2017.1271874] [PMID: 27960589]
[213]
Zhang XF, Weng DS, Pan K, et al. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells. Mol Carcinog 2017; 56(11): 2499-511.
[http://dx.doi.org/10.1002/mc.22697] [PMID: 28621442]
[214]
Schanza L-M, Seles M, Stotz M, et al. MicroRNAs associated with von hippel-lindau pathway in renal cell carcinoma: a comprehensive review. Int J Mol Sci 2017; 18(11): 2495.
[http://dx.doi.org/10.3390/ijms18112495] [PMID: 29165391]
[215]
Yun EJ, Zhou J, Lin CJ, et al. The network of DAB2IP-miR-138 in regulating drug resistance of renal cell carcinoma associated with stem-like phenotypes. Oncotarget 2017; 8(40): 66975-86.
[http://dx.doi.org/10.18632/oncotarget.17756] [PMID: 28978010]
[216]
An F, Liu Y, Hu Y. miR-21 inhibition of LATS1 promotes proliferation and metastasis of renal cancer cells and tumor stem cell phenotype. Oncol Lett 2017; 14(4): 4684-8.
[http://dx.doi.org/10.3892/ol.2017.6746] [PMID: 29085468]
[217]
Khella HWZ, Butz H, Ding Q, et al. miR-221/222 are involved in response to sunitinib treatment in metastatic renal cell carcinoma. Mol Ther 2015; 23(11): 1748-58.
[http://dx.doi.org/10.1038/mt.2015.129] [PMID: 26201448]
[218]
Oliveira RC, Ivanovic RF, Leite KRM, et al. Expression of micro-RNAs and genes related to angiogenesis in ccRCC and associations with tumor characteristics. BMC Urol 2017; 17(1): 113.
[http://dx.doi.org/10.1186/s12894-017-0306-3] [PMID: 29202733]
[219]
Su Z, Chen D, Li Y, et al. microRNA-184 functions as tumor suppressor in renal cell carcinoma. Exp Ther Med 2015; 9(3): 961-6.
[http://dx.doi.org/10.3892/etm.2015.2199] [PMID: 25667660]
[220]
Shi Q, Xu X, Liu Q, Luo F, Shi J, He X. MicroRNA-877 acts as a tumor suppressor by directly targeting eEF2K in renal cell carcinoma. Oncol Lett 2016; 11(2): 1474-80.
[http://dx.doi.org/10.3892/ol.2015.4072] [PMID: 26893763]
[221]
Li Y, Chen D, Jin L, et al. MicroRNA-20b-5p functions as a tumor suppressor in renal cell carcinoma by regulating cellular proliferation, migration and apoptosis. Mol Med Rep 2016; 13(2): 1895-901.
[http://dx.doi.org/10.3892/mmr.2015.4692] [PMID: 26708577]
[222]
Shen S, Xia J-X, Wang J. Nanomedicine-mediated cancer stem cell therapy. Biomaterials 2016; 74: 1-18.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.037] [PMID: 26433488]
[223]
Xia P. Surface markers of cancer stem cells in solid tumors. Curr Stem Cell Res Ther 2014; 9(2): 102-11.
[http://dx.doi.org/10.2174/1574888X09666131217003709] [PMID: 24359139]
[224]
Kulkarni AA, Vijaykumar VE, Natarajan SK, Sengupta S, Sabbisetti VS. Sustained inhibition of cMET-VEGFR2 signaling using liposome-mediated delivery increases efficacy and reduces toxicity in kidney cancer. Nanomedicine (Lond) 2016; 12(7): 1853-61.
[http://dx.doi.org/10.1016/j.nano.2016.04.002] [PMID: 27084552]
[225]
Yang Q, Wang Y, Yang Q, et al. Cuprous oxide nanoparticles trigger ER stress-induced apoptosis by regulating copper trafficking and overcoming resistance to sunitinib therapy in renal cancer. Biomaterials 2017; 146(5): 72-85.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.008] [PMID: 28898759]
[226]
Markovsky E, Vax E, Ben-Shushan D, et al. Wilms tumor ncam-expressing cancer stem cells as potential therapeutic target for polymeric nanomedicine. Mol Cancer Ther 2017; 16(11): 2462-72.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0184] [PMID: 28729402]
[227]
Yuan ZX, Mo J, Zhao G, Shu G, Fu HL, Zhao W. Targeting strategies for renal cell carcinoma: from renal cancer cells to renal cancer stem cells. Front Pharmacol 2016; 7(194): 423.
[http://dx.doi.org/10.3389/fphar.2016.00423] [PMID: 27891093]
[228]
Gedye C, Davidson AJ, Elmes MR, Cebon J, Bolton D, Davis ID. Cancer stem cells in urologic cancers. Urol Oncol 2010; 28(6): 585-90.
[http://dx.doi.org/10.1016/j.urolonc.2009.06.010] [PMID: 19897386]
[229]
Murray MJ, Schönberger S. Biology of Germ Cell Tumors. Springer, Berlin: Heidleberg 2014.
[230]
RR M, WH C, VS F, et al. Immunohistochemical expression of cancer stem cell markers OCT3/4, NANOG, DPPA4, and CCND2 in testicular germ cell tumors. J Clin Oncol 2012; 30(5): 333.
[231]
Pierpont TM, Lyndaker AM, Anderson CM, et al. Chemotherapy-induced depletion of oct4-positive cancer stem cells in a mouse model of malignant testicular cancer. Cell Rep 2017; 21(7): 1896-909.
[http://dx.doi.org/10.1016/j.celrep.2017.10.078] [PMID: 29141221]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy