Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Hydrophilic Interaction Liquid Chromatography (HILIC): Latest Applications in the Pharmaceutical Researches

Author(s): Cem Erkmen, Weldejeworgıs Hndeya Gebrehiwot and Bengi Uslu*

Volume 17, Issue 3, 2021

Published on: 02 April, 2020

Page: [316 - 345] Pages: 30

DOI: 10.2174/1573412916666200402101501

Price: $65

Abstract

Background: Significant advances have been occurred in analytical research since the 1970s by Liquid Chromatography (LC) as the separation method. Reverse Phase Liquid Chromatography (RPLC) method, using hydrophobic stationary phases and polar mobile phases, is the most commonly used chromatographic method. However, it is difficult to analyze some polar compounds with this method. Another separation method is the Normal Phase Liquid Chromatography (NPLC), which involves polar stationary phases with organic eluents. NPLC presents low-efficiency separations and asymmetric chromatographic peak shapes when analyzing polar compounds. Hydrophilic Interaction Liquid Chromatography (HILIC) is an interesting and promising alternative method for the analysis of polar compounds. HILIC is defined as a separation method that combines stationary phases used in the NPLC method and mobile phases used in the RPLC method. HILIC can be successfully applied to all types of liquid chromatographic separations such as pharmaceutical compounds, small molecules, metabolites, drugs of abuse, carbohydrates, toxins, oligosaccharides, peptides, amino acids and proteins.

Objective: This paper provides a general overview of the recent application of HILIC in the pharmaceutical research in the different sample matrices such as pharmaceutical dosage form, plasma, serum, environmental samples, animal origin samples, plant origin samples, etc. Also, this review focuses on the most recent and selected papers in the drug research from 2009 to the submission date in 2020, dealing with the analysis of different components using HILIC.

Results and Conclusion: The literature survey showed that HILIC applications are increasing every year in pharmaceutical research. It was found that HILIC allows simultaneous analysis of many compounds using different detectors.

Keywords: Analysis, applications, HILIC, liquid chromatography, pharmaceutical, separation.

Graphical Abstract

[1]
Skoog, D.A.; West, D.M.; Holler, F.J.; Crouch, S.R. Skoog and West’s Fundamentals of Analytical Chemistry., 2014.
[2]
Öztürk, A.A.; Güven, U.M.; Yenilmez, E. Flurbiprofen Loaded Gel Based Topical Delivery System: Formulation and in vitro Characterization with New Developed UPLC Method. Acta Pharm. Sci., 2018, 56(4), 81-105.
[http://dx.doi.org/10.23893/1307-2080.APS.05627]
[3]
Öztürk, A.A.; Güven, U.M. Cefaclor Monohydrate Loaded Microemulsion Formulation for Topical Application: Characterization with New Developed UPLC Method and Stability Study. Marmara Pharm. J., 2019, 23(3), 426-440.
[http://dx.doi.org/10.12991/jrp.2019.150]
[4]
Beck, O.; Rylski, A.; Stephanson, N.N. Application of Liquid Chromatography Combined With High Resolution Mass Spectrometry for Urine Drug Testing, 2nd ed; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-815607-0.00023-X]
[5]
Nie, Q.; Nie, S. High-Performance Liquid Chromatography for Food Quality Evaluation; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-814217-2.00013-5]
[6]
Lozano-Sánchez, J.; Borrás-Linares, I.; Sass-Kiss, A.; Segura-Carretero, A. Chromatographic Technique: High-Performance Liquid Chromatography; HPLC, 2018.
[7]
Poole, C.F.; Lenca, N. Reversed-Phase Liquid Chromatography, Second Edi; Elsevier Inc., 2017, Vol. 1, .
[8]
Moldoveanu, S. C.; David, V. Basic Information Regarding the HPLC Techniques, 2017.
[http://dx.doi.org/10.1016/B978-0-12-803684-6.00004-4]
[9]
LaCourse, M.E.; LaCourse, W.R. General Instrumentation in HPLC, 2nd ed; Elsevier Inc., 2017, Vol. 1, .
[10]
Mukherjee, P. K. High-Performance Liquid Chromatography for Analysis of Herbal Drugs, 2019.
[http://dx.doi.org/10.1016/B978-0-12-813374-3.00010-7]
[11]
Kartsova, L.A.; Bessonova, E.A.; Somova, V.D. Hydrophilic Interaction Chromatography. J. Anal. Chem., 2019, 74(5), 415-424.
[http://dx.doi.org/10.1134/S1061934819050058]
[12]
Cavazzini, A.; Catani, M.; Felinger, A. Hydrophilic Interaction Liquid Chromatography, 2nd ed; Elsevier Inc., 2017, Vol. 1, .
[13]
Kahsay, G.; Song, H.; Van Schepdael, A.; Cabooter, D.; Adams, E. Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics. J. Pharm. Biomed. Anal., 2014, 87, 142-154.
[http://dx.doi.org/10.1016/j.jpba.2013.04.015] [PMID: 23685016]
[14]
Ikegami, T.; Tomomatsu, K.; Takubo, H.; Horie, K.; Tanaka, N. Separation efficiencies in hydrophilic interaction chromatography. J. Chromatogr. A, 2008, 1184(1-2), 474-503.
[http://dx.doi.org/10.1016/j.chroma.2008.01.075] [PMID: 18294645]
[15]
Li, Z.; Han, J.; Sun, S.A.; Chen, K.; Tang, D.Q. Hydrophilic Interaction Liquid Chromatography/Mass Spectrometry: An Attractive and Prospective Method for the Quantitative Bioanalysis in Drug Metabolism. Curr. Drug Metab., 2016, 17(4), 386-400.
[http://dx.doi.org/10.2174/1389200217666151210141757] [PMID: 26651973]
[16]
Jandera, P. Advances in Hydrophilic Interaction Liquid Chromatography; Elsevier Inc., 2017.
[http://dx.doi.org/10.1016/B978-0-12-811732-3.00002-9]
[17]
Bernal, J.; Ares, A.M.; Pól, J.; Wiedmer, S.K. Hydrophilic interaction liquid chromatography in food analysis. J. Chromatogr. A, 2011, 1218(42), 7438-7452.
[http://dx.doi.org/10.1016/j.chroma.2011.05.004] [PMID: 21621783]
[18]
Qiao, L.; Shi, X.; Xu, G. Recent Advances in Development and Characterization of Stationary Phases for Hydrophilic Interaction Chromatography; Elsevier B.V., 2016, p. 81.
[http://dx.doi.org/10.1016/j.trac.2016.03.021]
[19]
Gray, N.; Heaton, J.; Musenga, A.; Cowan, D.A.; Plumb, R.S.; Smith, N.W. Comparison of reversed-phase and hydrophilic interaction liquid chromatography for the quantification of ephedrines using medium-resolution accurate mass spectrometry. J. Chromatogr. A, 2013, 1289, 37-46.
[http://dx.doi.org/10.1016/j.chroma.2013.03.021] [PMID: 23570855]
[20]
Fabino Carr, A.; Patel, D.C.; Lopez, D.; Armstrong, D.W.; Ryzhov, V. Comparison of Reversed-Phase, Anion-Exchange, and Hydrophilic Interaction HPLC for the Analysis of Nucleotides Involved in Biological Enzymatic Pathways. J. Liq. Chromatogr. Relat. Technol., 2019, 42(7–8), 184-193.
[http://dx.doi.org/10.1080/10826076.2019.1587622]
[21]
Greco, G.; Letzel, T. Main interactions and influences of the chromatographic parameters in HILIC separations. J. Chromatogr. Sci., 2013, 51(7), 684-693.
[http://dx.doi.org/10.1093/chromsci/bmt015] [PMID: 23492984]
[22]
Kośliński, P.; Jarzemski, P.; Markuszewski, M.J.; Kaliszan, R. Determination of pterins in urine by HPLC with UV and fluorescent detection using different types of chromatographic stationary phases (HILIC, RP C8, RP C18). J. Pharm. Biomed. Anal., 2014, 91, 37-45.
[http://dx.doi.org/10.1016/j.jpba.2013.12.012] [PMID: 24412699]
[23]
Pascali, J.P.; Fais, P.; Vaiano, F.; Ciolini, A.; Bertol, E. Zwitterionic HILIC stationary phase as a valuable alternative in separative techniques: Application to the analysis of gamma-hydroxybutyric acid and its metabolite in hair. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1134-1135(September)121876
[http://dx.doi.org/10.1016/j.jchromb.2019.121876] [PMID: 31783252]
[24]
Moldoveanu, S.C.; David, V. Parameters That Characterize HPLC Analysis; Elsevier Inc., 2013.
[http://dx.doi.org/10.1016/B978-0-12-385013-3.00002-1]
[25]
Gika, H.; Kaklamanos, G.; Manesiotis, P.; Theodoridis, G. Chromatography: High-Performance Liquid Chromatography; Encycl; Food Heal, 2015, pp. 49-58.
[26]
Snyder, L.R.; Dolan, J.W. Milestones in the Development of Liquid Chromatography, 2nd ed; Elsevier Inc., 2017, Vol. 1, .
[http://dx.doi.org/10.1016/B978-0-12-805393-5.00001-4]
[27]
Dong, M.W. HPLC Instrumentation in Pharmaceutical Analysis: Status, Advances, and Trends. Sep. Sci. Technol., 2005, 6(C), 47-75.
[http://dx.doi.org/10.1016/S0149-6395(05)80047-9]
[28]
Ares, A.M.; Bernal, J. Hydrophilic Interaction Chromatography in Drug Analysis. Cent. Eur. J. Chem., 2012, 10(3), 534-553.
[http://dx.doi.org/10.2478/s11532-012-0003-8]
[29]
Dejaegher, B.; Vander Heyden, Y. HILIC methods in pharmaceutical analysis. J. Sep. Sci., 2010, 33(6-7), 698-715.
[http://dx.doi.org/10.1002/jssc.200900742] [PMID: 20183826]
[30]
Periat, A.; Grand-Guillaume Perrenoud, A.; Guillarme, D. Evaluation of various chromatographic approaches for the retention of hydrophilic compounds and MS compatibility. J. Sep. Sci., 2013, 36(19), 3141-3151.
[http://dx.doi.org/10.1002/jssc.201300567] [PMID: 23897590]
[31]
Periat, A.; Boccard, J.; Veuthey, J.L.; Rudaz, S.; Guillarme, D. Systematic comparison of sensitivity between hydrophilic interaction liquid chromatography and reversed phase liquid chromatography coupled with mass spectrometry. J. Chromatogr. A, 2013, 1312, 49-57.
[http://dx.doi.org/10.1016/j.chroma.2013.08.097] [PMID: 24034137]
[32]
Zhang, K.; Dai, L.; Chetwyn, N.P. Simultaneous determination of positive and negative pharmaceutical counterions using mixed-mode chromatography coupled with charged aerosol detector. J. Chromatogr. A, 2010, 1217(37), 5776-5784.
[http://dx.doi.org/10.1016/j.chroma.2010.07.035] [PMID: 20692668]
[33]
Huang, Z.; Richards, M.A.; Zha, Y.; Francis, R.; Lozano, R.; Ruan, J. Determination of inorganic pharmaceutical counterions using hydrophilic interaction chromatography coupled with a Corona CAD detector. J. Pharm. Biomed. Anal., 2009, 50(5), 809-814.
[http://dx.doi.org/10.1016/j.jpba.2009.06.039] [PMID: 19616396]
[34]
Nováková, L.; Solichová, D.; Solich, P. Hydrophilic interaction liquid chromatography--charged aerosol detection as a straightforward solution for simultaneous analysis of ascorbic acid and dehydroascorbic acid. J. Chromatogr. A, 2009, 1216(21), 4574-4581.
[http://dx.doi.org/10.1016/j.chroma.2009.03.060] [PMID: 19358994]
[35]
Louw, S.; Pereira, A.S.; Lynen, F.; Hanna-Brown, M.; Sandra, P. Serial coupling of reversed-phase and hydrophilic interaction liquid chromatography to broaden the elution window for the analysis of pharmaceutical compounds. J. Chromatogr. A, 2008, 1208(1-2), 90-94.
[http://dx.doi.org/10.1016/j.chroma.2008.08.058] [PMID: 18771775]
[36]
Liu, M.; Ostovic, J.; Chen, E.X.; Cauchon, N. Hydrophilic interaction liquid chromatography with alcohol as a weak eluent. J. Chromatogr. A, 2009, 1216(12), 2362-2370.
[http://dx.doi.org/10.1016/j.chroma.2009.01.012] [PMID: 19187941]
[37]
Beilmann, B.; Langguth, P.; Häusler, H.; Grass, P. High-performance liquid chromatography of lactose with evaporative light scattering detection, applied to determine fine particle dose of carrier in dry powder inhalation products. J. Chromatogr. A, 2006, 1107(1-2), 204-207.
[http://dx.doi.org/10.1016/j.chroma.2005.12.083] [PMID: 16442117]
[38]
Chase, T.; Carrey, N.; Soo, E.; Wilkinson, M. Methylphenidate regulates activity regulated cytoskeletal associated but not brain-derived neurotrophic factor gene expression in the developing rat striatum. Neuroscience, 2007, 144(3), 969-984.
[http://dx.doi.org/10.1016/j.neuroscience.2006.10.035] [PMID: 17156936]
[39]
van Schaick, G.; Pirok, B.W.J.; Haselberg, R.; Somsen, G.W.; Gargano, A.F.G. Computer-aided gradient optimization of hydrophilic interaction liquid chromatographic separations of intact proteins and protein glycoforms. J. Chromatogr. A, 2019, 1598, 67-76.
[http://dx.doi.org/10.1016/j.chroma.2019.03.038] [PMID: 31104847]
[40]
Machairas, G.; Panderi, I.; Geballa-Koukoula, A.; Rozou, S.; Antonopoulos, N.; Charitos, C.; Vonaparti, A. Development and validation of a hydrophilic interaction liquid chromatography method for the quantitation of impurities in fixed-dose combination tablets containing rosuvastatin and metformin. Talanta, 2018, 183(February), 131-141.
[http://dx.doi.org/10.1016/j.talanta.2018.02.068] [PMID: 29567155]
[41]
Fukasawa, K.; Nakajima, S.; Gotoh, M.; Tanaka, S.; Murofushi, H.; Murakami-Murofushi, K. Qualitative and quantitative comparison of cyclic phosphatidic acid and its related lipid species in rat serum using hydrophilic interaction liquid chromatography with tandem-mass spectrometry. J. Chromatogr. A, 2018, 1567, 177-184.
[http://dx.doi.org/10.1016/j.chroma.2018.07.010] [PMID: 30017223]
[42]
Cao, J.L.; Wang, S.S.; Hu, H.; He, C.W.; Wan, J.B.; Su, H.X.; Wang, Y.T.; Li, P. Online comprehensive two-dimensional hydrophilic interaction chromatography×reversed-phase liquid chromatography coupled with hybrid linear ion trap Orbitrap mass spectrometry for the analysis of phenolic acids in Salvia miltiorrhiza. J. Chromatogr. A, 2018, 1536, 216-227.
[http://dx.doi.org/10.1016/j.chroma.2017.09.041] [PMID: 28967384]
[43]
Long, Z.; Li, J.; Guo, Z.; Zhan, Z.; Li, Y.; Wang, Y.; Li, C.; Ji, F.; Li, L.; Huang, T. A fast and robust hydrophilic interaction liquid chromatography tandem mass spectrometry method for determining methylpentose, hexose, hexosamine and hexonic acid in pneumococcal polysaccharide vaccine hydrolysates. J. Pharm. Biomed. Anal., 2018, 155, 253-261.
[http://dx.doi.org/10.1016/j.jpba.2018.04.006] [PMID: 29656196]
[44]
Tumpa, A.; Stajić, A.; Jančić-Stojanović, B.; Medenica, M. Quality by Design in the development of hydrophilic interaction liquid chromatography method with gradient elution for the analysis of olanzapine. J. Pharm. Biomed. Anal., 2017, 134, 18-26.
[http://dx.doi.org/10.1016/j.jpba.2016.11.010] [PMID: 27871053]
[45]
Janvier, S.; De Sutter, E.; Wynendaele, E.; De Spiegeleer, B.; Vanhee, C.; Deconinck, E. Analysis of illegal peptide drugs via HILIC-DAD-MS. Talanta, 2017, 174(April), 562-571.
[http://dx.doi.org/10.1016/j.talanta.2017.06.034] [PMID: 28738623]
[46]
Isokawa, M.; Shimosawa, T.; Funatsu, T.; Tsunoda, M. Determination and characterization of total thiols in mouse serum samples using hydrophilic interaction liquid chromatography with fluorescence detection and mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1019, 59-65.
[http://dx.doi.org/10.1016/j.jchromb.2015.11.038] [PMID: 26691842]
[47]
Konieczna, L.; Roszkowska, A.; Niedźwiecki, M.; Bączek, T. Hydrophilic interaction chromatography combined with dispersive liquid-liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples. J. Chromatogr. A, 2016, 1431, 111-121.
[http://dx.doi.org/10.1016/j.chroma.2015.12.062] [PMID: 26747692]
[48]
Socia, A.; Foley, J.P. Direct determination of amino acids by hydrophilic interaction liquid chromatography with charged aerosol detection. J. Chromatogr. A, 2016, 1446, 41-49.
[http://dx.doi.org/10.1016/j.chroma.2016.03.042] [PMID: 27059400]
[49]
Xiong, X.; Liu, Y. Chromatographic behavior of 12 polar pteridines in hydrophilic interaction chromatography using five different HILIC columns coupled with tandem mass spectrometry. Talanta, 2016, 150, 493-502.
[http://dx.doi.org/10.1016/j.talanta.2015.12.066] [PMID: 26838435]
[50]
Coleman, R.; Lemire, S.W.; Bragg, W.; Garrett, A.; Ojeda-Torres, G.; Hamelin, E.; Johnson, R.C.; Thomas, J. Development and validation of a high-throughput online solid phase extraction - Liquid chromatography - Tandem mass spectrometry method for the detection of tetrodotoxin in human urine. Toxicon, 2016, 119, 64-71.
[http://dx.doi.org/10.1016/j.toxicon.2016.05.009] [PMID: 27212629]
[51]
Kanamori, T.; Isokawa, M.; Funatsu, T.; Tsunoda, M. Development of analytical method for catechol compounds in mouse urine using hydrophilic interaction liquid chromatography with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 985, 142-148.
[http://dx.doi.org/10.1016/j.jchromb.2015.01.038] [PMID: 25682335]
[52]
Holčapek, M.; Cífková, E.; Červená, B.; Lísa, M.; Vostálová, J.; Galuszka, J. Determination of nonpolar and polar lipid classes in human plasma, erythrocytes and plasma lipoprotein fractions using ultrahigh-performance liquid chromatography-mass spectrometry. J. Chromatogr. A, 2015, 1377, 85-91.
[http://dx.doi.org/10.1016/j.chroma.2014.12.023] [PMID: 25543301]
[53]
Roy, C.E.; Kauss, T.; Prevot, S.; Barthelemy, P.; Gaudin, K. Analysis of fatty acid samples by hydrophilic interaction liquid chromatography and charged aerosol detector. J. Chromatogr. A, 2015, 1383, 121-126.
[http://dx.doi.org/10.1016/j.chroma.2015.01.046] [PMID: 25638266]
[54]
Shi, Y.; Xu, X.; Fang, M.; Zhang, M.; Li, Y.; Gillespie, B.; Yorke, S.; Yang, N.; McKew, J.C.; Gahl, W.A.; Huizing, M.; Carrillo-Carrasco, N.; Wang, A.Q. Quantitative hydrophilic interaction chromatography-mass spectrometry analysis of N-acetylneuraminic acid and N-acetylmannosamine in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1000, 105-111.
[http://dx.doi.org/10.1016/j.jchromb.2015.07.018] [PMID: 26218770]
[55]
Risley, D.S.; Magnusson, L.E.; Morow, P.R.; Aburub, A. Analysis of magnesium from magnesium stearate in pharmaceutical tablet formulations using hydrophilic interaction liquid chromatography with nano quantity analyte detection. J. Pharm. Biomed. Anal., 2013, 78-79, 112-117.
[http://dx.doi.org/10.1016/j.jpba.2013.02.003] [PMID: 23474810]
[56]
Kivilompolo, M.; Öhrnberg, L.; Orešič, M.; Hyötyläinen, T. Rapid quantitative analysis of carnitine and acylcarnitines by ultra-high performance-hydrophilic interaction liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2013, 1292, 189-194.
[http://dx.doi.org/10.1016/j.chroma.2012.12.073] [PMID: 23336946]
[57]
Dobrinas, M.; Choong, E.; Noetzli, M.; Cornuz, J.; Ansermot, N.; Eap, C.B. Quantification of nicotine, cotinine, trans-3′-hydroxycotinine and varenicline in human plasma by a sensitive and specific UPLC-tandem mass-spectrometry procedure for a clinical study on smoking cessation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(30), 3574-3582.
[http://dx.doi.org/10.1016/j.jchromb.2011.09.046] [PMID: 22014744]
[58]
Zhou, W.; Wang, P.G.; Krynitsky, A.J.; Rader, J.I. Rapid and simultaneous determination of hexapeptides (Ac-EEMQRR-amide and H2N-EEMQRR-amide) in anti-wrinkle cosmetics by hydrophilic interaction liquid chromatography-solid phase extraction preparation and hydrophilic interaction liquid chromatography with tandem mass spectrometry. J. Chromatogr. A, 2011, 1218(44), 7956-7963.
[http://dx.doi.org/10.1016/j.chroma.2011.08.091] [PMID: 21959380]
[59]
Jia, S.; Park, J.H.; Lee, J.; Kwon, S.W. Comparison of two aerosol-based detectors for the analysis of gabapentin in pharmaceutical formulations by hydrophilic interaction chromatography. Talanta, 2011, 85(5), 2301-2306.
[http://dx.doi.org/10.1016/j.talanta.2011.04.012] [PMID: 21962646]
[60]
Rodríguez-Gonzalo, E.; García-Gómez, D.; Carabias-Martínez, R. Development and validation of a hydrophilic interaction chromatography-tandem mass spectrometry method with on-line polar extraction for the analysis of urinary nucleosides. Potential application in clinical diagnosis. J. Chromatogr. A, 2011, 1218(50), 9055-9063.
[http://dx.doi.org/10.1016/j.chroma.2011.10.016] [PMID: 22056237]
[61]
Eckert, E.; Drexler, H.; Göen, T. Determination of six hydroxyalkyl mercapturic acids in human urine using hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-ESI-MS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(27), 2506-2514.
[http://dx.doi.org/10.1016/j.jchromb.2009.09.003] [PMID: 19766066]
[62]
Mora, L.; Hernández-Cázares, A.S.; Aristoy, M.C.; Toldrá, F. Hydrophilic Interaction Chromatographic Determination of Adenosine Triphosphate and Its Metabolites. Food Chem., 2010, 123(4), 1282-1288.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.072]
[63]
Kolmonen, M.; Leinonen, A.; Kuuranne, T.; Pelander, A.; Ojanperä, I. Hydrophilic interaction liquid chromatography and accurate mass measurement for quantification and confirmation of morphine, codeine and their glucuronide conjugates in human urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(29), 2959-2966.
[http://dx.doi.org/10.1016/j.jchromb.2010.08.047] [PMID: 20880763]
[64]
Bhamidipati, R.K.; Morizzi, J.; Chiu, F.C.K.; Shackleford, D.M.; Charman, S.A. Simultaneous determination of OZ277, a synthetic 1,2,4-trioxolane antimalarial, and its polar metabolites in rat plasma using hydrophilic interaction chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(27), 2989-2995.
[http://dx.doi.org/10.1016/j.jchromb.2009.07.015] [PMID: 19646936]
[65]
Douša, M. Quantification of 2-aminoisobutyric acid impurity in enzalutamide bulk drug substance using hydrophilic interaction chromatography with fluorescence detection. J. Pharm. Biomed. Anal., 2019, 164, 296-301.
[http://dx.doi.org/10.1016/j.jpba.2018.10.049] [PMID: 30412802]
[66]
Kasagić-Vujanović, I.; Jančić-Stojanović, B. Quality by Design oriented development of hydrophilic interaction liquid chromatography method for the analysis of amitriptyline and its impurities. J. Pharm. Biomed. Anal., 2019, 173, 86-95.
[http://dx.doi.org/10.1016/j.jpba.2019.05.026] [PMID: 31125948]
[67]
Scherf-Clavel, O.; Kinzig, M.; Stoffel, M.S.; Fuhr, U.; Sörgel, F.A. HILIC-MS/MS assay for the quantification of metformin and sitagliptin in human plasma and urine: A tool for studying drug transporter perturbation. J. Pharm. Biomed. Anal., 2019, 175112754
[http://dx.doi.org/10.1016/j.jpba.2019.07.002] [PMID: 31336285]
[68]
Mameli, M.; Vezzelli, A.; Verze’, S.; Biondi, S.; Motta, P.; Greco, A.; Michi, M.; Breda, M. Liquid chromatography-tandem mass spectrometry for the simultaneous quantitation of enmetazobactam and cefepime in human plasma. J. Pharm. Biomed. Anal., 2019, 174, 655-662.
[http://dx.doi.org/10.1016/j.jpba.2019.06.041] [PMID: 31288188]
[69]
Khamis, M.M.; Adamko, D.J.; Purves, R.W.; El-Aneed, A. Quantitative determination of potential urine biomarkers of respiratory illnesses using new targeted metabolomic approach. Anal. Chim. Acta, 2019, 1047, 81-92.
[http://dx.doi.org/10.1016/j.aca.2018.09.035] [PMID: 30567667]
[70]
Cho, H.E.; Maurer, B.J.; Reynolds, C.P.; Kang, M.H. Hydrophilic interaction liquid chromatography-tandem mass spectrometric approach for simultaneous determination of safingol and D-erythro-sphinganine in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1112(1112), 16-23.
[http://dx.doi.org/10.1016/j.jchromb.2019.02.023] [PMID: 30836314]
[71]
Gurke, R.; Schmidt, D.; Thomas, D.; Fleck, S.C.; Geisslinger, G.; Ferreirós, N. A validated LC-MS/MS method for the determination of homocysteic acid in biological samples. J. Pharm. Biomed. Anal., 2019, 174, 578-587.
[http://dx.doi.org/10.1016/j.jpba.2019.06.008] [PMID: 31261039]
[72]
Jovanov, P.; Vraneš, M.; Sakač, M.; Gadžurić, S.; Panić, J.; Marić, A.; Ostojić, S. Hydrophilic interaction chromatography coupled to tandem mass spectrometry as a method for simultaneous determination of guanidinoacetate and creatine. Anal. Chim. Acta, 2018, 1028, 96-103.
[http://dx.doi.org/10.1016/j.aca.2018.03.038] [PMID: 29884358]
[73]
Guo, C.; Xie, C.; Chen, Q.; Cao, X.; Guo, M.; Zheng, S.; Wang, Y. A novel malic acid-enhanced method for the analysis of 5-methyl-2′-deoxycytidine, 5-hydroxymethyl-2′-deoxycytidine, 5-methylcytidine and 5-hydroxymethylcytidine in human urine using hydrophilic interaction liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 2018, 1034, 110-118.
[http://dx.doi.org/10.1016/j.aca.2018.06.081] [PMID: 30193624]
[74]
Douša, M. The determination of pharmaceutically active thiols using hydrophilic interaction chromatography followed postcolumn derivatization with o-phthaldialdehyde and fluorescence detection. J. Pharm. Biomed. Anal., 2018, 156, 1-7.
[http://dx.doi.org/10.1016/j.jpba.2018.04.007] [PMID: 29684906]
[75]
Amasya, G.; Gumustas, M.; Badilli, U.; Ozkan, S.A.; Tarimci, N. Development of a HILIC method for the determination of 5-fluorouracil from nano drug delivery systems and rat skin extracts. J. Pharm. Biomed. Anal., 2018, 154, 285-293.
[http://dx.doi.org/10.1016/j.jpba.2018.03.021] [PMID: 29567571]
[76]
Govender, K.; Adamson, J.H.; Owira, P. The development and validation of a LC-MS/MS method for the quantitation of metformin, rifampicin and isoniazid in rat plasma using HILIC chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1095(July), 127-137.
[http://dx.doi.org/10.1016/j.jchromb.2018.07.041] [PMID: 30077092]
[77]
Peng, Y.; Chang, Q.; Yang, N.; Gu, S.; Zhou, Y.; Yin, L.; Aa, J.; Wang, G.; Sun, J. Quantitative determination of metformin, saxagliptin and 5-hydroxy saxagliptin simultaneously by hydrophilic interaction liquid chromatography - electrospray ionization mass spectrometry and its application to a bioequivalence study with a single-pill combination in human. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1081-1082(February), 109-117.
[http://dx.doi.org/10.1016/j.jchromb.2018.02.007] [PMID: 29518719]
[78]
Kathriarachchi, U.L.; Vidhate, S.S.; Al-Tannak, N.; Thomson, A.H.; da Silva Neto, M.J.J.; Watson, D.G. Development of a LC-MS method for simultaneous determination of amoxicillin and metronidazole in human serum using hydrophilic interaction chromatography (HILIC). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1089(1089), 78-83.
[http://dx.doi.org/10.1016/j.jchromb.2018.05.012] [PMID: 29775840]
[79]
Alshishani, A.; Salhimi, S.M.; Saad, B. Salting-out assisted liquid-liquid extraction coupled with hydrophilic interaction chromatography for the determination of biguanides in biological and environmental samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1073(1073), 51-59.
[http://dx.doi.org/10.1016/j.jchromb.2017.12.013] [PMID: 29241085]
[80]
Mashayekhy Rad, F.; Spinicci, S.; Silvergren, S.; Nilsson, U.; Westerholm, R. Validation of a HILIC/ESI-MS/MS method for the wood burning marker levoglucosan and its isomers in airborne particulate matter. Chemosphere, 2018, 211, 617-623.
[http://dx.doi.org/10.1016/j.chemosphere.2018.07.188] [PMID: 30096575]
[81]
Wang, T. Polyethyleneimine-modified hybrid silica sorbent for hydrophilic solid-phase extraction of thyreostats in animal tissues. J. Chromatogr. A, 2018, 1581-1582, 16-24.
[http://dx.doi.org/10.1016/j.chroma.2018.11.006] [PMID: 30424967]
[82]
Szterk, A.; Zmysłowski, A.; Gorinstein, S. Application of hydrophilic interaction liquid chromatography for the quantification of succinylcholine in Active Pharmaceutical Ingredient and medicinal product. Identification of new impurities of succinylcholine chloride. Heliyon, 2018, 4(12)e01097
[http://dx.doi.org/10.1016/j.heliyon.2018.e01097] [PMID: 30627678]
[83]
Palumbo, D.; Fais, P.; Calì, A.; Lusardi, M.; Bertol, E.; Pascali, J.P. Novel zwitterionic HILIC stationary phase for the determination of ethyl glucuronide in human hair by LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1100-1101(September), 33-38.
[http://dx.doi.org/10.1016/j.jchromb.2018.09.027] [PMID: 30292057]
[84]
Huang, C.; Wan, H.; Zhang, J.; Zhong, H.; Li, J.; Sun, Y.; Wang, Q.; Zhang, H. Quantification of ondansetron, granisetron and tropisetron in goat plasma using hydrophilic interaction liquid chromatography-solid phase extraction coupled with hydrophilic interaction liquid chromatography-triple quadrupole tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1095(March), 50-58.
[http://dx.doi.org/10.1016/j.jchromb.2018.07.009] [PMID: 30053687]
[85]
Wu, X.; Huang, Y.; Sun, J.; Wen, Y.; Qin, F.; Zhao, L.; Xiong, Z.A. HILIC-UHPLC-MS/MS untargeted urinary metabonomics combined with quantitative analysis of five polar biomarkers on osteoporosis rats after oral administration of Gushudan. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1072(1072), 40-49.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.005] [PMID: 29132024]
[86]
Xu, X.M.; Huang, B.F.; Xu, J.J.; Cai, Z.X.; Zhang, J.; Chen, Q.; Han, J.L. Fast and quantitative determination of saxitoxin and neosaxitoxin in urine by ultra performance liquid chromatography-triple quadrupole mass spectrometry based on the cleanup of solid phase extraction with hydrophilic interaction mechanism. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1072(1072), 267-272.
[http://dx.doi.org/10.1016/j.jchromb.2017.11.032] [PMID: 29195146]
[87]
Qin, Z.; Ren, G.; Liu, Q.; Lu, X.; Zhang, Q.; Fan, A.; Lu, Y.; Li, N.; Chen, X.; Zhao, D. Hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the determination of intact oxaliplatin in cells: validated and applied in colon cancer HCT-116 cell line. J. Pharm. Biomed. Anal., 2018, 155, 7-14.
[http://dx.doi.org/10.1016/j.jpba.2018.03.045] [PMID: 29602056]
[88]
Rondon, B.D.; Cassiano, N.M.; Cass, Q.B. An isocratic hydrophilic interaction liquid chromatographic method for simultaneous determination of iodixanol and its related impurities in drug substance. J. Pharm. Biomed. Anal., 2017, 140, 342-346.
[http://dx.doi.org/10.1016/j.jpba.2017.03.046] [PMID: 28395244]
[89]
Pecher, D.; Dokupilová, S.; Zelinková, Z.; Peppelenbosch, M.; Mikušová, V.; Mikuš, P. Determination of thiopurine S-methyltransferase activity by hydrophilic interaction liquid chromatography hyphenated with mass spectrometry. J. Pharm. Biomed. Anal., 2017, 142, 244-251.
[http://dx.doi.org/10.1016/j.jpba.2017.05.016] [PMID: 28525791]
[90]
Themelis, T.; Gotti, R.; Gatti, R. A novel hydrophilic interaction liquid chromatography method for the determination of underivatized amino acids in alimentary supplements. J. Pharm. Biomed. Anal., 2017, 145, 751-757.
[http://dx.doi.org/10.1016/j.jpba.2017.08.001] [PMID: 28810230]
[91]
Zhou, S.; Zuo, P.; Zuo, Y.; Deng, Y. A rapid hydrophilic interaction liquid chromatographic determination of glimepiride in pharmaceutical formulations. Saudi Pharm. J., 2017, 25(6), 852-856.
[http://dx.doi.org/10.1016/j.jsps.2017.01.002] [PMID: 28951669]
[92]
Chen, G.Y.; Chao, H.C.; Liao, H.W.; Tsai, I.L.; Kuo, C.H. Rapid quantification of glutaminase 2 (GLS2)-related metabolites by HILIC-MS/MS. Anal. Biochem., 2017, 539(33), 39-44.
[http://dx.doi.org/10.1016/j.ab.2017.10.002] [PMID: 28993139]
[93]
Xie, F.; Colin, P.; Van Bocxlaer, J. Zwitterionic hydrophilic interaction liquid chromatography-tandem mass spectrometry with HybridSPE-precipitation for the determination of intact cisplatin in human plasma. Talanta, 2017, 174(June), 171-178.
[http://dx.doi.org/10.1016/j.talanta.2017.06.002] [PMID: 28738565]
[94]
Shah, H.N.; Halquist, M.T.; Gerk, P.M. Direct detection of phenylephrine 3-O-sulfate in LS180 human intestinal cells using a novel hydrophilic interaction liquid chromatography (HILIC) assay. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1040, 67-72.
[http://dx.doi.org/10.1016/j.jchromb.2016.11.018] [PMID: 27912158]
[95]
Sangaraju, D.; Shahidi-Latham, S.K.; Burgess, B.L.; Dean, B.; Ding, X. A multi-matrix HILIC-MS/MS method for the quantitation of endogenous small molecule neurological biomarker N-acetyl aspartic acid (NAA). J. Pharm. Biomed. Anal., 2017, 140, 11-19.
[http://dx.doi.org/10.1016/j.jpba.2017.03.020] [PMID: 28334553]
[96]
Lu, H.; Yu, J.; Wu, L.; Xing, J.; Wang, J.; Huang, P.; Zhang, J.; Xiao, H.; Gao, R. Optimized ultra performance liquid chromatography tandem high resolution mass spectrometry method for the quantification of paraquat in plasma and urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1027, 96-102.
[http://dx.doi.org/10.1016/j.jchromb.2016.05.030] [PMID: 27270261]
[97]
Silina, Y.E.; Fink-Straube, C.; Hanselmann, R.G.; Peuschel, H.; Volmer, D.A. p-Coumaric acid, a novel and effective biomarker for quantifying hypoxic stress by HILIC-ESI-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1020, 6-13.
[http://dx.doi.org/10.1016/j.jchromb.2016.03.005] [PMID: 27010352]
[98]
Abdallaha, I.A.; Hammell, D.C.; Stinchcomb, A.L.; Hassan, H.E. A Fully Validated LC-MS/MS Method for Simultaneous Determination of Nicotine and Its Metabolite Cotinine in Human Serum and Its Application to a Pharmacokinetic Study after Using Nicotine Transdermal Delivery Systems with Standard Heat Application in Adult Smokers. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2016, 1020, 67-77.
[http://dx.doi.org/10.1016/j.jchromb.2016.03.020]
[99]
Rehman, S.U.; Kim, I.S.; Choi, M.S.; Luo, Z.; Yao, G.; Xue, Y.; Zhang, Y.; Yoo, H.H. Development of a hydrophilic interaction liquid chromatography-tandem mass spectrometric method for the determination of kinsenoside, an antihyperlipidemic candidate, in rat plasma and its application to pharmacokinetic studies. J. Pharm. Biomed. Anal., 2016, 120, 19-24.
[http://dx.doi.org/10.1016/j.jpba.2015.12.003] [PMID: 26686829]
[100]
Martens-Lobenhoffer, J.; Bode-Böger, S.M. A validated method for the quantification of fosfomycin in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 990, 164-168.
[http://dx.doi.org/10.1016/j.jchromb.2015.03.029] [PMID: 25875589]
[101]
Mohamed, A.M.I.; Mohamed, F.A.F.; Ahmed, S.; Mohamed, Y.A.S. An efficient hydrophilic interaction liquid chromatographic method for the simultaneous determination of metformin and pioglitazone using high-purity silica column. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 997, 16-22.
[http://dx.doi.org/10.1016/j.jchromb.2015.05.032] [PMID: 26079265]
[102]
Ma, J.; Wang, S.; Huang, X.; Geng, P.; Wen, C.; Zhou, Y.; Yu, L.; Wang, X. Validated UPLC-MS/MS method for determination of hordenine in rat plasma and its application to pharmacokinetic study. J. Pharm. Biomed. Anal., 2015, 111, 131-137.
[http://dx.doi.org/10.1016/j.jpba.2015.03.032] [PMID: 25880244]
[103]
Meimaroglou, S.; Vonaparti, A.; Migias, G.; Gennimata, D.; Poulou, S.; Panderi, I. Direct injection human plasma analysis for the quantification of antihypertensive drugs for therapeutic drug monitoring using hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1004, 1-9.
[http://dx.doi.org/10.1016/j.jchromb.2015.09.001] [PMID: 26432361]
[104]
Ramesh, B.; Manjula, N.; Ramakrishna, S.; Devi, P.S. Direct injection HILIC-MS/MS analysis of darunavir in rat plasma applying supported liquid extraction. J. Pharm. Anal., 2015, 5(1), 43-50.
[http://dx.doi.org/10.1016/j.jpha.2014.05.001] [PMID: 29403914]
[105]
Arora, B.; Narayanasamy, A.; Nirmal, J.; Halder, N.; Patnaik, S.; Ravi, A.K.; Velpandian, T. Development and validation of a LC-MS/MS method for homocysteine thiolactone in plasma and evaluation of its stability in plasma samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 944, 49-54.
[http://dx.doi.org/10.1016/j.jchromb.2013.11.011] [PMID: 24291720]
[106]
Hua, W.; Ierardi, T.; Lesslie, M.; Hoffman, B.T.; Mulvana, D. Development and validation of a HILIC-MS/MS method for quantification of decitabine in human plasma by using lithium adduct detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 969, 117-122.
[http://dx.doi.org/10.1016/j.jchromb.2014.08.012] [PMID: 25168795]
[107]
Liu, J.; Wang, L.; Hu, W.; Chen, X.; Zhong, D. Development of a UHPLC-MS/MS method for the determination of plasma histamine in various mammalian species. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 971, 35-42.
[http://dx.doi.org/10.1016/j.jchromb.2014.08.043] [PMID: 25264911]
[108]
Pontarolo, R.; Gimenez, A.C.; de Francisco, T.M.G.; Ribeiro, R.P.; Pontes, F.L.; Gasparetto, J.C. Simultaneous determination of metformin and vildagliptin in human plasma by a HILIC-MS/MS method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 965, 133-141.
[http://dx.doi.org/10.1016/j.jchromb.2014.06.023] [PMID: 25016166]
[109]
Chen, L.; Chen, H.; Shen, M. Hydrophilic interaction chromatography combined with tandem mass spectrometry method for the quantification of tobramycin in human plasma and its application in a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 973C, 39-44.
[http://dx.doi.org/10.1016/j.jchromb.2014.10.007] [PMID: 25464093]
[110]
Zhou, T.; Cheng, Q.; Zou, C.; Zhao, T.; Liu, S.; Pistolozzi, M.; Tan, E.; Xu, L.; Tan, W. Simultaneous determination of bambuterol and its two major metabolites in human plasma by hydrophilic interaction ultra-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 967, 225-234.
[http://dx.doi.org/10.1016/j.jchromb.2014.07.022] [PMID: 25128881]
[111]
Vilhena, R. de O.; Pontes, F.L.D.; Marson, B.M. Ribeiro, Rô. P.; Carvalho, K. A. T. de; Cardoso, M. A.; Pontarolo, R. A New HILIC-MS/MS Method for the Simultaneous Analysis of Carbidopa, Levodopa, and Its Metabolites in Human Plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2014, 967, 41-49.
[http://dx.doi.org/10.1016/j.jchromb.2014.06.030]
[112]
Yaldiz, F.; Daglioglu, N.; Hilal, A.; Keten, A.; Gülmen, M.K. Determination of ethyl glucuronide in human hair by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J. Forensic Leg. Med., 2013, 20(7), 799-802.
[http://dx.doi.org/10.1016/j.jflm.2013.06.013] [PMID: 24112322]
[113]
Kalogria, E.; Pistos, C.; Panderi, I. Hydrophilic interaction liquid chromatography/positive ion electrospray ionization mass spectrometry method for the quantification of alprazolam and α-hydroxy-alprazolam in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 942-943, 158-164.
[http://dx.doi.org/10.1016/j.jchromb.2013.10.040] [PMID: 24269910]
[114]
Dong, J.; Liu, S.; Zhang, H.; Hua, Q.; Zhao, X.; Miao, L. Determination of naloxone-3-glucuronide in human plasma and urine by HILIC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 942-943, 83-87.
[http://dx.doi.org/10.1016/j.jchromb.2013.09.036] [PMID: 24216276]
[115]
Sun, J.; Zhang, F.; Peng, Y.; Liu, J.; Zhong, Y.; Wang, G. Quantitative determination of diterpenoid alkaloid Fuziline by hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization mass spectrometry and its application to pharmacokinetic study in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 913-914, 55-60.
[http://dx.doi.org/10.1016/j.jchromb.2012.11.017] [PMID: 23270939]
[116]
Seçilir, A.; Schrier, L.; Bijleveld, Y.A.; Toersche, J.H.; Jorjani, S.; Burggraaf, J.; van Gerven, J.; Mathôt, R.A.A. Determination of methylphenidate in plasma and saliva by liquid chromatography/tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 923-924, 22-28.
[http://dx.doi.org/10.1016/j.jchromb.2013.01.027] [PMID: 23454305]
[117]
Cheng, Z.X.; Wu, J.J.; Liu, Z.Q.; Lin, N. Development of a hydrophilic interaction chromatography-UPLC assay to determine trigonelline in rat plasma and its application in a pharmacokinetic study. Chin. J. Nat. Med., 2013, 11(2), 164-170.
[http://dx.doi.org/10.1016/S1875-5364(13)60044-8] [PMID: 23787184]
[118]
Zheng, X.L.; Yu, B.S.; Li, K.X.; Dai, Y.N. Determination of Melamine in Dairy Products by HILIC-UV with NH 2 Column. Food Control, 2012, 23(1), 245-250.
[http://dx.doi.org/10.1016/j.foodcont.2011.07.023]
[119]
Pligoropoulou, H.; Vonaparti, A.; Panderi, I. Hydrophilic interaction liquid chromatography/positive ion electrospray mass spectrometry for the quantification of deferasirox, an oral iron chelator, in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 893-894, 114-120.
[http://dx.doi.org/10.1016/j.jchromb.2012.02.044] [PMID: 22436822]
[120]
Huang, Y.; Tian, Y.; Zhang, Z.; Peng, C.A. HILIC-MS/MS method for the simultaneous determination of seven organic acids in rat urine as biomarkers of exposure to realgar. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 905, 37-42.
[http://dx.doi.org/10.1016/j.jchromb.2012.07.038] [PMID: 22902916]
[121]
Wu, Y.H.; Wu, M.L.; Lin, C.C.; Chu, W.L.; Yang, C.C.; Lin, R.T.; Deng, J.F. Determination of caprolactam and 6-aminocaproic acid in human urine using hydrophilic interaction liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 885-886, 61-65.
[http://dx.doi.org/10.1016/j.jchromb.2011.12.014] [PMID: 22237132]
[122]
Li, P.; Beck, W.D.; Callahan, P.M.; Terry, A.V., Jr; Bartlett, M.G. Quantitation of cotinine and its metabolites in rat plasma and brain tissue by hydrophilic interaction chromatography tandem mass spectrometry (HILIC-MS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 907, 117-125.
[http://dx.doi.org/10.1016/j.jchromb.2012.09.018] [PMID: 23022114]
[123]
Nováková, L.; Gottvald, T.; Vlčková, H.; Trejtnar, F.; Mandíková, J.; Solich, P. Highly sensitive fast determination of entecavir in rat urine by means of hydrophilic interaction chromatography-ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2012, 1259, 237-243.
[http://dx.doi.org/10.1016/j.chroma.2012.03.078] [PMID: 22520634]
[124]
Wu, X.; Zhu, B.; Lu, L.; Huang, W.; Pang, D. Optimization of a solid phase extraction and hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the determination of metformin in dietary supplements and herbal medicines. Food Chem., 2012, 133(2), 482-488.
[http://dx.doi.org/10.1016/j.foodchem.2012.01.005] [PMID: 25683423]
[125]
Wunnapuk, K.; Medley, G.A.; Liu, X.; Grice, J.E.; Jayasinghe, S.; Gawarammana, I.; Buckley, N.A.; Roberts, M.S. Simple and sensitive liquid chromatography-tandem mass spectrometry methods for quantification of paraquat in plasma and urine: application to experimental and clinical toxicological studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(28), 3047-3052.
[http://dx.doi.org/10.1016/j.jchromb.2011.09.008] [PMID: 21956020]
[126]
Hatambeygi, N.; Abedi, G.; Talebi, M. Method development and validation for optimised separation of salicylic, acetyl salicylic and ascorbic acid in pharmaceutical formulations by hydrophilic interaction chromatography and response surface methodology. J. Chromatogr. A, 2011, 1218(35), 5995-6003.
[http://dx.doi.org/10.1016/j.chroma.2011.06.009] [PMID: 21708383]
[127]
Douša, M.; Břicháč, J.; Gibala, P.; Lehnert, P. Rapid hydrophilic interaction chromatography determination of lysine in pharmaceutical preparations with fluorescence detection after postcolumn derivatization with o-phtaldialdehyde. J. Pharm. Biomed. Anal., 2011, 54(5), 972-978.
[http://dx.doi.org/10.1016/j.jpba.2010.11.026] [PMID: 21163603]
[128]
Zuo, Y.; Yang, Y.; Zhu, Z.; He, W.; Aydin, Z. Determination of uric acid and creatinine in human urine using hydrophilic interaction chromatography. Talanta, 2011, 83(5), 1707-1710.
[http://dx.doi.org/10.1016/j.talanta.2010.11.073] [PMID: 21238772]
[129]
Xiong, Z.; Zhang, Y.; Qin, F.; Qin, T.; Yang, S.; Li, F. Hydrophilic interaction liquid chromatography-tandem mass spectrometry for the determination of adefovir in human plasma and its application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(23), 2111-2116.
[http://dx.doi.org/10.1016/j.jchromb.2010.06.024] [PMID: 20630813]
[130]
Hubert, C.; Houari, S.; Lecomte, F.; Houbart, V.; De Bleye, C.; Fillet, M.; Piel, G.; Rozet, E.; Hubert, P. Development and validation of a sensitive solid phase extraction/hydrophilic interaction liquid chromatography/mass spectrometry method for the accurate determination of glucosamine in dog plasma. J. Chromatogr. A, 2010, 1217(19), 3275-3281.
[http://dx.doi.org/10.1016/j.chroma.2010.01.024] [PMID: 20117789]
[131]
Álvarez-Sánchez, B.; Priego-Capote, F.; Mata-Granados, J.M.; Luque de Castro, M.D. Automated determination of folate catabolites in human biofluids (urine, breast milk and serum) by on-line SPE–HILIC–MS/MS. J. Chromatogr. A, 2010, 1217(28), 4688-4695.
[http://dx.doi.org/10.1016/j.chroma.2010.05.010] [PMID: 20605576]
[132]
Liu, A.; Coleman, S.P. Determination of metformin in human plasma using hydrophilic interaction liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(29), 3695-3700.
[http://dx.doi.org/10.1016/j.jchromb.2009.09.020] [PMID: 19783231]
[133]
Matysová, L.; Havlíková, L.; Hájková, R.; Krivda, A.; Solich, P. Application of HILIC stationary phase to determination of dimethindene maleate in topical gel. J. Pharm. Biomed. Anal., 2009, 50(1), 23-26.
[http://dx.doi.org/10.1016/j.jpba.2009.03.032] [PMID: 19394784]
[134]
Lee, H.W.; Ji, H.Y.; Kim, H.Y.; Park, E.S.; Lee, K.C.; Lee, H.S. Determination of metoclopramide in human plasma using hydrophilic interaction chromatography with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(18-19), 1716-1720.
[http://dx.doi.org/10.1016/j.jchromb.2009.04.027] [PMID: 19442594]
[135]
Erkmen, C.; Gümüştaş, M.; Özkan, S.A.; Uslu, B. Step-by-Step Optimization of the HILIC Method for Simultaneous Determination of Abacavir, Lamivudine, and Zidovudine from Dosage Form. Turk. J. Chem., 2019, 43(6), 1597-1607.
[http://dx.doi.org/10.3906/kim-1906-18]
[136]
Chan, D.; Tarbin, J.; Sharman, M.; Carson, M.; Smith, M.; Smith, S. Screening method for the analysis of antiviral drugs in poultry tissues using zwitterionic hydrophilic interaction liquid chromatography/tandem mass spectrometry. Anal. Chim. Acta, 2011, 700(1-2), 194-200.
[http://dx.doi.org/10.1016/j.aca.2010.11.015] [PMID: 21742133]
[137]
Vermeir, M.; Hemeryck, A.; Cuyckens, F.; Francesch, A.; Bockx, M.; Van Houdt, J.; Steemans, K.; Mannens, G.; Avilés, P.; De Coster, R. In vitro studies on the metabolism of trabectedin (YONDELIS) in monkey and man, including human CYP reaction phenotyping. Biochem. Pharmacol., 2009, 77(10), 1642-1654.
[http://dx.doi.org/10.1016/j.bcp.2009.02.020] [PMID: 19426702]
[138]
Kim, H.S.; Siluk, D.; Wainer, I.W. Quantitative determination of fenoterol and fenoterol derivatives in rat plasma using on-line immunoextraction and liquid chromatography/mass spectrometry. J. Chromatogr. A, 2009, 1216(16), 3526-3532.
[http://dx.doi.org/10.1016/j.chroma.2008.08.046] [PMID: 18778830]
[139]
Preinerstorfer, B.; Schiesel, S.; Lämmerhofer, M.; Lindner, W. Metabolic profiling of intracellular metabolites in fermentation broths from β-lactam antibiotics production by liquid chromatography-tandem mass spectrometry methods. J. Chromatogr. A, 2010, 1217(3), 312-328.
[http://dx.doi.org/10.1016/j.chroma.2009.11.051] [PMID: 19954781]
[140]
Fontanals, N.; Marcé, R.M.; Borrull, F. On-line solid-phase extraction coupled to hydrophilic interaction chromatography-mass spectrometry for the determination of polar drugs. J. Chromatogr. A, 2011, 1218(35), 5975-5980.
[http://dx.doi.org/10.1016/j.chroma.2010.12.028] [PMID: 21186029]
[141]
Zeng, W.; Xu, Y.; Constanzer, M.; Woolf, E.J. Determination of sitagliptinin human plasma using protein precipitation and tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(21), 1817-1823.
[http://dx.doi.org/10.1016/j.jchromb.2010.05.013] [PMID: 20605540]
[142]
Svalbe, B.; Zvejniece, L.; Vavers, E.; Pugovics, O.; Muceniece, R.; Liepinsh, E.; Dambrova, M. Mildronate treatment improves functional recovery following middle cerebral artery occlusion in rats. Behav. Brain Res., 2011, 222(1), 26-32.
[http://dx.doi.org/10.1016/j.bbr.2011.03.027] [PMID: 21420440]
[143]
Huttunen, K.M.; Rautio, J.; Leppänen, J.; Vepsäläinen, J.; Keski-Rahkonen, P. Determination of metformin and its prodrugs in human and rat blood by hydrophilic interaction liquid chromatography. J. Pharm. Biomed. Anal., 2009, 50(3), 469-474.
[http://dx.doi.org/10.1016/j.jpba.2009.04.033] [PMID: 19481899]
[144]
Montesano, M.A.; Whitehead, R.D., Jr; Jayatilaka, N.K.; Kuklenyik, P.; Davis, M.D.; Needham, L.L.; Barr, D.B. Measurement of ethyl methanesulfonate in human plasma and breast milk samples using high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J. Pharm. Biomed. Anal., 2010, 52(2), 260-264.
[http://dx.doi.org/10.1016/j.jpba.2009.12.030] [PMID: 20102787]
[145]
Heinig, K.; Wirz, T. Determination of taspoglutide in human and animal plasma using liquid chromatography-tandem mass spectrometry with orthogonal column-switching. Anal. Chem., 2009, 81(10), 3705-3713.
[http://dx.doi.org/10.1021/ac900422e] [PMID: 19374429]
[146]
Stocker, S.L.; Franklin, M.E.; Anderson, J.M.; Pillans, P.I.; Williams, K.M.; McLachlan, A.J.; Day, R.O.; Taylor, P.J. Measurement of urinary oxypurinol by high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(25), 2363-2368.
[http://dx.doi.org/10.1016/j.jchromb.2010.07.017] [PMID: 20702150]
[147]
Discenza, L.; D’Arienzo, C.; Olah, T.; Jemal, M. LC-MS/MS method using unbonded silica column and aqueous/methanol mobile phase for the simultaneous quantification of a drug candidate and co-administered metformin in rat plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(19), 1583-1589.
[http://dx.doi.org/10.1016/j.jchromb.2010.04.018] [PMID: 20451474]
[148]
Noh, K.; Park, J.H.; Park, J.H.; Kim, M.; Jung, M.; Ha, H.; Kwon, K.I.; Lee, H.J.; Kang, W. Quantitative determination of daumone in rat plasma by liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal., 2011, 56(1), 114-117.
[http://dx.doi.org/10.1016/j.jpba.2011.04.008] [PMID: 21600719]
[149]
Mirkou, A.; Vignal, B.; Cohen, S.; Guillaumont, M.; Glehen, O.; Guitton, J. Assays for the quantification of melphalan and its hydrolysis products in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(27), 3089-3096.
[http://dx.doi.org/10.1016/j.jchromb.2009.07.033] [PMID: 19674945]
[150]
Guitton, J.; Coste, S.; Guffon-Fouilhoux, N.; Cohen, S.; Manchon, M.; Guillaumont, M. Rapid quantification of miglustat in human plasma and cerebrospinal fluid by liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(3), 149-154.
[http://dx.doi.org/10.1016/j.jchromb.2008.11.040] [PMID: 19095507]
[151]
Asthana, C.; Peterson, G.M.; Shastri, M.D.; Patel, R.P. A novel and sensitive HILIC-CAD method for glucosamine quantification in plasma and its application to a human pharmacokinetic study. J. Pharm. Biomed. Anal., 2020.178112954
[http://dx.doi.org/10.1016/j.jpba.2019.112954] [PMID: 31704130]
[152]
Jin, H.; Lao, Y.M.; Zhou, J.; Zhang, H.J.; Cai, Z.H. A rapid UHPLC-HILIC method for algal guanosine 5′-diphosphate 3′-diphosphate (ppGpp) and the potential separation mechanism. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1096, 143-153.
[http://dx.doi.org/10.1016/j.jchromb.2018.08.009] [PMID: 30170292]
[153]
Camperi, J.; Pichon, V.; Fournier, T.; Delaunay, N. First profiling in hydrophilic interaction liquid chromatography of intact human chorionic gonadotropin isoforms. J. Pharm. Biomed. Anal., 2019, 174, 495-499.
[http://dx.doi.org/10.1016/j.jpba.2019.06.014] [PMID: 31234040]
[154]
Sillner, N.; Walker, A.; Harrieder, E.M.; Schmitt-Kopplin, P.; Witting, M. Development and application of a HILIC UHPLC-MS method for polar fecal metabolome profiling. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1109, 142-148.
[http://dx.doi.org/10.1016/j.jchromb.2019.01.016] [PMID: 30763867]
[155]
Berkecz, R.; Tömösi, F.; Körmöczi, T.; Szegedi, V.; Horváth, J.; Janáky, T. Comprehensive phospholipid and sphingomyelin profiling of different brain regions in mouse model of anxiety disorder using online two-dimensional (HILIC/RP)-LC/MS method. J. Pharm. Biomed. Anal., 2018, 149, 308-317.
[http://dx.doi.org/10.1016/j.jpba.2017.10.043] [PMID: 29132110]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy