Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Antioxidant Activity of New Selenium-Containing Quinolines

Author(s): Benedetta Bocchini, Bruna Goldani, Fernanda S.S. Sousa, Paloma T. Birmann, Cesar A. Brüning, Eder J. Lenardão, Claudio Santi, Lucielli Savegnago* and Diego Alves*

Volume 17, Issue 6, 2021

Published on: 03 April, 2020

Page: [667 - 676] Pages: 10

DOI: 10.2174/1573406416666200403081831

Price: $65

Abstract

Background: Quinoline derivatives have been attracted much attention in drug discovery, and synthetic derivatives of these scaffolds present a range of pharmacological activities. Therefore, organoselenium compounds are valuable scaffolds in organic synthesis because of their pharmacological activities and their use as versatile building blocks for regio-, chemo-and stereoselective reactions. Thus, the synthesis of selenium-containing quinolines has great significance, and their applicability range from simple antioxidant agents, to selective DNA-binding and photocleaving agents.

Objective: In the present study, we describe the synthesis and antioxidant activity in vitro of new 7- chloro-N(arylselanyl)quinolin-4-amines 5 by the reaction of 4,7-dichloroquinoline 4 with (arylselanyl)- amines 3.

Methods: For the synthesis of 7-chloro-N(arylselanyl)quinolin-4-amines 5, we performed the reaction of (arylselanyl)-amines 3 with 4,7-dichloroquinoline 4 in the presence of Et3N at 120 °C in a sealed tube. The antioxidant activities of the compounds 5 were evaluated by the following in vitro assays: 2,2- diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2-azinobis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric ion reducing antioxidant power (FRAP), nitric oxide (NO) scavenging and superoxide dismutase-like activity (SOD-Like).

Results: 7-Chloro-N(arylselanyl)quinolin-4-amines 5a-d have been synthesized in yields ranging from 68% to 82% by the reaction of 4,7-dichloroquinoline 4 with arylselanyl-amines 3a-d using Et3N as a base, at 120 °C, in a sealed tube for 24 hours and tolerates different substituents, such as -OMe and -Cl, in the arylselanyl moiety. The obtained compounds 5a-d presented significant results concerning the antioxidant potential, which had an effect in the tests of inhibition of radical’s DPPH, ABTS+ and NO, as well as in the analysis that evaluates the capacity (FRAP) and in the superoxide dismutase-like activity assay (SOD-Like). It is worth mentioning that 7-chloro- N(arylselanyl)quinolin-4-amine 5b presented excellent results, demonstrating a better antioxidant capacity when compared to the others.

Conclusion: According to the obtained results, 7-chloro-N(arylselanyl)quinolin-4-amines 5 were synthesized in good yields by the reaction of 4,7-dichloroquinoline with arylselanyl-amines and tolerated different substituents in the arylselanyl moiety. The tested compounds presented significant antioxidant potential in the tests of inhibition of DPPH, ABTS+, and NO radicals, as well as in the FRAP and superoxide dismutase-like activity assays (SOD-Like).

Keywords: Synthesis, quinolines, selenium, amines, antioxidant, radicals.

« Previous
Graphical Abstract

[1]
Roma, G.; Di Braccio, M.; Grossi, G.; Mattioli, F.; Ghia, M. 1,8-Naphthyridines IV. 9-substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4]triazolo[4,3-a][1, 8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur. J. Med. Chem., 2000, 35(11), 1021-1035.
[http://dx.doi.org/10.1016/S0223-5234(00)01175-2] [PMID: 11137230]
[2]
Hoemann, M.Z.; Kumaravel, G.; Xie, R.L.; Rossi, R.F.; Meyer, S.; Sidhu, A.; Cuny, G.D.; Hauske, J.R. Potent in vitro methicillin-resistant Staphylococcus aureus activity of 2-(1H-indol-3-yl)quinoline derivatives. Bioorg. Med. Chem. Lett., 2000, 10(23), 2675-2678.
[http://dx.doi.org/10.1016/S0960-894X(00)00542-4] [PMID: 11128649]
[3]
Chen, Y.L.; Fang, K.C.; Sheu, J.Y.; Hsu, S.L.; Tzeng, C.C. Synthesis and antibacterial evaluation of certain quinolone derivatives. J. Med. Chem., 2001, 44(14), 2374-2377.
[http://dx.doi.org/10.1021/jm0100335] [PMID: 11428933]
[4]
Fakhfakh, M.A.; Fournet, A.; Prina, E.; Mouscadet, J-F.; Franck, X.; Hocquemiller, R.; Figadère, B. Synthesis and biological evaluation of substituted quinolines: potential treatment of protozoal and retroviral co-infections. Bioorg. Med. Chem., 2003, 11(23), 5013-5023.
[http://dx.doi.org/10.1016/j.bmc.2003.09.007] [PMID: 14604664]
[5]
Fournet, A.; Mahieux, R.; Fakhfakh, M.A.; Franck, X.; Hocquemiller, R.; Figadère, B. Substituted quinolines induce inhibition of proliferation of HTLV-1 infected cells. Bioorg. Med. Chem. Lett., 2003, 13(5), 891-894.
[http://dx.doi.org/10.1016/S0960-894X(02)01085-5] [PMID: 12617915]
[6]
Franck, X.; Fournet, A.; Prina, E.; Mahieux, R.; Hocquemiller, R.; Figadère, B. Biological evaluation of substituted quinolines. Bioorg. Med. Chem. Lett., 2004, 14(14), 3635-3638.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.026] [PMID: 15203133]
[7]
Martínez-Grueiro, M.; Giménez-Pardo, C.; Gómez-Barrio, A.; Franck, X.; Fournet, A.; Hocquemiller, R.; Figadère, B.; Casado-Escribano, N. Nematocidal and trichomonacidal activities of 2-substituted quinolines. Farmaco, 2005, 60(3), 219-224.
[http://dx.doi.org/10.1016/j.farmac.2004.11.010] [PMID: 15784240]
[8]
Gottlieb, D.; Shaw, P.D. Antibiotics II, Biosynthesis; Springer: New York, 1967, Vol. 2, .
[9]
Kaminsky, D.; Meltzer, R.I. Quinolone antibacterial agents. Oxolinic acid and related compounds. J. Med. Chem., 1968, 11(1), 160-163.
[http://dx.doi.org/10.1021/jm00307a041] [PMID: 5637164]
[10]
Sloboda, A.E.; Powell, D.; Poletto, J.F.; Pickett, W.C.; Gibbons, J.J., Jr; Bell, D.H.; Oronsky, A.L.; Kerwar, S.S. Antiinflammatory and antiarthritic properties of a substituted quinoline carboxylic acid: CL 306,293. J. Rheumatol., 1991, 18(6), 855-860.
[PMID: 1895266]
[11]
Font, M.; Monge, A.; Ruiz, I.; Heras, B. Structure-activity relationships in quinoline Reissert derivatives with HIV-1 reverse transcriptase inhibitory activity. Drug Des. Discov., 1997, 14(4), 259-272.
[PMID: 9197978]
[12]
Nakamura, T.; Oka, M.; Aizawa, K.; Soda, H.; Fukuda, M.; Terashi, K.; Ikeda, K.; Mizuta, Y.; Noguchi, Y.; Kimura, Y.; Tsuruo, T.; Kohno, S. Direct interaction between a quinoline derivative, MS-209, and multidrug resistance protein (MRP) in human gastric cancer cells. Biochem. Biophys. Res. Commun., 1999, 255(3), 618-624.
[http://dx.doi.org/10.1006/bbrc.1999.0245] [PMID: 10049760]
[13]
Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem., 2006, 14(10), 3592-3598.
[http://dx.doi.org/10.1016/j.bmc.2006.01.016] [PMID: 16458522]
[14]
Warshakoon, N.C.; Sheville, J.; Bhatt, R.T.; Ji, W.; Mendez-Andino, J.L.; Meyers, K.M.; Kim, N.; Wos, J.A.; Mitchell, C.; Paris, J.L.; Pinney, B.B.; Reizes, O.; Hu, X.E. Design and synthesis of substituted quinolines as novel and selective melanin concentrating hormone antagonists as anti-obesity agents. Bioorg. Med. Chem. Lett., 2006, 16(19), 5207-5211.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.006] [PMID: 16870427]
[15]
Macedo, B.; Kaschula, C.H.; Hunter, R.; Chaves, J.A.P.; van der Merwe, J.D.; Silva, J.L.; Egan, T.J.; Cordeiro, Y. Synthesis and anti-prion activity evaluation of aminoquinoline analogues. Eur. J. Med. Chem., 2010, 45(11), 5468-5473.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.054] [PMID: 20797807]
[16]
Carmo, A.M.L.; Silva, F.M.; Machado, P.A.; Fontes, A.P.S.; Pavan, F.R.; Leite, C.Q.F.; Leite, S.R.A.; Coimbra, E.S.; Da Silva, A.D. Synthesis of 4-aminoquinoline analogues and their platinum(II) complexes as new antileishmanial and antitubercular agents. Biomed. Pharmacother., 2011, 65(3), 204-209.
[http://dx.doi.org/10.1016/j.biopha.2011.01.003] [PMID: 21602021]
[17]
Singh, P.; Singh, P.; Kumar, M.; Gut, J.; Rosenthal, P.J.; Kumar, K.; Kumar, V.; Mahajan, M.P.; Bisetty, K. Synthesis, docking and in vitro antimalarial evaluation of bifunctional hybrids derived from β-lactams and 7-chloroquinoline using click chemistry. Bioorg. Med. Chem. Lett., 2012, 22(1), 57-61.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.082] [PMID: 22172698]
[18]
Souza, N.B.; Carvalhaes, R.; Carmo, A.M.L.; Alves, M.J.M.; Coimbra, E.S.; Cupolilo, S.M.N.; Abramo, C.; Silva, A.D. Synthesis and In Vivo Antimalarial Activity of Quinoline/Mercaptopurine Conjugates. Lett. Drug Des. Discov., 2012, 9(4), 361-366.
[http://dx.doi.org/10.2174/157018012799859990]
[19]
Bueno, J.; Ruiz, F.A.R.; Etupinan, S.V.; Kouznetsov, V.V. in vitro Antimycobacterial Activity of New 7-Chloroquinoline Derivatives. Lett. Drug Des. Discov., 2012, 9(2), 126-134.
[http://dx.doi.org/10.2174/157018012799079761]
[20]
Naik, H.R.P.; Naik, H.S.B.; Naik, T.R.R.; Aravinda, T.; Lamani, D.S.; Naika, H.R. 2-Thieno/selenopyrano [2, 3-b] quinolines: microwave-induced one-pot synthesis, DNA binding, and photocleavage studies. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(10), 2583-2593.
[http://dx.doi.org/10.1080/10426500802529622]
[21]
Abdel-Hafez, S.H. Selenium Containing Heterocycles: Synthesis and Pharmacological Activities of Some New Selenolo[2,3-b]quinoline Derivatives and Related Pentacyclic Systems. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185, 2543-2550.
[http://dx.doi.org/10.1080/10426501003752161]
[22]
Naik, H.R.P.; Naik, H.S.B.; Naik, T.R.R.; Lamani, D.S.; Aravinda, T. An Efficient, Microwave-Assisted, One-Pot Synthesis of Dioxolano Quinoline/benzo[h]quinolines as Potent Antibacterial Agents. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185(2), 355-360.
[http://dx.doi.org/10.1080/10426500902797095]
[23]
Abdel-Hafez, ShH. Synthesis of novel selenium-containing sulfa drugs and their antibacterial activities. Bioorg. Khim., 2010, 36(3), 403-409.
[PMID: 20644596]
[24]
Naik, H.R.P.; Naik, H.S.B.; Naik, T.R.R.; Naika, H.R.; Gouthamchandra, K.; Mahmood, R.; Ahamed, B.M.K. Synthesis of novel benzo[h]quinolines: wound healing, antibacterial, DNA binding and in vitro antioxidant activity. Eur. J. Med. Chem., 2009, 44(3), 981-989.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.006] [PMID: 18722035]
[25]
Naik, H.R.P.; Naik, H.S.B.; Naik, T.R.R.; Aravinda, T.; Lamani, D.S.; Raja, N.H. Synthesis of Quinoline-Based Thieno-Seleno-Phenylquinazolinones. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(2), 460-470.
[http://dx.doi.org/10.1080/10426500802176945]
[26]
Bhasin, K.K.; Arora, E.; Kwak, C.; Mehta, S.K. Synthesis and characterization of novel quinoline selenium compounds: X-ray structure of 6-methoxy-3H-[1,2]diselenolo[3,4-b]quinoline. J. Organomet. Chem., 2010, 695(7), 1065-1068.
[http://dx.doi.org/10.1016/j.jorganchem.2010.01.012]
[27]
Mugesh, G.; du Mont, W.W.; Sies, H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev., 2001, 101(7), 2125-2179.
[http://dx.doi.org/10.1021/cr000426w] [PMID: 11710243]
[28]
Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6285.
[http://dx.doi.org/10.1021/cr0406559] [PMID: 15584701]
[29]
Alberto, E.E.; Nascimento, V.; Braga, A.L. Catalytic Application of Selenium and Tellurium Compounds as Glutathione Peroxidase Enzyme Mimetics. J. Braz. Chem. Soc., 2010, 21(11), 2032-2041.
[http://dx.doi.org/10.1590/S0103-50532010001100004]
[30]
Nogueira, C.W.; Rocha, J.B.T. Diphenyl Diselenide a Janus-Faced Molecule. J. Braz. Chem. Soc., 2010, 21(11), 2055-2071.
[http://dx.doi.org/10.1590/S0103-50532010001100006]
[31]
Nogueira, C.W.; Rocha, J.B.T. Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch. Toxicol., 2011, 85(11), 1313-1359.
[http://dx.doi.org/10.1007/s00204-011-0720-3] [PMID: 21720966]
[32]
Alberto, E.E.; Braga, A.L. Selenium and Tellurium Chemistry - From Small Molecules to Biomolecules and Materials; Derek, W.J; Risto, L., Ed.; Springer-Verlag: Berlin, 2011.
[33]
Wirth, T. Organoselenium Chemistry: Synthesis and Reactions; Wirth, T., Ed.; Wiley-VCH: Weinheim, 2011.
[http://dx.doi.org/10.1002/9783527641949]
[34]
Menezes, P.H.; Zeni, G. Patai’s Chemistry of Functional GroupsRappoport, Z., Ed.; John Wiley & Sons: Oxford, 2011.
[35]
Perin, G.; Lenardão, E.J.; Jacob, R.G.; Panatieri, R.B. Synthesis of vinyl selenides. Chem. Rev., 2009, 109(3), 1277-1301.
[http://dx.doi.org/10.1021/cr8004394] [PMID: 19222199]
[36]
Freudendahl, D.M.; Santoro, S.; Shahzad, S.A.; Santi, C.; Wirth, T. Green chemistry with selenium reagents: development of efficient catalytic reactions. Angew. Chem. Int. Ed. Engl., 2009, 48(45), 8409-8411.
[http://dx.doi.org/10.1002/anie.200903893] [PMID: 19802863]
[37]
Freudendahl, D.M.; Shahzad, S.A.; Wirth, T. Recent Advances in Organoselenium Chemistry. Eur. J. Org. Chem., 2009, 11, 1649-1664.
[http://dx.doi.org/10.1002/ejoc.200801171]
[38]
Santi, C.; Santoro, S.; Battistelli, B. Organoselenium Compounds as Catalysts in Nature and Laboratory. Curr. Org. Chem., 2010, 14(20), 2442-2462.
[http://dx.doi.org/10.2174/138527210793358231]
[39]
Savegnago, L.; Vieira, A.I.; Seus, N.; Goldani, B.S.; Castro, M.R.; Lenardão, E.J.; Alves, D. Synthesis and antioxidant properties of novel quinoline–chalcogenium compounds. Tetrahedron Lett., 2013, 54(1), 40-44.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.067]
[40]
Pinz, M.; Reis, A.S.; Duarte, V.; da Rocha, M.J.; Goldani, B.S.; Alves, D.; Savegnago, L.; Luchese, C.; Wilhelm, E.A. 4-Phenylselenyl-7-chloroquinoline, a new quinoline derivative containing selenium, has potential antinociceptive and anti-inflammatory actions. Eur. J. Pharmacol., 2016, 780, 122-128.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.039] [PMID: 27020552]
[41]
Reis, A.S.; Pinz, M.; Duarte, L.F.B.; Roehrs, J.A.; Alves, D.; Luchese, C.; Wilhelm, E.A. 4-phenylselenyl-7-chloroquinoline, a novel multitarget compound with anxiolytic activity: Contribution of the glutamatergic system. J. Psychiatr. Res., 2017, 84, 191-199.
[http://dx.doi.org/10.1016/j.jpsychires.2016.10.007] [PMID: 27756019]
[42]
Vogt, A.G.; Voss, G.T.; de Oliveira, R.L.; Paltian, J.J.; Duarte, L.F.B.; Alves, D.; Jesse, C.R.; Roman, S.S.; Roehrs, J.A.; Wilhelm, E.A.; Luchese, C. Organoselenium group is critical for antioxidant activity of 7-chloro-4-phenylselenyl-quinoline. Chem. Biol. Interact., 2018, 282, 7-12.
[http://dx.doi.org/10.1016/j.cbi.2018.01.003] [PMID: 29317251]
[43]
Voss, G.T.; Oliveira, R.L.; de Souza, J.F.; Duarte, L.F.B.; Fajardo, A.R.; Alves, D.; Luchese, C.; Wilhelm, E.A. Therapeutic and technological potential of 7-chloro-4-phenylselanyl quinoline for the treatment of atopic dermatitis-like skin lesions in mice. Mater. Sci. Eng. C, 2018, 84, 90-98.
[http://dx.doi.org/10.1016/j.msec.2017.11.026] [PMID: 29519447]
[44]
Pinz, M.P.; Dos Reis, A.S.; Vogt, A.G.; Krüger, R.; Alves, D.; Jesse, C.R.; Roman, S.S.; Soares, M.P.; Wilhelm, E.A.; Luchese, C. Current advances of pharmacological properties of 7-chloro-4-(phenylselanyl) quinoline: Prevention of cognitive deficit and anxiety in Alzheimer’s disease model. Biomed. Pharmacother., 2018, 105, 1006-1014.
[http://dx.doi.org/10.1016/j.biopha.2018.06.049] [PMID: 30021335]
[45]
Silva, V.D.G.; Reis, A.S.; Pinz, M.P.; da Fonseca, C.A.R.; Duarte, L.F.B.; Roehrs, J.A.; Alves, D.; Luchese, C.; Wilhelm, E.A. Further analysis of acute antinociceptive and anti-inflammatory actions of 4-phenylselenyl-7-chloroquinoline in mice. Fundam. Clin. Pharmacol., 2017, 31(5), 513-525.
[http://dx.doi.org/10.1111/fcp.12295] [PMID: 28543930]
[46]
Salgueiro, W.G.; Goldani, B.S.; Peres, T.V.; Miranda-Vizuete, A.; Aschner, M.; da Rocha, J.B.T.; Alves, D.; Ávila, D.S. Insights into the differential toxicological and antioxidant effects of 4-phenylchalcogenil-7-chloroquinolines in Caenorhabditis elegans. Free Radic. Biol. Med., 2017, 110, 133-141.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.05.020] [PMID: 28571752]
[47]
Duarte, L.F.B.; Barbosa, E.S.; Oliveira, R.L.; Pinz, M.P.; Godoi, B.; Schumacher, R.F.; Luchese, C.; Wilhelm, E.A.; Alves, D. A simple method for the synthesis of 4-arylselanyl-7-chloroquinolines used as in vitro acetylcholinesterase inhibitors and in vivo memory improvement. Tetrahedron Lett., 2017, 58, 3319-3322.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.039]
[48]
Alves, D.; Goldani, B.; Lenardão, E.J.; Perin, G.; Schumacher, R.F.; Paixão, M.W. Copper catalysis and organocatalysis showing the way: Synthesis of selenium-containing highly functionalized 1,2,3-triazoles. Chem. Rec., 2018, 18(5), 527-542. [Recent review
[http://dx.doi.org/10.1002/tcr.201700058] [PMID: 29235236]
[49]
Perin, G.; Alves, D.; Jacob, R.G.; Barcellos, A.M.; Soares, L.K.; Lenardão, E.J. Synthesis of organochalcogen compounds using non-conventional reaction media. ChemistrySelect, 2016, 2, 205-258.
[http://dx.doi.org/10.1002/slct.201500031]
[50]
de Souza, M.V.; Pais, K.C.; Kaiser, C.R.; Peralta, M.A. de L Ferreira, M.; Lourenço, M.C.S. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorg. Med. Chem., 2009, 17(4), 1474-1480.
[http://dx.doi.org/10.1016/j.bmc.2009.01.013] [PMID: 19188070]
[51]
Gutteridge, J.M.; Halliwell, B. Antioxidants: Molecules, medicines, and myths. Biochem. Biophys. Res. Commun., 2010, 393(4), 561-564.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.071] [PMID: 20171167]
[52]
Chen, C.W.; Ho, C.T.J. Antioxidant properties of polyphenols extracted from green and black teas. Food Lipids, 1995, 2(1), 35-46.
[http://dx.doi.org/10.1111/j.1745-4522.1995.tb00028.x]
[53]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[54]
Bryan, N.S.; Grisham, M.B. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic. Biol. Med., 2007, 43(5), 645-657.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.04.026] [PMID: 17664129]
[55]
Feelisch, M.; Kubitzek, D. Methods in Nitric Oxide Research; J. The Oxyhemoglobin Assay, 1996, pp. 455-478.
[56]
Nobre, P.C.; Borges, E.L.; Silva, C.M.; Casaril, A.M.; Martinez, D.M.; Lenardão, E.J.; Alves, D.; Savegnago, L.; Perin, G. Organochalcogen compounds from glycerol: synthesis of new antioxidants. Bioorg. Med. Chem., 2014, 22(21), 6242-6249.
[http://dx.doi.org/10.1016/j.bmc.2014.08.018] [PMID: 25217848]
[57]
Katerji, M.; Filippova, M.; Duerksen-Hughes, P. Approaches and methods to measure oxidative stress in clinical samples: research applications in the cancer field. Oxid. Med. Cell. Longev., 2019., 20191279250.
[http://dx.doi.org/10.1155/2019/1279250] [PMID: 30992736]
[58]
Grisham, M.B.; Johnson, G.G.; Lancaster, J.R., Jr Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol., 1996, 268, 237-246.
[http://dx.doi.org/10.1016/S0076-6879(96)68026-4] [PMID: 8782590]
[59]
Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica and Eugenia jambolana. Lam. Tre., 2007, 104(3), 1106-1114.
[http://dx.doi.org/10.1016/j.foodchem.2007.01.019]
[60]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[61]
Khanna, A.; Bala, A.; Khandelwal, B.L. Synthesis and multinuclear NMR studies of 3-aminopropyl(aryl)chalcogenides, NH2CH2CH2 CH2EAr (E = Se, Te), and their complexes with Pt(II) and Pd(II). J. Organomet. Chem., 1995, 494(1), 199-204.
[http://dx.doi.org/10.1016/0022-328X(95)05403-C]
[62]
Singh, V.V.; Rao, G.K.; Kumar, A.; Singh, A.K. Palladium(II)-selenoether complexes as new single source precursors: first synthesis of Pd4Se and Pd7Se4 nanoparticles. Dalton Trans., 2012, 41(4), 1142-1145.
[http://dx.doi.org/10.1039/C2DT12113A] [PMID: 22159397]
[63]
Singh, A.K.; Srivastava, V. Synthesis of novel bidentate (Te, N) ligands-2-aryltelluroethylamines and their complexation with mercury (II). Phosphorus Sulfur Silicon Relat. Elem., 1990, 47(3-4), 471-475.
[http://dx.doi.org/10.1080/10426509008038003]
[64]
Amosova, S.V.; Makhaeva, N.A.; Martynov, A.V.; Potapov, V.A.; Steele, B.R.; Kostas, I.D. Terminal Organylchalcogenoethyl- and -propylamines and Their Schiff Base Derivatives. Synthesis, 2005, 10, 1641-1648.
[http://dx.doi.org/10.1055/s-2005-865310]
[65]
Choi, C.; Kim, S.; Hwang, S.; Choi, B.; Ahn, H.; Lee, M.; Park, S.; Kim, S. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci., 2002, 163(6), 1161-1168.
[http://dx.doi.org/10.1016/S0168-9452(02)00332-1]
[66]
Stratil, P.; Klejdus, B.; Kubán, V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables--evaluation of spectrophotometric methods. J. Agric. Food Chem., 2006, 54(3), 607-616.
[http://dx.doi.org/10.1021/jf052334j] [PMID: 16448157]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy